Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3851287 A
Publication typeGrant
Publication dateNov 26, 1974
Filing dateJun 6, 1973
Priority dateFeb 9, 1972
Publication numberUS 3851287 A, US 3851287A, US-A-3851287, US3851287 A, US3851287A
InventorsC Miller, J Nuding
Original AssigneeLitton Systems Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Low leakage current electrical isolation system
US 3851287 A
Abstract
The disclosed invention presents an isolated electrical distribution system which includes at least a pair of power lines for providing a source of alternating voltage, one of the lines being connected to electrical ground, which are connected across the primary winding of an isolation power transformer, and at least a second pair of lines, neither of which is connected to said ground potential, wired to an electrical outlet or load and connected across the secondary winding of the transformer. The isolation transformer, housed in a metal enclosure, includes a magnetic core, a primary winding formed in a coil, a secondary winding formed in a separate coil with the coils mounted on the magnetic core on one side of the primary, with the turns of one coil wound in a clockwise direction relative to the core and the windings of the other coil wound in a counterclockwise direction relative to the core; another secondary winding formed in a separate coil and mounted on the core on the other side of the primary coil; and thin flat nonmagnetic metal shield members, each having a slot therethrough, are fitted over the magnetic core and sandwiched in between each of the two secondary coils and the primary coil. As described, leakage currents between the primary and secondary windings and between the secondary windings to ground is minimized with concurrent reduction in stray magnetic fields.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Miller et a1.

[5 LOW LEAKAGE CURRENT ELECTRICAL ISOLATION SYSTEM [75] Inventors: Charles Edward Miller, Melrose Park; James Andrew Nuding, Elmwood Park, both of 111.

[73] Assignee: Litton Systems, Inc., Bellwood, 111.

[22] Filed: June 6, 1973 [21] Appl. No.: 367,584

Related U.S. Application Data [63] Continuation-impart of Ser. No. 224,878, Feb. 9,

1972, abandoned.

[52] U.S. Cl 336/84, 336/183, 336/212 [51] Int. Cl. H0lf 15/04 [58] Field of Search 336/180, 84, 105, 107, 336/181, 183, 212

[56] References Cited UNITED STATES PATENTS 2,114,189 4/1938 Kronmiller 336/84 2,229,373 l/l94l 2,815,408 12/1957 Hafler 336/183 X 2,904,762 9/1959 Schulz 2,914,719 11/1959 Walton et a1.

3,277,416 10/1966 Barr 3,287,680 11/1966 Houpt ct a1 336/181 X 3,360,754 12/1967 Gerdiman 336/180 3,393,388 7/1968 Young 336/84 1 Nov. 26, 1974 Primary Examiner-Thomas J. Kozma Attorney, Agent, or Firm-Ronald M. Goldman 1 1 ABSTRACT The disclosed invention presents an isolated electrical distribution system which includes at least a pair of power lines for providing a source of alternating voltage, one of the lines being connected to electrical ground, which are connected across the primary winding of an isolation power transformer, and at least a second pair of lines, neither of which is connected to said ground potential, wired to an electrical outlet or load and connected across the secondary winding of the transformer The isolation transformer, housed in a metal enclosure, includes a magnetic core, a primary winding formed in a coil, a secondary winding formed in a separate coil with the coils mounted on themagnetic core on one side of the primary, with the turns of one coil wound in a clockwise direction relative to the core and the windings of the other coil wound in a counterclockwise direction relative to the core; another secondary winding formed in a separate coil-and mounted on the core on the other side of the primary coil; and thin flat nonmagnetic metal shield members, each having a slot therethrough, are fitted over the magnetic core and sandwiched in between each of the two secondary coils and the primary coil. As described, leakage currents between the primary and secondary windings and between the secondary windings to ground is minimized with concurrent reduction in stray magnetic fields.

2 Claims, 20 Drawing Figures Pmmmnvz I 3.851.287

SHEET 20? 3 PATENTE; 248V 2 61974 SREEF 3 W 3 F/gtiO F/gzii LOW LEAKAGE CURRENT ELECTRICAL ISOLATION SYSTEM This is a continuation-in-part of our earlier filed application Ser. No. 224,878, filed Feb..9, 1972 and now abandoned.

. FIELD OF THE INVENTION This invention relates to hospital electrical distribution system and, more particularly, to high power low leakage current isolation transformer and hospital type isolated electrical supply system combinations.

BACKGROUND OF THE INVENTION Electrical AC distribution systems provide AC power from a source located at the power company over electrical lines which distribute the power to consumers at different locations. Electrical transformers are included in such a distribution system. The transformer is a well known electrical component by which AC electrical energy is coupled or transformed from one circuit at the transformer input to another coupled to the output by electromagnetic induction. Typically, the transformer includes at least a primary winding made up of a coil of wire, a secondary winding, also a coil of wire, inductively coupled together, and located physically on an iron core, the magnetic properties of which enhance the inductive coupling between the windings. Suitably a source of alternating voltage coupled to the primary winding is transformed and coupled by means of electromagnetic induction into an alternating voltage that appears across the secondary winding. The relationship between the magnitude of voltage applied to the primary and the voltage appearing at the secondary is primarily a function of the turns ratio of the windings, the number of turns of wire in the coil which makes up the primary as compared to the secondary. This and other factors affecting the design and operation of transformers are well known and explained in readily available literature.

One particular type of transformer is that in which the turns ratio, the number of turns in the secondary winding as compared to the number of turns in the primary winding, is equal approximately to one or two, whereby a voltage applied to the input or primary winding of that transformer is the same voltage which is produced at the secondary winding, or double that of the primary winding. This type of transformer permits a coupling of voltages and current from one circuit coupled to the primary winding to a second circuit coupled to the secondary winding, with no direct or DC current path between each primary and secondary circuits. Hence the transformer of this type serves to isolate electrically the first and second circuits and the transformer appropriately is referred to as an isolation transformer.

lsolation transformers have long found application for many different purposes as part of electrical AC distribution systems. One well-known and particularly critical application for isolation transformers is in combinationwith the electrical supply system of an operating room found in the modern hospital. For reasons hereinafter explained, the hospital operating room contains a special isolated electrical system. In this system the power available from the electrical utility companies is brought into the hospital via two or more lines and fed into an isolation transformer of the operating room supply. One of the utility company lines is always grounded, i.e., connected in a direct current path with the earth. The output of the isolation transformer is thereupon fed to the numerous electrical distribution outlets found in the operating room. By connection to these outlets electrical and electronic instruments used in modern hospital operating rooms receive electrical power. Accordingly, isolation transformers must be capable of handling large amounts of AC power.

