Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3852194 A
Publication typeGrant
Publication dateDec 3, 1974
Filing dateDec 11, 1972
Priority dateDec 11, 1972
Also published asCA974952A1, DE2359670A1, DE2359670C2
Publication numberUS 3852194 A, US 3852194A, US-A-3852194, US3852194 A, US3852194A
InventorsZine A
Original AssigneeCorning Glass Works
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus and method for fluid collection and partitioning
US 3852194 A
Abstract
Partitioning assemblies and partitioning or seal members, utilized with containers (adapted to serve as fluid specimen collection or fluid-retaining tubes) for effecting partitioning of two differing-density fluid phases of a centrifugally separated fluid specimen, at a position not lower than the fluid phase interface, wherein the partitioning members include a separating amount of a gel-like material. This gel-like material, by having a specific gravity intermediate those of the separated fluid phases, is adapted to move within the container in response to centrifugal force, only to the vicinity of the fluid phase interface. The gel-like material thereupon is further adapted to make a transversely continuous semi-rigid contact seal with an annular portion of the container inner surface to thereby effect a seal that partitions the fluid phases. The gel-like material may also be used in combination with a spool member having a container-contacting outer surface and a central axial orifice, with the gel-like material making a transversely-continuous contact seal within the spool central axial orifice. Three-phase partitioning may also be accomplished by using first and second gel-like materials having specific gravities intermediate those of the first-second and second-third differing-density phases, respectively. The partitioning or seal members may also be utilized in closed system (evacuated) fluid collection tubes or may be hand inserted into opened (atmospheric pressure) tubes after specimen collection. Also set forth is a method for effecting partitioning of centrifugally separated fluid phases within a container.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

llnite States Patent Zine, ,lr.

[ Dec. 3, 19M

[ APPARATUS AND METHOD FOR FLUID COLLECTION AND PARTITIONING Anthony R. Zine, Jr., Corning, NY.

[73] Assignee: Corning Glass Works, Corning,

[22] Filed: Dec. 11, 1972 [21] Appl. No.: 314,270

[75] Inventor:

[52] US. (11...... 210/83, 2l0/DIG. 23, 2l0/DIG. 24,

233/1 A [51] Int. Cl B0101 21/26 [58] Field of Search 23/258.5; 106/287 SB;

210/65, 83, 84, 512, DIG. 23;

Primary ExaminerCharles N. Hart Assistant Examiner-Robert G. Mukai Attorney, Agent, or FirmBurton R. Turner; Clarence R. Patty, Jr.

[57] ABSTRACT Partitioning assemblies and partitioning or sea] members, utilized with containers (adapted to serve as fluid specimen collection or fluid-retaining tubes) for effecting partitioning of two differing-density fluid phases of a centrifugally separated fluid specimen, at a position not lower than the fluid phase interface, wherein the partitioning members include a separating amount of a gel-like material. This gel-like material, by having a specific gravity intermediate those of the separated fluid phases, is adapted to move within the container in response to centrifugal force, only to the vicinity of the fluid phase interface. The gel-like material thereupon is further adapted to make a trans' versely continuous semi-rigid contact seal with an annular portion of the container inner surface to thereby effect a seal that partitions the fluid phases. The gellike material may also be used in combination with a spool member having a container-contacting outer surface and a central axial orifice, with the gel-like material making a transversely-continuous contact seal within the spool central axial orifice. Three-phase partitioning may also be accomplished by using first and second gel-like materials having specific gravities intermediate those of the first-second and secondthird differing-density phases, respectively. The partitioning 0r seal members may also be utilized in closed system (evacuated) fluid collection tubes or may be hand inserted into opened (atmospheric pressure) tubes after specimen collection. Also set forth is a method for effecting partitioning of centrifugally separated fluid phases within a container.

3 Claims, 10 Drawing Figures APPARATUS AND METHOD FOR FLUID COLLECTION AND PARTITIONING BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an apparatus and method for the collection and partitioning of at least two phases of a muIti-phase fluid within a container. More specifically, it pertains to the collection of whole blood and, after the separation thereof, the partitioning of blood serum or blood plasma from the blood cells. If desired further fractionating and partitioning of, for example, the blood serum may be accomplished.

2. Prior Art In the standard evacuated blood sampling tubes, such as the system illustrated in US. Pat. No. 2,460,641 to Kleiner, a glass tube has one permanently closed end and the other end is closed by a rubber stopper having a pair of opposite top and bottom axial recesses separated by an intermediate diaphragm. A cup-like holder having a double ended hollow needle, with one end terminating axially within the holder and the other end terminating axially outside the holder, is used to receive the stoppered end of the glass tube, with the inner needle end being adapted to extend through the stopper diaphragm into the evacuated tube. The outer needle end is injected into the patients vein and then, by forward thrust on the tube, the puncturing of the stopper diaphragm is completed to withdraw theblood. When the desired quantity of blood has been collected in the tube, the filled tube is removed from the cup-like holder thereby obtaining a stopper-sealed collection tube housing a blood sample.

Blood or another fluid collected in the previouslydescribed collection device is then generally taken to the laboratory for processing. The contents may be utilized as whole blood or separated into a lighter phase (serum or plasma) and a heavier phase (cells). If, for example, it is desired to obtain blood serum (after an initial time period during which the filled tube assembly is allowed to stand) the filled tube assembly is placed into a centrifuge which completes separation into two blood phases. Disposed at the bottom of the tube will be a heavy phase or high density portion of the fluid consisting of packed red blood cells, while disposed at the upper part of the tube will be the lighter phase or low density portion of the fluid which is blood serum. The separated serum is then analyzed, generally after first being removed from the tube assembly by decanting and/or siphoning.

It is well known that once the blood phases are separated, if the lighter phase is not removed from the tube within a short time, interaction will occur between the separated phases and inaccurate test results will be obtained. In addition, even if the lighter phase is presently removed from the container there are the hazards of contamination of the sample and of possible mismarking of the removed sample. Furthermore, there are also hazards to the laboratory personnel who may be ex posed to disease-carrying blood samples containing, for example, hepatitic serums.

Coleman, in US. Pat. No. 3,508,653, made an advance over the blood sampling tube of Kleiner by introducing and attaching a resilient piston directly beneath the tube closure or stopper, with the piston being adapted to be punctured during the initial filling of the sampling tube. After initial centrifugation, in order to obtain the desired blood phase separation, and in re sponse to further centrifugal force, the piston is designed to move downwardly through the light blood phase, with the piston being adapted to permit upward flow of the light phase therearound, i.e., between the container inner wall surface and the outer peripheral surface of the piston. The piston, which has a wiper portion that makes an initial sealing contact with the container inner surface, loses this sealing contact during its downward movement (to permit the flow of fluid therearound) and thereafter is designed to make a final sealing contact with the container inner surface at a position not lower than a position intermediate the separated phases by stopping the downward movement by terminating the applied force. In addition, the piston, which is initially detachably secured to the stopper, requires passageway means and a vent opening therewithin to facilitate the passage of gases to permit descent of the piston but resist the passage of fluids therethrough.

