Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3852207 A
Publication typeGrant
Publication dateDec 3, 1974
Filing dateMar 26, 1973
Priority dateMar 26, 1973
Publication numberUS 3852207 A, US 3852207A, US-A-3852207, US3852207 A, US3852207A
InventorsC Egan, B Stangeland
Original AssigneeChevron Res
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Production of stable lubricating oils by sequential hydrocracking and hydrogenation
US 3852207 A
Abstract
A process is disclosed for producing a lubricating oil having good UV stability from a hydrocarbon feedstock boiling in the range 700 DEG to 1,200 DEG F., which comprises:
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Stangeland et a1.

[111 3,852,207 1 'Dec.3, 1974 1 PRODUCTION OF STABLE LUBRICATING OILS BY SEQUENTIAL HYDROCRACKING AND HYDROGENATION [75] Inventors: Bruce E. Stangeland, Berkeley;

Clark J. Egan, Piedmont, both of Calif.

[73] Assignee: Chevron Research Company, San

Francisco, Calif.

[22] Filed: Mar. 26, 1973 [21] Appl. No.: 345,142

[52] U.SQ Cl 208/58, 208/18, 208/264 [51] Int. Cl Clog 31/14, Clog 37/10 [58] Field of Search 208/58, 18

[56] References Cited UNITED STATES PATENTS 2,960,458 11/1960 Bcuther et a1. 208/19 3,487,005 12/1969 Egan et al 208/59 3,530,061 9/1970 Orkin et al 208/60 3,629,096 12/1971 Divijak 208/89 3,666,657 5/1972 Thompson et al.. 208/58 3,732,156 5/1973 Bennett et all 208/111 Primary Examiner-Delbert E. Gantz Assistant ExaminerG. E. Schmitkons Attorney, Agent, or FirmG. F. Magdeburger; R. H. Davies; J. D. Foster 5 7] ABSTRACT A process is disclosed for producing a lubricating oil having good UV stability from a hydrocarbon feedstock boiling in the range 700 to 1,200F., which comprises:

A. catalytically hydrocracking in a hydrocracking zone said feedstock at a per pass conversion of at least 20 volume percent to materials boiling below the initial boiling point of said feedstock;

B. catalytically hydrogenating in a hydrogenating zone at least a substantial portion of the effluent from said hydrocracking zone boiling in the range 5501,200F. at hydrogenation conditions, in the presence of a hydrogenation catalyst comprising I 1. a refractory oxide, and 2. a hydrogenating component comprising a noble metal; and g C. recovering as a product of the hydrogenating step a lubricating oil having good UV stability.

10 Claims, No Drawings PRODUCTION OF STABLE LUBRICATING OILS BY SEQUENTIAL HYDROCRACKING AND I-IYDROGENATION BACKGROUND OF THE INVENTION.

I. Field of the Invention The present invention relates to the production of stabilized lubricating oils by a combination of catalytic hydrocracking and catalytic hydrogenation.

As high quality crude oils for use in preparing lubricating oils become more scarce, the economics and desirability of producing satisfactory lube stocks by hydrocracking processes become more attractice. This has been indicated by the increased research activities directed to producing lube oil stocks by various hydroconversion processes.

One of the major problems with lubricating oils prepared by hydrocracking processes is the instability of the oils in sunlight. This instability to ultraviolet light in the presence of air is evidenced by the formation of a precipitate after a short period of exposure. Such a precipitate is undesirable not only because it may prove detrimental to the lubricating function which the oil is designed to perform, but also because it reduces the aesthetic value of what would otherwise be a clear, premium quality oil. The latter is a true consideration; refiners have learned through experience'that consumers will not buy lubricating oils which contain visible precipitates, even when those precipitates have no adverse effect on the performance qualities of the lubricating oil.

In the past, it has been known that certain types of lubricating oil instability, such as oxidation instability, couldbe prevented by treating the oil with any of a number of polar solvents such as phenol, furfural and sulfuric acid (see US. Pat. No. 3,463,724). While these treatments tend to remove the instability-causing components, they have the disadvantage of also removing a considerable portion of the desirable lubricating oil components. This indiscriminate removel, either by polar extraction or chemical reaction or both, is unsatisfactory since resulting low yields in most instances make the process uneconomical.

The present invention is directed to a process whereby the UV stability of lubricating oils produced by hydrocracking can be significantly improved by catalytic routes avoiding the reduced yields obtained in many solvent treating processes as well as providing oils with good oxidation stability.