In addition to the aforementioned isolation system, a stranger to a modern operating room would find that the floors of the operating room are of metal construction and are electrically connected to neutral electrical potential, suitably ground or earth potential, as is the one electrical line from the power company. And all the room equipment is likewise in some manner in electrical contact with that metal flooring. Moreover, the operating personnel wear special electrically conductive foot coverings in order to prevent any build up of static electricity on the person, such as one commonly experiences by walking across rugs in dry weather.

The concept of metal flooring and other anti-static gear, as is known, was adopted because of the requirements of anesthesiology. In early hospitals the advent of modern anesthesiology was somewhat of a bane as well as a boon, in that the gases used for anesthetic are highly explosive. Thus the least spark such as could be caused by static electricity discharges between the surgeons hand and the operating table ignited any gases that might have leaked from containers and accumulated. In the least, that was obviously undesirable.

With that problem solved, another was created. Since the flooring is electrically grounded, any equipment malfunction in the electrical outlets or equipment connected thereto, such as by insulation breakdown, could expose a hot AC line which when touched by one essentially grounded" to the flooring would complete an electrical path from the hot line to ground through the person, resulting in shock or electrocution. This hazard is theoretically eliminated by the isolated electrical system. In being isolated, there is no direct current path or circuit from the electrical outlets to ground potential at the metal flooring.

As those in the field of electrical wiring are aware, there is often a difference in potential between electrical grounds because of a difference in location. Although in most applications proper electrical grounding of equipment is taken for granted, in fact persons may find in their household that an electrical sensation might be felt by touching an electrical stove at the same time that one touches a metal sink, assuming the two have not been grounded together to the same location. The electrical stove may be connected to the ground supplied by the electrical utility company, initially, while the sink is generally connected through the cold water pipes directly to the'earth ground directly outside the house. Since the two different current paths to ground may have two different electrical resistances the potential or voltage across such resistances may differ slightly, resulting in a voltage difference between the two objects. Thus there are and can exist small differences in potential between ground, and these, in turn, can give rise to minute currents which. ordinarily. may be disregarded. However, with the sensitive equipment found in the modern hospital even minute differences must be avoided. Should one of two different ground connections become highly resistive or open, a

ideal and although for most applications. such departures may be disregarded, for hospital systems they must be maintained as close to the ideal as is permissible within the realm of present technology and closely monitored. The transformer primary and secondary windings are insulated from one another and from the magnetic iron core by isulating material. However even the best insulating material has some resistive leakage, however slight. And after years of service the insulation ages increasing resistive leakage current. In a transformer this insulation breakdown could permit noticeable resistive leakage currents between the primary and secondary windings and between each of those windings and the iron transformer core.

A second cause of inherent leakage currents, either between the primary and secondary windings or be tween either of those windings and the magnetic core to electrical ground, occurs due to electrostatic coupling. Effectively with any transformer there is some electrical capacitance, first, between the primary and secondary windings, and second, between each such winding and the iron core. While the inherent operation of the transformer at the 60-cycle frequencies usually found on the power lines relies upon magnetic induction action for coupling between the windings, it is apparent that there exists between the spaced electrically conductive materials of each of the primary and secondary windings and of the iron core some degree ofelectrical capacitance, however small. And, as is well known, alternating current does effectively pass through capacitance; the larger the capacitance, the more current which can flow therethrough.

With transformers, this property is referred to in the literature as distributed capacitance," and is adequately there explained in greater detail should the reader wish to pursue same further.

Ideally, in an isolation transformer for hospital supply systems, this electrostatic coupling through distributed capacitance should be minimized. Typically, the leakage due to distributed capacitance is more predominant than that due to insulation resistance, resistive leakage. And, forturately, to some degree as the insulation ages and lowers in resistance its distributed capacitance, and hence capacitive leakage current, decreases to more than offset increased resistive leakage current.

A brochure published by the Sorgel Company of Milwaukee, Wisconsin, entitled Hospital Isolating Panels, provides interesting insight into the foregoing problems of hospital supply systems. In addition, another brochure entitled The Dynamic Ground Detector, published by the same company, makes mention of the requirements of a transformer in hospital isolated electrical systems, and depicts one such transformer. Quoting from the following brochure:

The transformers, in all cases, should be of the isolating type and designed for low current leakage in the secondary winding. The capacitive current leakage of the secondary should not exceed 10 microamperes on units 5 KVA and smaller or 25 microamperes on units 15 KVA and larger. Transformers having higher current leakage values would limit the usable circuits in the total system.

The present standard does not call for the isolating transformer to have an electrostatic shield between the primary and secondary windings, however most leading authorities have recommended the use of a shield. It seems likely that the new standards will require an isolating transformer with an electrostatic shield. From the practical viewpoint, it does complicate the problem of producing a low leakage transformer, as it represents an additional capacitive coupling to ground. It does, however, provide an additional margin of safety in preventing shorts between the primary and secondary. Perhaps an even greater contribution of the shield is that of providing a measure of protection against the coupling of harmonic distortions between the primary and secondary which might otherwise adversely effect sensitive electronic monitoring equipment.

An electrostatic shield between the primary and secondary windings of the transformer reduces not only 60 cycle AC coupling but minimizes coupling of any high frequency AC signals such as radio frequency signals that in some way get onto the power lines. The location of such a metal member is visualized in connection with the physical arrangement of the transformer elements.

Power transformers typically include the iron core which forms a closed magnetic circuit. The iron core is shaped into either the core" or shell" type, and contain different winding arrangements. In the core type the magnetic circuit resembles a rectangle, and the primary and secondary windings are generally placed on two opposed legs of top core. For efficiency of coupling, the primary and secondary may be split and a portion of each placed on each of the two opposed legs.

In the shell type transformer, the magnetic core configuration resembles a rectangle with a center leg down the middle. The transformer windings are placed on the center leg, essentially remaining within the confines of the window formed on each side of the center leg by the outer legs of the rectangle, hence the term shell. In either arrangement the primary and secondary windings are either formed one on ts of the other, termed double wound," or are separately wound and placed side by side. In addition, with the core type transformer the primary and secondary windings may be split, that is, a coil on one leg includes a part of the secondary wound over a part of the primary winding in a double wound arrangement; a like coil arrangement is placed on the opposed leg and each of the remote portions of the same primary and secondary windings are placed in an electrical series circuit together. This latter arrangement is typical of the transformer in the aforecited Sorgel publication.

A metal barrier or shield is used in those transformer structures where it is desired to form or provide an 1 electrostatic shield to prevent passage of high frequency electrical currents between parts. Such shields are commonly found in transformers of the double wound variety. The shielding is accomplished typically by placing a metal foil layer between the primary and overwound secondary windings grounding that shield.