While the Coleman device provides a unitary sealing member between the blood cells and the plasma or serum, it does have several shortcomings. The piston and stopper must be held in intimate contact with each other, otherwise blood which flows into any space between them during the tube filling operation will remain above the piston, and the blood cells will contaminate the lighter phase. Once these blood cells find their way above the piston wiper, they cannot be separated, since no mechanism or method has been provided to permit them to move below the piston.

In addition, there are no positive means incorporated into the Coleman device to prevent blood cells from moving upward past the piston wiper. Actual observations in the laboratory confirm that in spite of the general downward movement of the heavy phase, due to the influence of centrifugal force, some blood cells do indeed become caught up in the fast'moving light phase stream and are carried past the piston wiper into the upper chamber of the tube. As noted, once the cells find their way above the piston wiper, there is no way to return them to the lower portion of the tube.

Since the introduction of the blood sample into the tube may also permit some airto enter the tube upon withdrawal from the patient and since some gases are evolved from the blood sample, they must be vented from below the piston to eliminate the retarding effect they will have on the downwardly moving piston through a buoyancy effect. While Coleman speaks of incorporating a vent opening into the piston design, actual experience has shown that the vent cannnot readily be incorporated into the design at manufacture but is preferably made by the technician during the blood drawing operation, thereby putting the burden of creating a satisfactory vent upon the skill of the operator. The needle puncture in the piston diaphragm (for the filling of the tube) serves as a vent for air and gases during piston descent. An improperly punctured diaphragm vent may either refuse to operate at all or may rupture and blow out when the piston impacts the fluid surface during centrifugation and thus completely loses its ability to act as a seal between the light and heavy blood phases during piston descent. In either instance, unfortunately the separation step becomes aborted.

Lawhead, in US. Pat. application Ser. No. 228,573 filed Feb. 23, 1972, made an advance over the method and apparatus of Coleman by introducing spools or partitioning assemblies for use with rigid tubular containers for effecting either the physical or complete physical and chemical partitioning of two centrifugally separated fluid phases. These spools have a central axial orifice, a resilient, annular, container-contacting wiper portion and an integral annular skirt portion. By having specific gravities intermediate those of the separated fluid phases, the spools are adapted to move downwardly in the tubular containers, in response to centrifugal force, only to the vicinity of the fluid phase interface, with fluid flow occurring freely only through the spool central axial orifice. Partitioning of the separated phases is effected by the combination of the spool in conjunction with either a natural plug of the heavy phase fluid or afloat me'mber'having a similar specific gravity.

While the Lawhead device produces excellent sealing between the separated phases, it does require different diameter parts for different diameter tubes, which of course is an economic disadvantage in a low unit cost system.

Weichselbaum, in US. Pat. No. 3,464,890, sets forth a method of separating plasma from whole blood which comprises bringing into contact with the blood a separating amount of inert particulate material, e.g., polystyrene beads having a coating of anti-coagulant and having a specific gravity intermediate that of plasma and blood. This loose material is placed into the blood sample prior to phase separation and upon separation these particles tend to establish a barrier between the plasma and cells. This system, however, will not tolerate any subsequent jarring or unusual motion since this will tend to destroy the barrier. Furthermore, this system will not tolerate shipping and cannot be utilized for mailing to testing laboratories.

Adler, in US. Pat. No. 3,647,070, sets forth a method and apparatus for a barrier at the interface between plasma and packed cells in centrifuged blood samples, which barrier means are adapted to sink through the plasma layer, and upon being wetted and expanded by the plasma, expanded into firm contact with each other and the walls of the container to form a barrier. While this system appears to be quite workable, it is limited to post centrifugation insertion of the barrier means which is a definite disadvantage from the cost, time and contamination standpoint. I

The use of silicones for centrifuge fractionating of blood samples is well known and is set forth in articles by Seal, S. H. in Cancer. 1959 12:590-595; McCrea, L. E. in J. ufUrol. 1961. 85: 1006-1010; as well as Morgan M. C. and Szafir j. J. in Blood. 1961. 18:89-94. These articles basically describe the use of silicone fluids (blended to specific gravities intermediate those of the two phases sought to be separated) with blood samples, with the silicone fluid, upon centrifugation, forming a fluid barrier between the desired two phases. However, since the barrier is only a fluid barrier the desired phase cannot be removed by decanting and even in pipetting there is a problem of possible contamination of the removed phase with silicones. Furthermore, these liquid barriers will neither tolerate any subsequent jarring nor are they adaptable to shipping. 1

SUMMARY OF THE INVENTION The instant invention, both in terms of apparatus and method, responds to each of the previously-described prior art shortcomings in a manner so as to completely eliminate any further concern regarding such problems.

The several embodiments of the partitioning assemblies and partitioning or seal members of this invention are utilized with containers that are adapted to serve as fluid collection or fluid retaining tubes.

The partitioning or seal members include a predetermined or separating amount of a gel-like material, preferably hydrophobic, substantially thixotropic and generally inert to the separated fluid phases that are to be partitioned. This gellike material, such as a mixture of a silicone fluid and hydrophobic silicon dioxide powder, which has a specific gravity intermediate those of the fluid phases, is positioned within the container either before or after fluid collection. Due to its specific gravity, the gel-like material is adapted to move within the container in response to centrifugation, with the gel-like material being adapted to stop moving when it reaches the vicinity of the fluid phase interface. The gel-like material thereupon is further adapted to make a transversely-continuous, semi-rigid, contact seal with an annular portion of the container inner surface, thereby effecting a seal that physically and chemically partitions the fluid phases.

While the gel-like material may be used by itself to form a semi-rigid partitioning or seal member, it may also be used in combination with a spool member having a container-contacting outer surface portion and a central axial orifice. The spool member, which is preferably initially positioned below the container stopper or closure, by having a specific gravity that is intermediate those of the separated fluid phases, is adapted to move downwardly within the container in response to centrifugal force. The fluid phases flow freely only through the spool central axial orifice, with the spool being adapted to stop moving downwardly when it reaches the vicinity of the fluid phase interface. The gel-like material, which in this combination is preferably initially located adjacent to the bottom of the container, by reason of its specific gravity, moves upwardly within the container and is adapted to make a transversely continuous semi-rigid contact seal with at least an annular surface portion of the spool central axial orifice.

The partitioning or seal members of this invention may also be utilized to partition at least three differing density phases of a separated multi-phase fluid specimen at positions substantially at the interfaces of these fluid phases. This three-phase partitioning may be accomplished by using first and second gel-like material having specific gravities intermediate those of the firstsecond and second-third differing density phases, respectively. These gel-like materials are adapted to make separate transversely-continuous, semirigid, contact seals with different annular portions of the container inner surface thereby effecting seals that partition the three separated phases.

.The partitioning assemblies and partitioning or seal members of this invention may be utilized in several different operational sequences. One operational sequence applies specifically to a fluid collection and partitioning assembly that is intended to remain closed (vacuum sealed) from the time of manufacture through sampling, preparation and centrifugation of its contents until the lighter phase is removed after centrifugation.

In another operational sequence, the partitioning or seal member is hand-inserted or dispensed into an opened collection tube (i.e., at atmospheric pressure) after sample collection, prior to centrifugation.

In the closed system concept sequence, the gel-like material may be positioned anywhere within the collection tube, while in the hand-insertion concept sequence, the gel-like material is preferably dispensed into the tube either as a floating capsule or positioned on the side of the tube below the tube closure.

When three or more phase partitionings are desired, both closed system and hand insertion concept sequences, as well as combinations thereof, may be employed, with one or more centrifugation steps being required.

One method of establishing the partitioning of heavier phase from the lighter phase of a centrifugally separated fluid specimen within a container involves providing the container with a predetermined amount of a gel-like material having a specific gravity intermediate those of the separated phases. Moving the gel-like material within the container through at least one of the fluid phases (in response to centrifugal force) establishes a flow of at least one of the fluid phases within the container. A transversely-continuous semi-rigid contact seal is established with an annular portion of the container inner surface when the gellike material reaches a position in the vicinity of the fluid phase interface thereby partitioning the lighter and heavier fluid phases. Thereafter the applied force is terminated.

Other advantages and features of the instant invention will be understood from the following description in conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. I illustrates one of the fluid collection and parti tioning assemblies of this invention, ready for use, with the partitioning or seal member in the form of a gel-like material being initially position adjacent to the normally closed end of the tubular container.

FIG. 2 is the assembly of FIG. I after theintroduction of a homogenized fluid sample thereinto.

FIG. 3 illustrates the assembly of FIG. 2 shortly after the start of centrifugation, which begins to separate the homogenized sample into at least two differing-density fluid phases, with the gel-like material beginning to move away from its initial position.

FIG. 4 illustrates that in the assembly of FIG. 3, as centrifugation continues, the gel-like material is approaching the interface between the two differingdensity fluid phases.

FIG. 5 illustrates the assembly of FIG. 4i upon the completion of centrifugation, with the gel-like material being located at the interface between the differingdensity fluid phases and making a transversely continuous contact partition or seal to thereby physically and chemically partition the two separated phases.

FIG. 6 illustrates another embodiment of the fluid collection and partitioning assemblies of this invention, having a spool poised beneath the closure member of the container and having a predetermined amount of gel-like material positioned adjacent to the naturally closed end of the container, with the differing density fluid being disposed therebetween.

FIG. 7 illustrates the assembly of FIG. 6 upon the completion of centrifugation, with the spool and gellike material being located at the interface between the differing density fluid phases and coacting to make a transversely-continuous contact seal to thereby partition these phases.

FIG. 8 is a sectional view, partially broken away. of one of the fluid collection and partitioning assemblies of this invention wherein the gel-like material is dispensed into the fluid collection assembly after the fluid collection is completed.

FIG. 9 is a sectional view, partially broken away, of another embodiment of the fluid collection and partitioning assemblies of this invention, having separatelypositioned first and second gel-like materials of differing densities and at least a three-phase fluid specimen disposed therebetween.

FIG. It) illustrates an assembly, such as that of FIG. 9, upon the completion of centrifugation, with the first and second gel-like materials being located in the form of transversely continuous partitioning members or contact seals at the interfaces between the first-second and the second-third differing density phases, respectively.

' DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings :in detail, FIGS. 1-5 illustrate one of the fluid collection and partitioning assemblies or container assemblies of this invention both in terms of the various components in correct relation ship to each other as well as the operational sequence of the various parts thereof.

FIGS. I-5 depict a fluid collection and partitioning assembly, more specifically, a blood collection and partitioning assembly or container assembly II consisting of a container or collection tube 12; a predetermined amount of a gel-like material 30; and a stopper or closure 2Q; all of which will now be described in more detail.

Collection tube I2, which is preferably made of glass, plastic or other material, and which is preferably also transparent, has a normally closed. bottom end M and an open upper end I6 for receiving a self-sealing stop per or closure 20 formed of medical grade butyl rubber or other suitable material. Closure 20 may be of the shape and material described herein or it may be of other suitable known types. Stopper 20 as shown, is shaped so as to have a flanged end. 22 which abuts and overlies annular end face I8 of collection tube open end 16. Stopper 20 is further provided with a diaphragm or septum 24lwhich forms a transverselycontinuous seal with an annular surface portion of tube inner wall surface I3. Stopper 20, together with collection tube I2, defines a sealed, closed fluid receiving chamber 26, which in the arrangement shown in F I6. I is adapted, (after previously having been evacuated) to maintain a negativepressure (vacuum) of about 24 inches Hg for an extended period of time. Thus. stopper 26), serves as a sealing closure to preserve the interior vacuum and provides a septum 24 through which the sampling needle (not shown) can reach chamber 26 without destroying its integrity. No invention is claimed for either the previously described collection tube 12 or stopper 20, per se.

Again, as shown in FIG. I, a predetermined amount of a gel-like material 30 preferably is initially positioned adjacent to closed end M of tube 112. This pre determined or separating amount (such as about 1 ml) of gel-like material 30 preferably is hydrophobic, thixotropic and generally inert to body fluids. One example of such a gel-like material is a mixture ofa silicone fluid and very fine hydrophobic silicon dioxide powder. I-Iydrophobic silicon dioxide (SiO may be defined as silicon dioxide that is treated so as to repel water, with one example of a hydrophobic silicon dioxide powder being Silanox 101 (manufactured by the Cabot Corporation of Boston, Massachusetts and described in Cabot brochure SGEN-l) hydrophobic fumed silicon dioxide, which is a fumed silicon dioxide having trimethyls'ilyl groups bonded to the surface thereof. Another example of a hydrophobic silicon dioxide powder is AEROSIL R972 (sold by DEGUSSA INC. Pigments Div., New York, NY. and described in Technical Bulletin 31 wherein the silicon dioxide is rendered hydrophobic by reacting the silanol groups on the surface with dimethyl dichlorsilane.

Silicon fluid may be defined as a polysiloxane liquid such as for example DOW Corning 360 Medical Fluid (a dimethyl polysiloxane liquid manufactured by the DOW CORNING Corporation of Midland, Michigan and described in DOW CORNING Bulletins CPO-1072, March, 1972 and CPO-158-1, March 1972). Other examples of silicone fluids are DOW CORNING 200 and 510 (a methylphenyl polysiloxane) fluids.

The following specific example of a gel-like material is given in illustration of the present invention and is not intended to be limiting on the invention. One hundred grams of DOW CORNING 360 Medical Fluid (350 centistokes; specific gravity about 0.97) were mixed with 15.7 grams of Silanox 101 silanemodified silicon dioxide (specific gravity about 2.2) to produce 115.7 grams of a gel-like material having a specific gravity of about 1.05.

Table 1 illustrates, among others, a number of mixtures of gel-like materials that may be utilized in this invention:

Sample about 1.06, with the preferred range being 1.04-1.055.

With reference to one of the operational sequences of this invention, FIG. 1 illustrates fluid collection and partitioning assembly 11, ready for use, with stopper 20 together with collection tube 12 defining a sealed, closed evacuated fluid receiving chamber 26. Con tained within chamber 26 is gel-like material 30 which is positioned adjacent to normally closed end 14 of tube 12.

The FIG. 2 assembly depicts the FIG. 1 assembly with the addition of a multi-phase fluid sample 34, such as whole blood. After a correct venipuncture has been made on the patient, the inner or butt end of the needle (not shown) is pushed through stopper diaphragm portion 24, thereby permitting the vacuum within the assembly to draw blood freely into tube 12.