The use of a shield is also found in a low power ignition system transformer for reducing the coupling of high frequency energy generated in the ignition circuit and applied to the secondary winding to the primary winding. This is illustrated in US Pat. No. 2,183,355, issued Dec. 12, 1939, to L. Mauerer. And a shield is used for a similar purpose in the transformer illustrated in US. Pat. No. 2,904,762, issued Sept. 15, 1959 to Schulz, on a type of power transformer.

OBJECTS OF THE INVENTION Accordingly, it is a primary object of the invention to provide an improved isolated electrical distribution system for hospitals.

And it is a further object of the invention to provide a low leakage current isolation transformer of high efficiency suitable in combination with a hospital electrical supply system.

BRIEF SUMMARY OF THE INVENTION An isolated electrical distribution system includes at least a pair of lines having applied thereto an alternating voltage, one of the lines being connected to ground, connected to the primary winding of an isolation transformer, and at least a second pair of lines, neither of which is connected to said ground, connected to the secondary windingof said transformer and to an electrical outlet load. The high power isolation transformer is located in a metal enclosure, suitably iron, and includes amagnetic core, a primary winding formed in a coil, a secondary winding formed in two coils mounted side by side on the magnetic core with the primary winding coil sandwiched between. Additionally a pair of thin, flat, nonmagnetic metal shield members, each having a slot therethrough, is fitted over the core; each one in between a respective secondary coil and the primary coil to form a physical barrier between said coils, and twin insulating spacers are provided between said metal shields and each said coils to form a closely packed sandwich of coils, spacers and shield. In accordance with the invention, the coils are oriented with the turns of one of the secondary coils wound in a clockwise direction with respect to the core leg and the turns of the other secondary coil wound counterclockwise, with the primary coil having its turns in one or other of such direction.

Those features which are believed to be characteristic of the invention, together with equivalents and substitutions of the elements therefor, and the accomplishment of the foregoing objects and advantages of the invention and additional advantages thereof, become more apparent from a consideration of the preferred embodiments of the invention as set forth in the following detailed description of the specification taken together with the figures of the drawings.

DESCRIPTION OF DRAWINGS In the drawings:

FIG. 1 illustrates one view of an embodiment of the invention.

FIG. 2 illustrates a side view of the transformer construction used in the embodiment of FIG. 1.

FIG. 3 illustrates a shield member used in the embodiment of FIG. 1.

and electrically FIG. 4 illustrates a specific example of a magnetic lamination of the transformer used in the iron core of the transformer of FIG. 1. v

FIG. 5 illustrates schematically the transformer disclosed in FIG. 1 together with circuits for testing current leakage.

FIG. 6a and FIG. 6b represent core type and double wound shell type isolation transformer constructions commercially used in prior art hospital type isolated electrical supply systems.

FIG. 7 illustrates another embodiment of the invention.

FIG. 8 schematically illustrates the transformer included in FIG. 7.

FIGS. 9a through 1' illustrate various lamination configurations.

FIG. 10 illustrates still another embodiment of the invention.

FIG. 11 illustrates schematically the transformer cluded in the embodiment of FIG. 10.

DETAILED DESCRIPTION OF THE INVENTION The top view of the transformer in FIG. 1 shows it to include a first coil winding 1 spaced side by side from a second coil winding 3 and mounted on the center leg 5 of a shell type transformer core. The magnetic iron core includes two side legs, 7 and 9, and front and back legs, 11 and 13, which, form two windows, one on each side of the center leg. A large number of these laminations are stacked up together to form a transformer iron core. Suitable openings, 15, extend through the stack of laminations to permit bolts, not illustrated, to clamp the individual laminations together mechanically into a single core. An insulating tube 21, only partially visible in the figure, which fits around the center leg 5 and windings 1 and 3 fit over such insulation. Winding 1 is of conventional construction and consists of a plurality of layers of electrical wire wound around and along the core in a given direction, clockwise or counterclockwise, with each layer separated from the next adjacent layer suitably by a layer of insulating material until the requisite number of turns in the winding are formed and to form a spool with a central passage through which leg 5 extends. The two electrical leads 23 and 25 extend from coil 1 with lead 25 connected to the start of coil 1 and going to the first turn in the first layer most proximate the core and electrical lead' 23, finish lead, is attached to the last turn of wire in the coil. Winding 3 is similarly wound upon insulation tube 22, only partially illustrated, and in this embodiment comprises the same number of turns and structure so that the turns ratio between coils l and 3 is one-to-one. Likewise coil 3 includes a start electrical lead 27 and a finish electrical lead 29.

It is apparent that the winding 3, which serves as the secondary winding, may contain double the number of turns if a two-to-one turns ratio is desired to double the voltage at the secondary.

Separating and fitted in between windings 1 and 3 is a thin flat metal member, 31, which is also fitted ove-r central leg 5, which is better discussed hereinafter in connection with FIG. 3. A pair of thin flat O-shaped insulating members 26 and 28 are fitted between metal member 31 and a respective one of the coils 1 and 3 to insure insulation therebetween. As is apparent, this forms a closely packed sandwich construction of coil 1,

spacer 26, shield 31,spacer 28, and coil 3 abutting the adjacent element The secondary winding 3 is mounted on the center leg in a manner which is magnetically opposite to that of primary winding l.-That is, assuming the turns in the coil making up winding 1 are wound upon core tube 21 or leg 5 in a clockwise manner in the view of FIG. 1, the turns of the winding 3 appear from the same view to be wound around insulating tube 22 or leg 5 in a counterclockwise manner. This is accomplished typically by winding both coils in the same direction but reversing one of the coils relative to the other prior to building up the laminations and completing the magnetic core.

A lead 33 electrically connects shield member 31 in circuit with the magnetic core at leg 7 to electrical ground potential as indicated by the symbol in the drawing.

The electrical utility lines which are provided by the power company provide connection to an alternating voltage source. The source is represented as the 120- The dash lines 32 symbolically denote a six sided metal housing or enclosure in which the transformer and usually monitoring instruments, not illustrated, or other electrical components common to hospital distribution systems are installed. This enclosure, sometimes referred to as a panel, usually contains a door or removable trim cover, is formed of 12 gauge steel. The enclosure is electrically grounded as illustrated in the figure.

other figure it is given the same numerical designation. FIG. 2 illustrates a front side view of the transformer found in FIG. 1. Visible in this view is the iron core leg 13, coil 3, leads 27 and 29, the insulating tube 22 partially visible, O-shaped insulating spacer 28 and metal shield member 31. As is apparent the view of the structural arrangements from the other end of the transformer would appear to be a mirror image of FIG. 2. Note that member 31 completely obscures the coil I located on the other side.