FIG. 3 illustrates the assembly of FIG. 2 shortly after the start of centrifugation which begins to separate homogeneous fluid sample 34 into a lighter phase 38 and a heavier phase 42. The interface 44 between lighter and heavier phases 38 and 42, respectively, is shown, for the sake of clarity, in the form of a dash on either 'side of tube 12. During centrifugation, heavier phase tial position.

The FIG. 4 assembly shows the FIG. 3 assembly, as centrifugation continues, with gel-like material 30 still in an elongated form, but now fully removed from its initialposition, with the upper end of gel-like material 5111- Viscosity Grams of Grams of Grams of Resulting No. cone (centistokes) Silicone S-101 R-972 S.G.

Table l DC-360 is DOW CORNING 360 Medical Fluid. DC-SlO is DOW CORNING 510 Fluid. S-lOl is Silanox" 101 hydrophobic 510,. R-972 is DEGUSSA R 972 hydrophobic Si0,.

It should be noted that the specific gravity (S.G.) of whole blood is 1.05l.06 while the S.G. of the light phase (blood serum) is 1.02-1.03 and the S.G. of the heavy phase (blood cells) is 1.08-1.09. Therefore the specific gravity of gel-like material 30 has to be below that of the heavy phase and above that of the light phase, i.e., generally in the range from about 1.035 to 30 being located in the vicinity of fluid phase interface 44. It should be noted that a thin layer 32 of gel-like material remains at its initial position, i.e., at tube bottom 14.

It should be noted that due to the resilience of the gel-like material 30, movement of fluid can occur in either direction. i.e., red blood cells. fibrin or other heavy-phase bodies can usually move downwardly through gel-like material 30 under the persuasion of centrifugal force. At the same time, any lighter phase fluid remaining below gel-like material 30, again under the persuasion of centrifugal force, can usually move upwardly through material 30. The operation of the instant invention is such that it does not differentiate be tween gases and liquids and permits both to flow through material 30 without prejudice. The flow, either of gases or liquids, is neither restricted nor otherwise influenced in any way by the gel-like material 30. Each phase is free to seek its own flow path and its ultimate position within tube I2 is influenced solely by the persuasion of centrifugal force.

FIG. illustrates the assembly of FIG. 4- upon the completion of centrifugation, i.e., all the parts are now in final position. Upon the completion of centrifugation the maverick lighter components or cells of heavier phase 42 (previously in or above material 34)), still having a specific gravity greater than that of material 30, have now eased into or through material 30., with mate rial resting at a density level equivalent to its own specific gravity. As shown in FIG. 5 member 3t) has now consolidated so as to make a transverselycon'tinuous semi-rigid contact seal or partitioning member 48 with an annular surface portion of tube inner surface 13. If the homogenized test fluid 34 is whole blood, then the heavier phase 42 is now blood cells and the lighter phase may be either blood serum or blood plasma, depending upon whether or not the whole blood sample was coagulated or not coagulated, respectively.

It should be understood that the thickness or axial dimension of the transversely-continuous contact seal made by partitioning or seal member 4% is, among other things, of course also dependent upon the amount of gel-like material that is initially introduced into tube 12. In addition, the seal need not be of uniform shape or thickness across its transverse dimension 1 as long as it has at least one transversely-continuous portion. Uniformity of the seal is influenced by such factors as the viscosity of the gel-like material, the amount of material present, the speed and type (horizontal or anglehead centrifuge) of centrifugation (and resulting g-force) as well as the centrifugation time.

It should be noted that gel-like material 30, which makes up transversely-continuous semi-rigid seal member 48, is substantially thixotropic, i.e., at rest it acts substantially like a material in a thixotropic state. It is not intended that this definition of the gel-like material, which also may be described as semisolid, semi-rigid, substantially non-flowable, or resistant to flow at rest, be a limitation on the invention herein described, since the behavior of the material is, at this time, not yet completely subject to a full exacting explanation. It should suffice to say that gel-like material 30 appears to have a very high viscosity, is thermoplastic in nature, will act substantially as a fluid during centrifugation and will again set up to a gel when allowed to stand.

In the form of seal-member 48, gel-like material 30 is substantially rigid and allows decanting of the lighter fluid phase from the tube or container 32 without disrupting its seal with the tube inner surface. In addition, the partitioned sample will readily tolerate subsequent jarring and is entirely adaptable to shipping (such as to a remote laboratory for example).

While the previously-described examples of gellike materials 30 are mixtures of silicone fluids and silicone dioxide powders it must be understood that these mixtures are not to be considered as limiting this invention. Any gel-like material is useful in the context of this invention if it meets the following basic requirements:

1. Specific gravity (or density) intermediate between those of the two fluid phases sought to be sepa rated.

2. Non-interaction with the fluid phases sought to be separated.

3. Substantially non-flowable (semi-rigid) at rest.

In the previously-described examples. the silicon fluid may be thought of as a liquid or base material (an oil) and the silicon dioxide powder as a solid (a filler), with the latter serving both to adjust the specific gravity of the former to the desired value and to gel the oil, i.e., to convert it into a semi-rigid gel-like material or grease (with the terms gel-like and grease being used synonymously). Thus, as long as they meet the previously noted three basic requirements, almost any liquid and filler combination may be utilized, with examples of oils including esters of polyacids (such as dioctylsebacate, dibutylphthalate and tributylphosphate) and min eral oils (hydrocarbons). Examples of fillers include titania, zirconia, asbestos, wood flour and finely divided organic polymers (such as polyethylene, polypropylene, fluorocarbons and polyesters, etc.) In addition, depending on the specific gravity of the base material. the fillers may be used to either increase or decrease the specific gravity of the former. Furthermore, again as long as the three basic requirements are met, the gellike material may be made up of but a single component (such as a silicone) material or may be mixtures of one or more base materials and one or more fillers.

Up to this point the only operational sequence described has been one wherein gel-like material 30 is initially positioned adjacent to closed end 14 of tube 12, as shown in FIGS. 15. However, other initial placements of material 30 are entirely possible, i.e., material 30 may be placed anywhere within fluid receiving chamber 26. For example, as shown in FIG. 9, a predetermined amount of gellike material 30a may be positioned on a portion of tube inner'surface 13 below stopper 20. When used in the sequence shown in FIGS. ll-S, in lieu of material 30, upon centrifugation, gel-like material 3% (which is substantially similar to material 30), by virtue of its specific gravity (l.035l.()6) will move downwardly through lighter phase 38 (specific gravity 1024.03) and eventually rest at the density level equivalent to its own specific gravity. The end result, as shown in FIG. 5, will be substantially the same regardless of whether material 30 moves up from tube bottom M or material 31M moves down from the vicinity of stopper 20.

The operational sequences described up to now have been limited to a fluid collection and partitioning assembly Ill consisting of collection tube 12, stopper 2d and contact seal or partitioning member 48, wherein tube 12 together with stopper 20 defines a sealed, closed, evacuated fluid receiving chamber 26. This operational sequence, as shown in FIGS. 1-5, applies specifically to a fluid collection and partitioning assembly that is intended to remain closed from the time of manufacture, through sampling, preparation and centrifugation of its contents until the lighter phase is to be removed after centrifugation. Of necessity, the gel-like material must be placed into the tube (prior to the evacuation thereof) at the factory. This sequence will hereinafter be referred to as the closed system concept to differentiate it from a hand or user insertion concept.

In an operational sequence utilizing the hand insertion concept, a predetermined amount of gel-like material such as for example 30a in FIG. 9 or 30b (also substantially similar to material 30) in FIG. 8 is dispensed into an opened collection tube after sample collection, preferably either after coagulation has been completed or after partial phase separation has been effected (upon completion of coagulation). The gellike material can be inserted into an opened collection tube even before coagulation has been completed, however, since blood cells exhibit a tendency to harden on the walls of the opened tube it is preferable to delay the opening of the collection tube until coagulation has been completed therein.

With reference to the operational sequence utilizing the hand-insertion concept, FIGS. 2 and 3, sans material 30, may be utilized to illustrate a well-known evacuated blood collection tube assembly comprised of collection tube 12 and stopper 20. Once blood sample 34 has been introduced into this assembly and preferably eitherafter coagulation (FIG. 2) or after partial phase separation (FIG. 3), stopper 20 is removed and gel-like material 30a (FIG. 9), or 30b (FIG. 8) is dispensed into tube 12.' Thereafter, stopper 20, in accordance with good medical practice, preferably is placed back on tube 12 and centrifugation can begin (FIG. 2, sans material 30) or be continued (FIG. 3, sans material 30). Hereinafter, the operational sequence proceedsin a manner and with a result identical to that already described with reference to the closed system concept. Substantially similar results are obtained regardless of whether the gel-like material is dispensed directly into the fluid sample, as is material 30b in FIG.

8, or positioned on an inner surface portion of the tube, as is material 300 in FIG. 9.

FIGS. 6 and 7 disclose another embodiment of the fluid collection and partitioning assemblies of this invention wherein a predetermined amount of gel-like material 30 coacts with a spool 52to effect complete physical and chemical partitioning of two differingdensity fluid phases. The assembly shown in FIG. 6, i.e., tube 12, stopper 22, gel-like material 30, fluid 34 and spool 52, can be the result of at least two different concept sequences, namely: l a closed system concept wherein spool 52 and gel-like material 30, are both located in a sealed, closed, fluid receiving chamber 26 as shown in FIG. 1., into which fluid sample 34 has thereafter been introduced, or (2) a hand-insertion concept wherein spool 52 is introduced into a collection tube 12 (upon stopper removal) after fluid sample 34 has been collected (as shown in FIG. 2).

Spool 52, which has an annular, generally cylindrically-shaped main body portion 54 having a diameter less than the inside diameter of collection tube 12, also has an upper. outwardly-tapering, annular. resilient, wiper or outer surface portion 56 having a maximum outer free diameter greater than that of portion 54, with portion 56 being adapted to sealingly contact tube inner wall surface 13. Spool 54 also has a lower skirt portion 58 and a central axial orifice 62. Spool 52 may be of the type disclosed in co-pending US. Pat. application Ser.

No. 228,573 filed Feb. 23, 1972 (which is a continuation in part of application Ser. No. 178,274 filed Sept. 7, 1971) and is also assigned to the assignee of this invention.

With reference to the operational sequence of the FIG. 6 and 7 embodiments. FIG. 6 shows the fluid collection and partitioning assembly immediately prior to centrifugation, while FIG. 7 depicts the assembly upon the completion of centrifugation. During centrifugation, gel-like material 30 behaves in the manner already described with reference to FIGS. 3 and 4 except that material 30 coacts with spool 52 to make a transverse ly-continuous contact seal to separate phases 38 and 42. Spool 52, which is preferably made .of a resilientmaterial such as medical grade rubber, preferably has a specific gravity intermediate those of the fluid phases to be separated (in the case of human blood the intermediate S.G.=l.035l.06). At the start of centrifugation, spool 52, because of its specific gravity, starts to move downward, away from the vicinity of stopper 20, toward lighter phase 38, which in turn flows upwardly through spool central axial orifice 62. It should be noted that all fluid flow takes place through orifice 62 and no fluid is permitted, nor can it possibly take place, between the outer surface of spool 52 and tube inner surface 13. Furthermore, fluid flow can occur through orifice 62 in either direction, depending upon the initial position of spool 52 relative to the various density components of the fluid which are to be separated. The operation of spool 52 is such that it does not differentiate between gases or liquids and each phase is free to seek its own flow path and its ultimate position within tube 12 is influenced solely by the persuasion of centrifugal force. Upon the completion of centrifugation (FIG. 7) the skirt portion 58 of spool 52 has entered heavier phase 42 and gel-like material 30, again as a result of the applied centrifugal force, has started to enter lighter phase 38 by extending at least partially through spool central axial orifice 62. Gel-like material 30 is adapted to make a transversely-continuous contact seal member 64 with at least an annular portion of orifice 62. Thus spool 52 together with gel-like material 30 forms a transversely-continuous partitioning assembly 66 with an annular surface portion of tube inner surface 13. Basically, spool 52 acts as a constriction within tube 12 since sealing of the differing density fluids from one another at tube inner surface 13 has been continuous (by reason of spool wiper 56) since spool 52 began its descent through the fluid and the separated fluid phases have never been in contact with each other in this area. Final sealing is accomplished within spool central axial orifice 62 due to the action of gel-like material 30, and is purposefully designed to occur at or just above the fluid phase interface 44 to ensure the absence of any heavy phase components within the lighter phase sample. The exact positioning of gel-like material 30 with reference to spool skirt portion 58 and orifice 62 depends upon the amount and viscosity of material 30 as well as the centrifugal force applied.

Up to this point the embodiments described have been limited to the partitioning of two differing-density fluid phases of a centrifugally separated fluid specimen at the interface of the fluid phases. Often it may be desirable to partition at least three differing-density phases of centrifugally separated muIti-phase fluid specimen at positions substantially at the interfaces of the differing-density fluid phases. This goal can be accom- 13% plished by utilizing n-l differing-density gel-like materials to partition n number of differing-density fluid phases.

FIG. 9, which is a partially broken away sectional view of another embodiment of the fluid collection and partitioning assemblies of this invention, shows a first gel-like material 39, having a first specific gravity, adjacent to tube bottom I4 and a second gel-like material 30a, having a second specific gravity, attached to tube inner wall 13 in an area below stopper 29. Art at least three-phase fluid 68 having first or heaviest density 70, second or intermediate density 72, and third or lightest density 74 fluid components is also contained within tube 12. Gel-like material 20 has a specific gravity intermediate those of first and second fluid phase components 7t), 72, respectively, while material 390 has a specific gravity intermediate those of second and third fluid phase components 72, 74 respectively.

FIG. 10 which illustrates an assembly, such as that of FIG. 9, upon the completion of centrifugation, with first and second gel-like materials 39, 39a, being located in the form of transversely-continuous semi-solid partitioning members or contact seals 48, lfla, between first-second (7tlt-72) and second-third (72-74) differing density fluid phases, respectively. As already previously described, gel-like material 30 moves upward away from tube bottom 14 and material 30a moves downward away from the area below stopper 20, under the influence of centrifugal force until they reach the fluid gradient levels, i.e., the interfaces closest to their own specific gravity.