The constructional detail of the metal shield member 31 is indicated in FIG. 3. Member 31 is suitably of aluminum, is thin and flat but of a somewhat complicated geometry. This includes a central passage 32 through which the central leg 5 of the transformer of FIG. 1 ex- For convenience, where an element appears in an-' tends and two cutaway end portions 39 and 41 with which to hook over the side core legs 9 and 7 in FIG. I. A slot 34 extends through the member, between passage 32 and an outer edge of the member 31. This slot forms a gap and prevents a current path in the metal from encircling passage 24. In the form illustrated the geometry is essentially a C-shaped member with a hat on the upper end of a pedestal at its bottom end, if analogy is appropriate. In its simplest form it is apparent that a simple C-shaped member, eliminating the ends which hook over core legs 9 and 7 of FIG. 1,

while less efficient would appear to suffice. As is indicated by dotted line 5, which represents the center leg of the transformer in FIGS. 1 and 2, passage 32 is larger in cross section than core leg 5, and in position on the leg the shield is placed so that the slot 34 is not bridged electrically by any part of the iron laminations which make up the center or outer core legs. This prevents the shield from acting as a single turn coil that is short-circuited. Other ways of maintaining slot 34 open are apparent to the reader.

FIG. 4 illustrates two individual laminations, A and B, which are commonly referred to as E-I laminations which is, by way of example, used to construct the magnetic core of FIG. 1. Typically, the transformer core is built up by alternating the positions of E and I laminations so that the I of the next adjacent lamination would be situated over the back rib leg of the E lamination, A, and the next E lamination would be situated atop both the I lamination, 38, and the stems of the E with the stems facing the opposite direction. And thisis continued until the core is of the desired height. 1

A transformer construction of the embodiment of FIG. 1 constructed according to the teachings of this invention included a stack of laminations having a height of 1% inches and length and width dimensions of 9% and II% inches, respectively. Coil l comprised approximately 78 turns of 9 sq. heavy armored Polythermaleze 2,000 wire and consisted of approximately four layers. The'insulating tube comprised Nomex, well I known insulating material, and the layer to layer insulation comprised Quintex I. A like construction was used for the secondary winding 3.

Basically, the transformer is put together in the conventional way by first forming the coils on suitable coil winding equipment. The coils are oriented as previously described, and the metal layer is sandwiched in between. Next, the magnetic lamination is built up by individually inserting E laminations through the coil,

alternating in direction from the front to the back side,

and also alternating placing I laminations down. When the stack is built up to the proper height, suitable bolts are inserted into the openings and the entire stack is fastened together. Typically, metal legs can be supported in place by means of the same bolts. In addition, conventional wedges of insulating material can be inserted in the slight gap or space between the center leg and the core tube to firmly fix the respective windings in place.

The operation of a transformer is well understood and need not be repeated here in detail. The voltage at the primary, volts in the example, produces a current which induces a voltage in the secondary winding, equal approximately to the primary voltage multiplied by the turns ratio, which equals 1 in the example given and is also 120 volts AC..

The transformer is schematically illustrated in FIG. 5 with its core 50 and shield 31' connected to ground. In testing the amount of leakage between the primary and secondary windings, leakage which includes both that due to the resistiveness of the insulation and that due to the coupling capacity, a source of alternating current, 49, is applied across the primary winding of the transformer and one end of the secondary winding is connected by means of a 500 ohm resistor, 51, to ground potential. A microvolt meter, 53, is connected in parallel with resistor 51 to measure the small voltages that will be generated by the small currents flowing through resistor 51. Inasmuch as one side of the 60 cycle power supply by the utility company is connected to ground, the only path for current to flow is from the hot side of the source through the insulation, by capacitive or resistive current paths therethrough, to the secondary winding and from there through the load resistor 51 back to ground.

For measuring the leakage between the primary winding and ground and between the secondary winding and ground, the measuring circuit and load resistor represented by the dashed lines is, instead, used. A line, 54, is connected between one side of each of the primary and secondary windings. This, in turn, is connected through a resistor, 57, suitably 500 ohms to ground, and a microvolt meter, 55, is connected across resistor 57 to measure voltages generated by leakage currents. A source of 60 cycle alternating current, 49, is connectedacross the primary winding as in the preceding test.

The tests specified in FIG. 4 were made on the embodiment of FIG. I. These results are compared with like tests made on the double wound type isolation transformer of the prior art illustrated in FIG. 6b and the double wound split winding core type transformer of the prior art illustrated in FIG. a. a In the split winding arrangement of the prior art of FIGJ6a, one-half of the secondary winding and one-half of the primary winding are located on opposite legs of the magnetic core and the respective winding halves are connected together by means of the electrical leads in series" or additive phase. And a metal shield is incorporated between each secondary winding half and each underlying primary winding half.

A comparison of results obtained from each type is reproduced:

TRANSFORMERS 3 KVA INSULATION NOMEX As the foregoing results indicate,.the isolated distribution system of the invention primarily due to the transformer construction has substantially less leakage current in all measurable respects, whether from the primary winding to ground, the secondary winding to ground, and between the primary to secondary winding, and even though a shield is included. All of the leakage currents are substantially below those levels desired in a hospital supply type isolation system, namely 10 microamps. This is true even though the transformer includes. essentially, a shield member 31 in FIG. I which would normally be expected to increase the capacitive coupling to ground and increase individual winding to ground leakage current as the prior art teaches. Accordingly, it is believed that some effects do occur by sandwiching the shield in between side by side primary and secondary windings on the transformer core which, though unexplained, do provide unexpected and highly desirable results.

Although in the abstract the use of a similar shield member and transformer construction appears in the prior art, particularly in US. Pat. NO. 2,183,355, is sued Dec. I2, 1939, in which an ignitiontransformer is disclosed, a low power transformer used to step up and supply high voltage pulses to the secondary winding having widely spaced windings with shield member intended to isolate radio frequency energy generated in the load from passing back from the secondary windings to the primary windings and where normal current leakage is not a factor, we did not expect that a sor'ne- I what similar arrangement in which the shield is closely sandwiched between primary and secondary windings arranged side by side on a shell type transformer core LEAKAGE CURRENT Pr (#A) S (I A) St. Fin. St. Fin. Invention Prior Art FIG. 6(a) 65.0 65.0 7.0 7.0

Prior Art Double-wound FIG. 6(1)) Voltage Drop Across 500 ohm Resistor Millivolts Invention FIG. 1

Prior Art FIG. 6(a) Prior Art Double'wound FIG. 6th) It appears that the isolated electrical systems having isolation transformers of the type illustrated in the cited Sorgel Company publication as represented in FIG. has poor results by comparison as a result of the included shields. This is consistent with the reasons attributed by the manufacture in the Sorgel publication.