The end result, i.e., the partitioning of fluid phases 70, 72 and 74 shown in FIG. 10 may be achieved in a number of different operational sequences. In the closed system concept technique, both materials 30 and 30a are contained (at tube bottom M and in the area below stopper 20, respectively) within a closed, evacuated fluid receiving chamber, into which fluid sample 68 is thereafter introduced (see FIG. 9). A subsequent single centrifugation step produces the partitioning shown in FIG. Ill), with both materials 30 and 30a leaving thin layers of gel-like materials 32 and 32a respectively at their initial positioning areas.

In the hand insertion concept technique, after fluid sample 68 has been collected, a first gel-like material, having a first specific gravity intermediate those of heaviest and intermediate fluid phases 70, 72, respectively, is dispensed into collection tube 12, either in the shape of material 30b (FIG. 8) or material 3th: (FIG. 9). Thereafter, the assembly is centrifuged a first time and this first gel-like material forms transverselycontinuous partitioning or seal member 4% between phases 70 and 72. Then, a second gel-like material, having a second specific gravity intermediate those of the intermediate and lightest fluid phases, 72 and 74, respectively, is dispensed into collection tube 112, again either in the shape of material 30b (FIG. 9) or material 30a (FIG. 9). After a second centrifugation, the second gel-like material forms transversely-continuous partitioning or seal member Ma between phases 72 and 74.

Several combination closed system and hand insertion" concept techniques are also possible. In one such combination, a first gel-like material, having a specific gravity intermediate those of heaviest and in-- termediate phases 7t), 72, respectively, is contained within a closed, evacuated fluid receiving chamber (FIG. I). After the introduction of fluid 68 a second gel-like material, having a specific gravity intermediate those of the intermediate and lightest phases 72, 74. re

spectively, is dispensed into collection tube 12 (either into collection tube 12 (in either of the shapes as previously noted) and a second centrifugation step then forms a second transversely-continuous member 48a between phases 72 and '74.

It should be noted that with any multi-phase fluid, having three or more phases, an initial separating of the heaviest phase from the remaining phases can be accomplished by means of either of the two phase separation techniques herein discussed, e.g. by means of partitioning or seal member 4 8 (FIG. 5) or partitioning assembly 66 (FIG. 7), using either the closed system or hand-insertion concept techniques. Further separations of the remaining phases can thereafter be accomplished by successively dispensing in gel-like materials of decreasing specific gravities and successively centrifuging the collection tube assembly. For example, a whole blood sample may be initially be separated into blood cells and blood serum and thereafter, while remaining in thesame container, the blood serum may be further fractionated into separate components. Whole human blood has a given, generally quite uniform, specific gravity between 1.05 and 1.06. Centrifuged blood however has many layers or constituents of varying specific gravities, from the heaviest at the bottom to the lightest at the top, with the greatest visible demarcation occurring at the serum/red cell interface.

The principles of this invention may be utilized in partitioning assemblies for fluids other than human blood, e.g., any fluid separable into at least two differing density phases may be separated using a gel-like material (or a gel-like material and spool combination) having a specific gravity intermediate those of the phases sought to be separated. Any gel or gel-like material that is hydrophobic, substantially thixotropic, and generally inert to the fluids to be separated, may be utilized.

While the invention has been described in connection with possible forms or embodiments thereof, it is to be understood that the present disclosure is illustrative rather than restrictive and that further changes or modifications may be resorted to without departing from the spirit of invention or scope of the claims which follow.

I claim:

11. A fluid collection and partitioning assembly for collecting a specimen of blood within a sealed fluid collection chamber, centrifically separating the heavier and lighter fluid phases of said blood specimen, and physically and chemically partitioning the separated phases, comprising:

a. a container having an open end and a closed end;

b. gel-like means initially positioned within said container adjacent said closed end for forming a transversely continuous contact seal with an annular surface portion within said container at a subsee. subjecting said specimen and gel-like means to a quently formed interface between said heavier and lighter phases;

said container and for defining a closed fluid collection chamber containing said gel-like means therewithin, said closure means being pierceable closure means for vacuum-sealing said open end of centrifugal force to separate said fluid specimen into a heavier phase and a lighter phase and simultaneously move said gel-like means toward the interface of said phases; and

f. establishing a continuous semi-rigid gel-like seal across the interior of said container between said by a needle for supplying blood to said closed fluid collection chamber which is adapted to draw the 0 blood specimen therewithin;

d. said gel-like means being a thixotropic material and including a mixture of a fluid which is generally inert to body fluids and a powdered inorganic filler; and

heavier phase and said lighter phase within said container.

3. A method of collecting a multiphase fluid specimen, separating said specimen into at least two differing-density phases, and partitioning said phases comprising:

a. providing an open-ended container with thixotrosaid gel-like means having a. specific gravity interlighter phase of a centrifugally separated fluid specimen within a container which comprises:

providing a container having a closed end and an open end;

initially positioning thixotropic gel-like means having a. specific gravity intermediate those of said lighter and heavier fluid phases within said container in spaced relation from said open end; evacuating and sealing said container to provide a closed fluid collection chamber therewithin; supplying a fluid specimen to said closed chamber;

pic gel-like material having a specific gravity intermediate those of the two phases of a fluid specimen to be collected and separated;

b. vacuum-sealing the open end of said container,

containing said gel-like material, with a needlepierceable closure;

c. drawing a specimen through said closure; d. applying centrifugal force to said specimen and gel-like material and simultaneously forcibly moving the phases of said specimen and said gel-like material toward relative positions within said container corresponding to their respective specific gravities;

. terminating said centrifugal force after said specimen -has separated into differing-density phases and a substantial portion of said gel-like material has reached a position intermediate said phases, and