In one specific example, a 250 VA, 60 Hz, 120 volt transformer constructed according to the teachings of the invention included a primary winding having 169 turns of wire and a secondary winding having I76 turns of wire, with the secondary winding mounted on the transformer core so that the turns of the winding were in the same clockwise direction, and with the shield grounded, and various leakage currents were measured as set forth in Row 2 of the chart hereinafter presented. By contrast with the secondary winding mounted on the core so that the direction of winding is opposite clockwise to that of the primary winding, the leakage currents set forth in Row 1 of the chart below presented were obtained. As is noted, the primary to secondary leakage decreased from 0.82 microamps to 0.06 microamps measured between the winding starts, and decreased from 1.6 microamps to 0.19 microamps measured between winding finishes:

FIG. 7 discloses another embodiment of the invention in which the transformer is of a slightly different configuration. For convenience where the elements in the embodiment of FIG. 7 are the same. as that previously described and discussed in connection with the embodiment of FIGS. I through 5, they are similarly labeled with primed numerals. Further reference may be made to the preceding description of the preceding embodiment for the description and construction of such corresponding elements. A first coil of wire 70 forms a primary winding and consists of a suitable predetermined number of turns of wire which, by way of one specific example, can comprise 78 turns of9 sq. heavy armored Polythermaleze 2,000 wire wound in four layers, is mounted on center leg of magnetic core 5'; Coil 70 is wound with the turns in a clockwise direction as indicated by the arrow. A second coil of wire 73 forms a first secondary winding and is mounted at one end of leg 5' spaced from winding 70. A third coil of wire 75 forms a second secondary winding and this coil is mounted on leg 5 at the other end of primary winding 70. Suitably each of these secondary windings contains an equal number of turns of wire, with the number of turns in each coil being an integral multiple of those turns in the primary winding. By way of specific example, the turns ratio of each secondary insulator 83 form a sandwich arrangement in between coils 73 and -70. These insulators and the shield, are identical to the insulator construction and shield construction of elements 26, 28 and 31, discussed in connection with the preceding embodiments. Likewise another insulator 85, shield 87, and insulator 89, is sandwiched in between the ends of coils and 75. Again these insulator elementsand shield elements are identical in construction with corresponding elements 26, 28 and 31 of the preceding embodiments and function in the same manner. Shield 81, shield 87 are joined by electrical wires 23' in common with core 7 'which in turn is connected to electrical ground potential as indicated by the symbol in the drawing The primary winding 70 includes two leads 27' and 29 connected to the ends of the coil. These are connected to a grounded AC line via leads 37' and 35. Secondary winding 73 includes two leads 91 and 93 connected to the start (St.) and finish (Fin.) ends ofthe secondary coil 73, respectively, and coil includes leads 95 and 97 connected to the finish and start ends of secondary winding 75, respectively. Secondary winding 73 is positioned on core 5 so that its windings are in the opposite winding direction as that of the other secondary coil 75. Otherwise stated, given winding 75 wound in a clockwise direction, winding 73 would have its windings running in a counterclockwise direction. In so doing, the positive phase of coil 75 is at the start lead 95 while the positive phase end of winding 73 is at the finish lead 93. The secondary windings are connected together so as to place themelectrically in parallel with electrical lead 98 connected between lead 97 of winding 75 and to lead 93 ofwinding 73 and lead 91 connected to lead 95 by lead 99. Hence, the full secondary voltage is produced by each of the two secondary windings and these are placed in parallel to provide the appropriate output voltage that appears across leads 98 and 99 which are conducted via leads 36' and 38, respectively, to outlet 40' and with each secondary coil seeing approximately one-half the current to the load. This is in contrast to the single secondary winding 3 in the embodiment of FIG. I. I I

The dash lines 32' symbolically denote a six sided metal housing or enclosure in which the transformer and usually monitoring instruments or other electrical components, not illustrated, common to hospital distribution systems are installed. This enclosure, sometimes referred to as a panel, usually contains a removable trim cover or door, and typically is of 12 gauge steel material. The enclosure is electrically grounded.

The construction of the transformer component of FIG. 7 is schematically indicated in FIG. 8 where identical numerals are used to denote the windings. As appears in this schematic drawing, secondary winding 75 has the turns wound in the direction oppositeto that of secondary winding 73. The symbol St." located at one end of the respective windings symbolizes the start end of that winding with the unlabeled end being the finish end. The start end of winding 75 is connected to the finish end of winding 73 and the start end of winding 73 is connected electrically to the finish end of winding 75. The windings are in parallel so that full output voltage appears across each winding and each winding sees one-half the load current taken from terminals T1 and T2. Other conventional connections can be substituted as is apparent to the skilled reader.

We have discovered that there is a significant advantage in employing the embodiment of FIG. 7 over that of FIG. 1, even though the leakage current are lower in the case of the embodiment of FIG. 1. In both systems the transformers are confined within the metal enclointense and this stray flux couples or links to the metal walls of the enclosure. Through magnetic action the changing flux field causes the metal enclosure walls to vibrate and this in turn creates an annoying audible buzz. By contrast, the transformer of FIG. 7, although of the same power rating does not cause the metal enclosure walls to vibrate and create unduly loud noise. This we believe is due to the fact that the coils or windings, though also creating stray magnetic fields, are creating two separate stray fields which are opposite in direction and essentially cancel one another the farther one moves away from the transformer side, i.e., away perpendicular to the plane of the paper containing FIG. 7. Since practice requires a metal enclosure, this reduction in magnetic flux coupling thereto is in our opinion a significant advantage.

Other modifications are apparent to the reader. For example it is possible to locate both of the secondary coils on the same side of the primary coil with a single shield fitted between one end of the primary winding and the most adjacent one of the secondary windings. By way of further example, a four coil arrangement is possible with two primary coils and two secondary coils. In such an alternative, the two primary windings can be connected together in phase addition with the windings wound in opposite directions and likewise the two secondary coils are oriented on the core with the directions of turn winding contraclockwise and connected together in series additive phase. A shield and insulator arrangement would be placed between each coil set.

As was indicated heretofore in this specification, one lamination configuration which is used to form the magnetic core of the transformer in the embodiment of FIG. 1 and specifically illustrated in FIG. 4, is a conventional E-I lamination. However numerous ones of the other conventional lamination configurations thereof, less preferred, appear suitable as alternatives. Thus, FIGS. 9a through 9] illustrate some conventional configurations including FIG. 9a, the 2-U and I configuration; FIG. 9b, the stacked I configuration; FIG. 90, the two wound core configuration; FIG. 9a, the U-I lamination configuration; FIG. 9e, the CC or J] configuration; FIG. 9f, the long and short I configuration; FIG. 9g, a single wound core configuration; FIG. 9h, an FF configuration; and FIG. 91', a T-L configuration.

FIGQl discloses another embodiment of the invention which contains a transformer similar in structure to the transformer incorporated in the embodiment of FIG. 7. For convenience, where the elements in the embodiment of FIG. 10 are the same as that previously described and discussed in connection with the embodiment of FIG. 7, they are similarly labeled with primed numerals. Further reference may be made to the preceding description of the embodiment of FIG. 7 for the description and construction of such corresponding elements. In this embodiment, each of the secondary windings 73' and 75' operate as individual isolated sec ondaries. Hence, each of the turns of wire in the coil forming such secondary winding comprises an integral number of turns of wire. Thus for a one-to-one turns ratio the output voltage across leads 95 and 97 in the case of winding 75' and leads 91' and 93' in the case of winding 73' would be the same as that applied to the input of primary 70', which is l-volts in the illustrated example. Additionally for a transformer with a given power rating such as 1,000 volt-amperes, each of the secondary windings in this embodiment would be rated at half the full value, whereas intheembodiment illustrated in FIG. 7 the secondary windings were placed in series and each of the secondary windings was rated at full value, namely 1,000 voIt-arnperes in. a

1,000 volt-ampere transformer to carry the full secon-,

dary load. Leads 95' and 97' of secondary arecon;

nected via electrical leads 92 and 94 across anelectrical outlet 96 for conducting the alternating voltages which appear across the secondary winding to outlet 96. The output leads 91 and 93' are connected; via; electrical leads 86 and 88 to electrical outlet 90, for

The dash lines 32" symbolically denote the six sided metal housing or enclosure, previously referred to in the preceding embodiments, in which the transformer and usually monitoring instruments, not illustrated, common to hospital distribution systems are installed. This enclosure, sometimes referred to as a panel, usually contains a door and typically is of an iron material.

For convenience, a schematic illustration of the transformer of this embodiment is presented in FIG. 10. As is apparent, this schematic differs from th e .sc hematic of the transformer of FIG. 8 in that it omits the connection 98 joining the secondary windings inseries in FIG. 8 and each secondary winding in FIG. 1 0 is double the number of turns in FIG. 8. In this system a somewhat different leakage current condition. exists from that in the preceding cases. The leakage current between the aiding secondary and the primary winding is somewhat higher than that between the opposing secondary winding and primary. The leakage current between the opposing secondary and primary winding is relatively the same as in the preferred embodiment, and the leakage current between each secondary winding to ground are relatively equal. In this configuration two separate electrical distribution circuits are provided and can be individually monitored. Concurrently the benefits of low leakage current in each'of these electrical isolation systems is obtained. If only one-half the load is taken from one receptacle, the stray magnetic field is insufficient to cause vibration of the cabinet. At full load, equally from each of the receptacles, the stray magnetic fields cancel, as in the embodiment of FIG. 7, and avoid the problem of enclosure vibra; tion.

It is understood that the foregoing embodiments of the invention are presented solely for purposes of illustration and not by way oflimitation, inasmuch as equivalents and substitutions for the elements thereof suggest themselves to one skilled in the art upon reading this specification.

Accordingly, it is specifically requested that the invention be broadly construed within the spirit and scope of the appended claims.

What is claimed is:

1. An isolated hospital electrical supply system with very low leakage current to electrical ground potential and low noise for transforming AC voltage from an electrically grounded source and providing ungrounded AC voltage so as to minimize the possibility of electrical shock of a patient who is in contact with said electrical ground of said grounded source and to minimize audible noise generation in the system comprising:

at least a first pair of lines for providing low frequency alternating voltage from an electrical utility line, one of said lines being electrically connected to ground potential;

an electrical outlet receptacle adapted for connection to electrical equipment;

at least a second pair of lines connected in circuit with said electrical outlet receptacle for conducting alternating voltage to said outlet receptacle, neither one of said second pair of lines being connected to said ground potential; I

an isolation transformer located spaced from said outlet receptacle, said isolation transformer including:

a core of magnetic material;

a first coil of wire containing a first predetermined number of turns, N,,, comprising a primary winding;

a second separate coil of wire containing a second predetermined number of turns, N comprising a first secondary winding;

a third separate coil of wire containing a third predetermined number of turns, N comprising a second secondary winding, said third coil of wire being substantially identical with said second coil of wire and said second and third predetermined number of turns of wire being the same;

first and second nonmagnetic metal shields having a passage therethrough and a slot between said passage and anouter edge thereof;

said first, second and third coil being electrically insulated from said core and mounted on said core side by side and closely adjacent one another with said second coil located adjacent one side of said first coil and with said third coil located adjacent the remaining side of said first coil;

said second coil having the turns of wire therein wound in a clockwise direction as mounted on said core and said third coil having the turns of wire therein wound in a counterclockwise direction as mounted on said core;

and wherein the ratio, N llN is equal to a number less than 3 and at least 1, and wherein the ratio, Nazi/N is equal to a number less than 3 and at least 1;

said first shield mounted on said core sandwiched between one side of said first coil and said second coil and said second shield mounted on said core sandwiched between the remaining side of said first coil and said third coil;

means electrically connecting the start end of one of said secondary windings to the finish end of'the other and the finish end of said one secondary winding to the start end of said other secondary winding to place said secondary windings in parallel;

means connecting each of said shield members and said magnetic core electrically in common and to said ground potential;

means connecting said first pair of lines in circuit with said primary winding for supplying alternating I voltage thereto; and means connecting said second pair of lines in circuit across said secondary windings for coupling alternating voltages from said secondary windings to said outlet receptacle; whereby low frequency AC leakage current between said first and second pair of lines and between said second pair of lines and ground potential is minimized;

a steel walled enclosure for housing electrical components, including said transformer, said enclosure being connected to electrical ground potential;

said transformer being located in said enclosure; and

means for extending said pair of lines through an enclosure wall into said enclosure.