. at such position, utilizing said gel-like material to partition said separated differing-density phases.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3508653 *Nov 17, 1967Apr 28, 1970Charles M ColemanMethod and apparatus for fluid handling and separation
US3761408 *May 8, 1972Sep 25, 1973Jae Yoon LeeMethod and apparatus for separating blood constituent components
US3779383 *Apr 25, 1972Dec 18, 1973Becton Dickinson CoSealed assembly for separation of blood components and method
US3780935 *Jul 10, 1972Dec 25, 1973Lukacs & Jacoby AssSerum separating method
US3782548 *Dec 7, 1972Jan 1, 1974J BowenSerum skimmer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3920549 *Mar 18, 1974Nov 18, 1975Corning Glass WorksMethod and apparatus for multiphase fluid collection and separation
US3920557 *Feb 27, 1974Nov 18, 1975Becton Dickinson CoSerum/plasma separator--beads-plus-adhesive type
US3929646 *Jul 22, 1974Dec 30, 1975Technicon InstrSerum separator and fibrin filter
US3957653 *Apr 3, 1975May 18, 1976Becton, Dickinson And CompanyMeans for dispensing a thixotrope into the blood collection chamber
US3957654 *Jun 5, 1975May 18, 1976Becton, Dickinson And CompanyPlasma separator with barrier to eject sealant
US3963119 *Sep 16, 1974Jun 15, 1976Lucaks And Jacoby AssociatesSealant of silicone and silica
US3976579 *Jul 10, 1975Aug 24, 1976Becton, Dickinson And CompanyNovel assembly
US3977982 *Jan 20, 1975Aug 31, 1976Corning Glass WorksControlling viscosity of silica-silicone oil gels
US3986962 *Jul 10, 1975Oct 19, 1976Becton, Dickinson And CompanyNovel assembly for separating blood
US3997442 *Sep 15, 1975Dec 14, 1976Corning Glass WorksMethod of separating and partitioning differing density phases of a multiphase fluid
US4012325 *May 27, 1975Mar 15, 1977Eastman Kodak CompanyBiological fluid dispenser and separator
US4018564 *Nov 24, 1975Apr 19, 1977General Electric CompanySilicone composition for analyzing blood samples
US4050451 *Aug 13, 1976Sep 27, 1977Eastman Kodak CompanyBlood collection and separation device
US4052320 *Jul 8, 1976Oct 4, 1977Eastman Kodak CompanyTelescoping serum separator and dispenser
US4055501 *Jan 16, 1976Oct 25, 1977Sherwood Medical Industries Inc.Fluid collection device with phase partitioning means
US4071316 *Dec 20, 1976Jan 31, 1978General Electric CompanySilicone composition for analyzing blood samples
US4083784 *Apr 28, 1977Apr 11, 1978Corning Glass WorksStabilized blood separating composition
US4088582 *Jan 16, 1976May 9, 1978Sherwood Medical Industries Inc.Blood phase separation means
US4091802 *Feb 17, 1976May 30, 1978Eastman Kodak CompanyVented liquid collection device
US4101422 *May 11, 1977Jul 18, 1978Emery Industries, Inc.Copolyesters useful in blood separation assemblies
US4136036 *Feb 22, 1978Jan 23, 1979Eastman Kodak CompanyCollection and dispensing device for non-pressurized liquids
US4147628 *Jan 23, 1978Apr 3, 1979Becton, Dickinson And CompanyBlood partitioning method
US4169060 *Oct 25, 1977Sep 25, 1979Eastman Kodak CompanyBlood-collecting and serum-dispensing device
US4172803 *Oct 20, 1977Oct 30, 1979Terumo CorporationLiquid separating composition and apparatus for applying said composition
US4180465 *Dec 19, 1975Dec 25, 1979Sherwood Medical Industries Inc.For medical or biological uses
US4190535 *Jul 10, 1978Feb 26, 1980Corning Glass WorksMeans for separating lymphocytes and monocytes from anticoagulated blood
US4235725 *Aug 16, 1978Nov 25, 1980Owens-Illinois, Inc.Polybutadiene gel barrier for testing
US4246123 *Apr 20, 1979Jan 20, 1981Sherwood Medical Industries Inc.Fluid collection device with phase partitioning means
US4257886 *Jan 18, 1979Mar 24, 1981Becton, Dickinson And CompanyContainer having therein a material capable of forming a transverse barrier
US4295974 *May 5, 1980Oct 20, 1981Sherwood Medical Industries Inc.Blood sample collection and phase separation device
US4333564 *Jan 16, 1980Jun 8, 1982Sherwood Medical Industries Inc.Method of controlling rheological properties of gel-like compositions
US4350593 *Jun 25, 1979Sep 21, 1982Becton, Dickinson And CompanyAssembly, compositions and method for separating blood
US4369117 *May 12, 1980Jan 18, 1983American Hospital Supply CorporationFilter inserts in centrifuge tubes
US4386003 *Sep 17, 1981May 31, 1983Sherwood Medical Industries Inc.Radiation-resistant gel from the gelation of a silicone oil, a silica filler, and a gel-forming; sterilization
US4534798 *Nov 18, 1983Aug 13, 1985Sekisui Kagaku Kogyo Kabushiki KaishaComposition for partitioning blood components
US4555336 *Aug 11, 1980Nov 26, 1985Becton, Dickinson And CompanyPour spout for container with improved pouring feature
US4555341 *Aug 11, 1980Nov 26, 1985Becton, Dickinson And CompanyDecantation by pouring
US4567754 *Mar 29, 1985Feb 4, 1986Wardlaw Stephen CMeasurement of small heavy constituent layer in stratified mixture
US4569764 *May 4, 1981Feb 11, 1986Sherwood Medical CompanyCollection device with phase partitioning means
US4640785 *Dec 24, 1984Feb 3, 1987Becton Dickinson And CompanySeparation of lymphocytes and monocytes from blood samples
US4707276 *Apr 22, 1983Nov 17, 1987Sherwood Medical CompanyFluid collection device with phase partitioning means
US4751001 *Sep 24, 1984Jun 14, 1988Becton Dickinson And CompanyBlood partitioning apparatus
US4816168 *Oct 28, 1986Mar 28, 1989Becton Dickinson & CompanyTubes for blood separation
US4818386 *Oct 8, 1987Apr 4, 1989Becton, Dickinson And CompanyDevice for separating the components of a liquid sample having higher and lower specific gravities
US4818418 *Feb 3, 1988Apr 4, 1989Becton Dickinson And CompanyCentrifuging in a tube layered with a thixotropic gel on a density gradient material
US4828716 *Apr 3, 1987May 9, 1989Andronic Devices, Ltd.Apparatus and method for separating phases of blood
US4844818 *Oct 23, 1987Jul 4, 1989Becton Dickinson & CompanyLymphocytes and monocytes from granulocytes
US4867887 *Jul 12, 1988Sep 19, 1989Becton Dickinson And CompanyThixotropic gel and newtonian gel barriers to prevent mixing of blood sample
US4877520 *Jun 6, 1988Oct 31, 1989Becton, Dickinson And CompanyTransparent tube container with dual barrier assembly
US4917801 *Nov 2, 1987Apr 17, 1990Becton Dickinson And CompanyLymphocyte collection tube
US4954264 *Feb 2, 1989Sep 4, 1990Becton-Dickinson And CompanyGel layers
US4957638 *May 9, 1989Sep 18, 1990Becton Dickinson And CompanyThixotropic gel, separation of lymphocytes
US4994393 *Feb 22, 1989Feb 19, 1991Becton, Dickinson And CompanyBlood partitioning composition
US5019243 *May 2, 1989May 28, 1991Mcewen James AApparatus for collecting blood
US5053134 *Jan 17, 1990Oct 1, 1991Becton Dickinson And CompanyCentrifuging, separation using density gradients
US5169543 *Mar 27, 1990Dec 8, 1992Nippon Paint Co., Ltd.Crosslinked addition-condensation copolymer dispersed in liquid copolymer; high viscosity, specific gravity, chemical resistance; barriers
US5265482 *May 21, 1991Nov 30, 1993E. I. Du Pont De Nemours And CompanyMethod of sampling a container