' 2. An isolated hospital electrical supply system with very low leakage current to electrical ground potential and low noise for transforming AC voltage from a grounded source and providingungrounded AC voltage so as to minimize the possibility of electrical shock of a patient who is in contact with said electrical ground of said grounded source and to minimize audible noise generation in the system comprising:

at least a first pair'of lines for providing low fre-- at least a third pair of lines connected in circuit with said second electrical outlet receptacle means for v conducting alternating voltage to said outlet receptacle means, said second'outlet receptacle means being isolated electrically from said first outlet receptacle means and neither one of said third pair of lines being connected to said ground potential;

an isolation transformer located spaced from said outlet receptacle, said isolation transformer including: a core of magnetic material;

a first coil of wire containing a first predetermined number of turns, N comprising a primary wind mg;

a second separate coil of wire containing a second predetermined number of turns, N,,,, comprising a first secondary winding;

a third separate coil of wire containing a third predetermined number of turns, N comprising a second secondary winding, said third coil of wire being substantially identical with said second coil of wire and said second and third predetermined number of turns of wire being the same;

first and second nonmagnetic metal shields having a passage therethrough and a slot between said passage and anouter edge thereof;

said first, second and third coils being electrically insulated from one another and said core and mounted on said core side by side and closely adjacent one another with said second coil located adjacent one side of said first coil and with said third coil located adjacent the remaining side of said first coil;

said second coil having the turns of wire therein wound in a clockwise direction as mounted on said core and said third coil having the turns of wire therein wound in a counterclockwise direction as mounted on said core;

and wherein the ratio sl/Np is equal to a number less I than 3 and at least 1;

said first shield mounted on said core sandwiched between one side of said first coil and said second coil and said second shield mounted on said core sandwiched between the remaining side of said first coil and said third coil;

means connecting each of said shield members and said magnetic core electrically in common and to said ground potential;

means connecting said first pair of lines in circuit with said primary winding for supplying alternating voltage thereto; and

means connecting said second pair of lines in circuit with the said first secondary winding for coupling alternating voltage from said first secondary winding to said first outlet receptacle means; and means connecting said third pair of lines in circuit with said second secondary winding for coupling alternating voltage from said second secondary winding to said second outlet receptacle means;

a steel walled enclosure for housing electrical components, including said transformer, said enclosure being connected to electrical ground potential;

said transformer being located in said enclosure;

and means for extending said pair of lines through an enclosure wall into said enclosure.

595 UNITED STATES PATENT OFFICE CERTIFECATE GE CORRECTION inventor-(s) Charles Edward Miller and James Andrew Nuding It is certified that error appears in theabove-identified patent an E'HI i; bait? Letters Patent are hereby corrected as shown below:

In Column 4, line 39, the word "top": should r'ead the In Column 7, line 55, the numeral "3-21?fQshmfld read 24 I In Column 7 line 64, the word "of'? sou 1d,1;e, and In Column 9, line 25 the reference ltQ-W'EEIG,Qag a". should read FIG. 6 In Claim 1, column 115, i line 354, the v reference to "N lN should read --'N /N S Signed and sealed this 18th day of March 1975.

(SEAL) Attest:

C. Z-KARSHALL DANN RUTH C. r-IASON Commissioner of Patents Attesting Officer V and Trademarks mg I UNITED STATES PATENT' OFFICE CERTWIQATE COREAECTION Patent No. 3,851, 287 Dated November 26 1974 lnVentOl(s) Charles Edward Miller and James Andrew Nuding It is certified that error appears in the above-identified patent and raw bait; Letters Patent are hereby COI'ITaTiCted as shown below:

In Column 4, line 39, the word '"top'P s hould, read the In Column 7, line 55, the numeral "3 2" should read 24 In Column 7, line 64, the word "of'? should and V In Column 9, line 25, the reference Ll2O2.":FIG-1184a!" should read FIG. 6 In Claim 1, column '15; line 354, the reference to "N lN should read N /N -;f

Signed and sealed this 18th day of March 1975.