US5271852 *May 1, 1992Dec 21, 1993E. I. Du Pont De Nemours And CompanyCentrifugal methods using a phase-separation tube
US5275933 *Sep 25, 1992Jan 4, 1994The Board Of Trustees Of The Leland Stanford Junior UniversitySeparation in a multilayer gel blood cells and exposure to force field
US5282981 *May 1, 1992Feb 1, 1994E. I. Du Pont De Nemours And CompanyFlow restrictor-separation device
US5308506 *Dec 31, 1992May 3, 1994Mcewen James ACollection tube, separator element movable within tube, optical monitoring
US5354483 *Oct 1, 1992Oct 11, 1994Andronic Technologies, Inc.Double-ended tube for separating phases of blood
US5393674 *Mar 8, 1993Feb 28, 1995Levine Robert AConstitutent layer harvesting from a centrifuged sample in a tube
US5419835 *Oct 13, 1993May 30, 1995E. I. Du Pont De Nemours And CompanyFlow restrictor-separation device
US5437987 *Jun 14, 1993Aug 1, 1995The Board Of Trustees Of The Leland Stanford Junior UniversityGravity or centrifugal separation, binding fetal red blood cell with solid support having bound thereto anti-antibody which bind epitopes on fetal cell, warming to release from support, and testing for genetic defects or sex characteristic
US5494590 *Jun 11, 1992Feb 27, 1996Becton DickinsonCentrifuging container with blood sample contained in thixotropic gel which also contains anticoagulant and sodium citrate
US5518615 *Apr 22, 1994May 21, 1996Becton, Dickinson And CompanyPolydimethylsiloxane/polyethylene oxide copolymer gelled with dibenzylidenesorbitol in liquid vehicle of water or alcohol
US5560830 *Dec 13, 1994Oct 1, 1996Coleman; Charles M.Water swellable coating on float; sealing tube
US5736033 *Dec 13, 1995Apr 7, 1998Coleman; Charles M.Separator float for blood collection tubes with water swellable material
US5814220 *Dec 11, 1996Sep 29, 1998Mitsubishi Chemical CorporationMixture of a high molecular weight compound and a thixotrophy agent
US5853600 *Sep 19, 1997Dec 29, 1998Beckman Instruments, Inc.Axial spin blood separation system and method
US6017483 *Jul 18, 1997Jan 25, 2000Becton Dickinson And CompanyReceptacle with a fused coating on an interior surface and an injection molding process for forming the article
US6225123Aug 14, 1997May 1, 2001Becton Dickinson And CompanyAdditive preparation and method of use thereof
US6238578Dec 9, 1996May 29, 2001Sherwood Services AgCentrifuging blood sample
US6376210Jul 6, 1999Apr 23, 2002General AtomicsMethods and compositions for assaying analytes
US6458420 *Aug 25, 1997Oct 1, 2002Dow Corning Toray Silicone Co., Ltd.Contacting surface with disilazane and curing
US6534016Nov 21, 2000Mar 18, 2003Richmond CohenAdditive preparation and method of use thereof
US6610504Apr 10, 2000Aug 26, 2003General AtomicsMethods of determining SAM-dependent methyltransferase activity using a mutant SAH hydrolase
US6793892 *Oct 24, 2000Sep 21, 2004Volker NiermannSeparator arranged to move in the tube under the action of centrifugal force in order to separate the portions of a fluid sample
US7070939Sep 26, 2001Jul 4, 2006The Scripps Research InstituteMethods for detecting vasculopathies and tumors
US7192729Jan 10, 2002Mar 20, 2007General AtomicsMethods for assaying homocysteine
US7384760Apr 30, 2004Jun 10, 2008General AtomicsMethods for assaying inhibitors of S-adenosylhomocysteine (SAH) hydrolase and S-adenosylmethionine (SAM)-dependent methyltransferase
US7673758 *Nov 1, 2007Mar 9, 2010The Regents Of The University Of CaliforniaCollection tubes apparatus, systems, and methods
US8206638 *Jan 21, 2010Jun 26, 2012The Regents Of The University Of CaliforniaCollection tubes apparatus, systems, and methods
US8318077 *May 29, 2012Nov 27, 2012The Regents Of The University Of CaliforniaCollection tubes apparatus, systems, and methods
US8377395Apr 29, 2011Feb 19, 2013Charles M. ColemanIntegrated blood specimen processor
US8394342Jul 21, 2009Mar 12, 2013Becton, Dickinson And CompanyDensity phase separation device
US8580183Nov 19, 2012Nov 12, 2013The Regents Of The University Of CaliforniaCollection tubes apparatus, systems, and methods
US8623278Oct 11, 2012Jan 7, 2014Commissariat A L'energie Atomique Et Aux Energies AlternativesSystem and method for the continuous extraction of a liquid phase of microsamples, and automated installation for taking them, for carrying out the extraction and taking measurements
US8747781Jul 21, 2009Jun 10, 2014Becton, Dickinson And CompanyDensity phase separation device
US20100117269 *Jan 21, 2010May 13, 2010The Regents Of The University Of CaliforniaCollection tubes appratus, systems, and methods
DE2743882A1 *Sep 29, 1977Mar 30, 1978Nippon Paint Co LtdTrennmittel und verfahren zum auftrennen einer blutprobe in serum- oder plasma- und gerinnsel-anteile
EP0046391A1 *Aug 14, 1981Feb 24, 1982Sekisui Kagaku Kogyo Kabushiki KaishaComposition for partitioning blood components
EP0073551A2 *Jan 5, 1982Mar 9, 1983Becton, Dickinson and CompanySample collection container
EP0076051A2 *Sep 9, 1982Apr 6, 1983Sherwood Medical CompanyFluid separating composition
EP0119692A2 *Jan 25, 1984Sep 26, 1984TECHNICON INSTRUMENTS CORPORATION(a Delaware corporation)Method and apparatus for separating blood lymphocytes from blood
EP0184274A2 *Mar 20, 1985Jun 11, 1986Becton Dickinson and CompanyPartition for a lymphocyte collection tube
EP0575736A2May 7, 1993Dec 29, 1993Becton Dickinson and CompanyAnticoagulant solution
EP0875756A2 *Apr 21, 1998Nov 4, 1998Becton Dickinson and CompanyAdditive preparation and method of use thereof
EP2253379A1 *Sep 19, 2003Nov 24, 2010Becton Dickinson and CompanyHigh bias gel tube and process for making tube
EP2263801A1 *Sep 19, 2003Dec 22, 2010Becton Dickinson and CompanyHigh bias gel tube and process for making tube
EP2266697A1 *Sep 19, 2003Dec 29, 2010Becton Dickinson and CompanyHigh bias gel tube and process for making tube
EP2266698A1 *Sep 19, 2003Dec 29, 2010Becton Dickinson and CompanyHigh bias gel tube and process for making tube
EP2272589A1 *Sep 19, 2003Jan 12, 2011Becton Dickinson and CompanyHigh bias gel tube and process for making tube
EP2272590A1 *Sep 19, 2003Jan 12, 2011Becton Dickinson and CompanyHigh bias gel tube and process for making tube
WO2004026477A1 *Sep 19, 2003Apr 1, 2004Becton Dickinson CoHigh bias gel tube and process for making tube
WO2009010662A2Jun 18, 2008Jan 22, 2009Commissariat Energie AtomiqueSystem and method for the continuous extraction of a liquid phase of microsamples, and automated installation for the withdrawal thereof, for carrying out the extraction and taking measurements that relate thereto
Classifications
U.S. Classification210/789, 494/38, 494/16, 494/81, 436/17
International ClassificationG01N33/49, B04B5/02, B04B5/00, G01N33/48
Cooperative ClassificationG01N33/491
European ClassificationG01N33/49C
Legal Events
DateCodeEventDescription
Apr 18, 1983ASAssignment
Owner name: SHERWOOD MEDICAL COMPANY
Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634
Effective date: 19820412