(SEAL) Attest C. I-IARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2114189 *Oct 15, 1937Apr 12, 1938Gen ElectricTransformer
US2183355 *Aug 22, 1938Dec 12, 1939Jefferson Electric CoTransformer construction
US2229373 *Sep 25, 1939Jan 21, 1941Timken Axle Co DetroitShielded transformer and shield therefor
US2343725 *Apr 24, 1941Mar 7, 1944Honeywell Regulator CoTransformer
US2547649 *Dec 8, 1948Apr 3, 1951Gen ElectricElectric induction apparatus
US2652521 *Aug 22, 1949Sep 15, 1953Nu Way CorpShield for transformer coils
US2815408 *Oct 14, 1955Dec 3, 1957David HaflerTransformers
US2904762 *May 20, 1954Sep 15, 1959Schulz Richard BShielded transformer
US2914719 *Sep 13, 1957Nov 24, 1959Elcor IncIsolated power supply
US3277416 *Dec 4, 1962Oct 4, 1966Taylor Instrument CoShielding arrangement for transformer
US3287680 *Jun 18, 1963Nov 22, 1966Automatic Timing & ControlsElectrical device
US3360754 *Jun 29, 1965Dec 26, 1967Wagner Electric CorpTransformer having reduced differential impedances between secondary portions
US3393388 *Mar 14, 1967Jul 16, 1968George V. YoungWindings having continuous shields therearound
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3963975 *Mar 5, 1975Jun 15, 1976General Electric CompanyElectromagnetically shielded electrical power supply with reduced common mode electromagnetic interference output
US4201965 *Jun 29, 1978May 6, 1980Rca CorporationInductance fabricated on a metal base printed circuit board
US4333900 *Oct 1, 1979Jun 8, 1982Chloride Electro Networks, Division Of Chloride, Inc., N. American OperationProcess for manufacture of high voltage transformers and the like
US4652846 *Feb 19, 1986Mar 24, 1987Siemens AktiengesellschaftSmall transformer with shield
US4660014 *Jun 19, 1985Apr 21, 1987JaycorElectromagnetic pulse isolation transformer
US4710707 *Jan 16, 1985Dec 1, 1987Zenith Electronics CorporationHigh voltage electronic component test apparatus
US4977491 *Nov 18, 1988Dec 11, 1990Electronique Serge DassaultHigh frequency transformer with a printed circuit winding in particular for a very high voltage power supply
US5025489 *Jun 19, 1990Jun 18, 1991Matsushita Electric Industrial Co., Ltd.Transformer having shielding wall for driving a magnetron
US5343143 *Feb 11, 1992Aug 30, 1994Landis & Gyr Metering, Inc.Shielded current sensing device for a watthour meter
US5546065 *Sep 7, 1995Aug 13, 1996Vlt CorporationHigh frequency circuit having a transformer with controlled interwinding coupling and controlled leakage inductances
US5656983 *Apr 25, 1995Aug 12, 1997Kabushiki Kaisha Toyoda Jidoshokki SeisakushoInductive coupler for transferring electrical power
US5684341 *Jul 29, 1994Nov 4, 1997Magnet-Physik Dr. Steingroever GmbhElectromagnetic generator for fast current and magnetic field pulses, for example, for use in magnetic metal working
US5719544 *Jul 12, 1996Feb 17, 1998Vlt CorporationTransformer with controlled interwinding coupling and controlled leakage inducances and circuit using such transformer
US5719546 *Jun 6, 1995Feb 17, 1998Kabushiki Kaisha Toyoda Jidoshokki SeisakushoInductive coupler for transferring electrical power
US5777538 *Dec 21, 1996Jul 7, 1998Raychem CorporationApparatus comprising inductive and/or power transfer and/or multiplication components
US5804892 *Apr 12, 1995Sep 8, 1998Ulrich SchwanTransmission device
US5844461 *Jun 6, 1996Dec 1, 1998Compaq Computer CorporationIsolation transformers and isolation transformer assemblies
US5883392 *Mar 19, 1998Mar 16, 1999Raychem CorporationApparatus comprising inductive and/or power transfer and/or voltage multiplication components
US6143157 *Sep 13, 1999Nov 7, 2000Vlt CorporationCovering core with a barrier coating to protect a magnetic property of core from alteration by subsequent plating, then plating a conductive shield to the core by depositing a seed layer in pattern defined by mask, plating on seed layer
US6165340 *Oct 1, 1997Dec 26, 2000Vlt CorporationPlating a shield to a permeable core in a pattern by computer and configured to achieve a controlled leakage inductance, where the predetermined pattern covers less than the entire surface area of the permeable core
US6653924 *Nov 23, 1998Nov 25, 2003Vlt CorporationTransformer with controlled interwinding coupling and controlled leakage inductances and circuit using such transformer
US6954131 *Apr 2, 2003Oct 11, 2005Illinois Tool Works Inc.Electrical reactor assembly having center taps
US7028387 *Mar 26, 2003Apr 18, 2006Advanced Neuromodulation Systems, Inc.Method of making a miniaturized positional assembly
US7218198Apr 9, 2003May 15, 2007Det International Holding LimitedCoil form
US7236086Nov 21, 2000Jun 26, 2007Vlt, Inc.Power converter configuration, control, and construction
US7265648 *Mar 14, 2003Sep 4, 2007Daifuku Co., Ltd.Composite core nonlinear reactor and induction power receiving circuit
US7315231Mar 24, 2005Jan 1, 2008Illinois Tool Works Inc.Electrical reactor assembly having center taps
US7429908Oct 1, 2002Sep 30, 2008Det International Holding LimitedCoil form
US7550960Jun 21, 2005Jun 23, 2009Abb Technology AgMethod and apparatus for measuring voltage in a power switching device
US8022804 *Nov 20, 2007Sep 20, 2011Det International Holding LimitedWinding assembly
US8054150 *Nov 25, 2008Nov 8, 2011Delta Electronics, Inc.Magnetic element
CN101656142BAug 21, 2008Sep 19, 2012台达电子工业股份有限公司Magnetic component
EP0133661A2 *Jul 20, 1984Mar 6, 1985Siemens AktiengesellschaftSmall transformer
EP1926110A1 *Nov 22, 2006May 28, 2008DET International Holding LimitedWinding assembly and method of its manufacture
WO2004032159A1 *Oct 1, 2002Apr 15, 2004Delta Energy Systems SwitzerlaCoil form
Classifications
U.S. Classification336/84.00R, 336/183, 336/212
International ClassificationH01F27/36, H01F27/32
Cooperative ClassificationH01F2019/085, H01F27/325, H01F27/365
European ClassificationH01F27/36B, H01F27/32D1
Legal Events
DateCodeEventDescription
Oct 31, 1989ASAssignment
Owner name: MAGNETEK, INC., CALIFORNIA
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKERS TRUST COMPANY, AS AGENT;REEL/FRAME:005206/0248
Effective date: 19891024
Oct 31, 1989AS17Release by secured party
Owner name: BANKERS TRUST COMPANY, AS AGENT
Owner name: MAGNETEK, INC., 11111 SANTA MONICA BLVD., LOS ANGE
Effective date: 19891024
Mar 29, 1989ASAssignment
Owner name: BANKERS TRUST COMPANY, A NEW YORK BANKING CORP.
Free format text: SECURITY INTEREST;ASSIGNOR:MAGNETEK, INC.;REEL/FRAME:005075/0110
Effective date: 19881230
Jan 22, 1987ASAssignment
Owner name: BANKERS TRUST COMPANY, AS AGENT
Free format text: SECOND AMENDED SECURITY AGREEMENT RECORDED ON JUNE 3, 1986. REEL 4563 FRAME 395, ASSIGNOR HEREBY GRANTS A SECURITY INTEREST. UNDER SAID PATENTS.;ASSIGNOR:MAGNETEK, INC., A DE. CORP.;REEL/FRAME:004666/0871
Effective date: 19861230
Jun 3, 1986ASAssignment
Owner name: CITICORP INDUSTRIAL CREDIT, INC., A CORP. OF NEW Y
Free format text: SECURITY INTEREST;ASSIGNOR:CITIBANK, N.A.,;REEL/FRAME:004563/0395
Effective date: 19860429
Feb 25, 1986ASAssignment
Owner name: BANKERS TRUST COMPANY, A NEW YORK BANKING
Free format text: TO AMEND AND RESTATE TERMS AND CONDITIONS OF PATENT SECURITY AGREEMENT RECORDED ON SEPTEMBER 14, 1984, REEL 4302, FRAME 928.;ASSIGNOR:MAGNETEK, INC., A CORP OF DE.;REEL/FRAME:004529/0726
Effective date: 19860212
Sep 19, 1984ASAssignment
Owner name: MAGNTEK, INC., SUITE 902, 16000 VENTURA BOULEVARD,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LITTON SYSTEMS INC;REEL/FRAME:004301/0393
Effective date: 19840701
Sep 19, 1984AS02Assignment of assignor's interest
Owner name: LITTON SYSTEMS INC
Owner name: MAGNTEK, INC., SUITE 902, 16000 VENTURA BOULEVARD,
Effective date: 19840701
Sep 14, 1984AS06Security interest
Owner name: BANKERS TRUST COMPANY A NY BANKING CORP. OF AGENT
Owner name: MAGNETEK, INC., A DE CORP.
Effective date: 19840706
Sep 14, 1984ASAssignment
Owner name: BANKERS TRUST COMPANY A NY BANKING CORP. OF AGENT
Free format text: SECURITY INTEREST;ASSIGNOR:MAGNETEK, INC., A DE CORP.;REEL/FRAME:004302/0928
Effective date: 19840706