2. Description of the Prior Art Numerous patents have issued-directed to the production of lubricating oils. Patents have also issued directed to stabilizing lubricating oils by hydrogenation treatment. For example, US. Pat. No. 3,666,657 teaches a process for improving the quality stability of hydrocracked oils by hydrogenating the oil subsequent to a hydrocracking treatment over a sulfided mixture of an iron group metal and a metal of Group VI.

US. Pat. No. 3,629,096 teaches preparation .of technical grade white mineral oil by a series of steps comprising hydrorefining mineral lubricating oil distillate in a first zone, taking the hydrogenated oil from the first hydrogenation stage and contacting it with hydrogen in the presence of a hydroisomerization-hydrocracking catalyst followed by hydrogenation over a catalyst comprising a platinum groupmetal on a support having no substantial cracking effect.

US. Pat. No. 3,530,06l teaches the production of stabilized lube oils by hydrocracking hydrocarbon feed material followed by contacting the product from this hydrocracking step with a catalyst having hydrogenation activity provided by one or more elements from Groups IIB, VIB and VIII at hydrogen pressures in the range from atmospheric up to about psig.

US. Pat. No. 3,420,768 teaches a method for reducing the pour point of a hydrocarbon middle distillate by hydrocracking the middle distillate followed by reduc ing the pour point by contacting the effluent from the hydrocracking zone with hydrogen and a noble metal on alumina.

SUMMARY OF THE INVENTION The subject invention is directed to a process for producing a lubricating oil of improved sunlight (UV) and good oxidation stability from a hydrocarbon feedstock boiling in the range of from about 700 to 1,200F. by a sequential process which comprises:

A. catalytically hydrocracking in a hydrocracking zone said feedstock at a per mass conversion of at least 20 volume percent to materials boiling below the initial boiling point of said feedstock;

B. catalytically hydrogenating in a hydrogenating zone .at least a substantial portion of the effluent from said hydrocracking zone boiling in the range 550-1,200F. at hydrogenation conditions including:

a temperature of from 400 to 700F.,

a pressure of from 1,500 to 5,000 psig,

an LHSV of from 0.2 to 1.5, and

a hydrogen supply rate of from 500 to 20,000

SCF/barrel of said effluent fed to said hydrogenating zone,

in the presence of a hydrogenation catalyst comprisl. a refractory oxide, and

2. a hydrogenating component comprising a noble metal, and

C. recovering as a product of said hydrogenating a lubricating oil having good UV stability.

A preferred catalyst for use in the hydrogenation zone is a noble metal on silica-alumina support wherein the alumina content is at least about 40 percent and the composite catalyst has been subjected with the noble metal in the oxide state to a heat treatment in the range of 1,200 to l,800F. The preferred noble metal is palladium.

DETAILED DESCRIPTION OF THE INVENTION Statement of the Invention In accordance with the present invention, there is provided a process for producing a lubricating oil having good UV stability. 7

The. process comprises the stepsset forth above under the SUMMARY OF THE INVENTION. These steps, which will be described in detail hereinafter, briefly call for:

l. catalytically hydrocracking a hydrocarbon feedstock in a hydrocracking zone at hydrocracking conditions;

2. catalytically hydrogenating at least'a substantial portion of the effluent from. the hydrocracking zone boiling in the range 550 to l,200F. at hydrogenation conditions with a hydrogenation catalyst; and

3. recovering as a product of the hydrogenation zone lubricating oil having good UV stability.

Hydrocarbon Feedstock The hydrocarbon feedstock to the hydrocracking zone may encompass a wide range of feedstocks boiling in. the range of from about 700 to about 1,.200F. It may be a heavy straight run gas oil, deasphalted oil, vacuum gas oils, atmospheric residua, or the like. Preferred feedstocks are vacuum gas oils boiling in the range of from about 700 to about 1,050F. and solvent deasphalted oils having boiling ranges of from about 900 to about l,200F. Reduced topped crude oils as well as atmospheric residua and the like may also be used. Because of the poisoning effect on the catalyst caused by cracking of asphaltenes to coke, it is preferred that the hydrocarbon feedstocks to the hydro cracking zone contain less than about 5 percent by weight of asphaltenes, preferably less than 1 percent by weight. The hydrocarbon feedstock has a boiling range extending over at least about 100F. While the sulfur and nitrogen content of the hydrocarbon feedstock to the hydrocracking zone is not critical, excessive quantities of either sulfur or nitrogen are not desirable. Preferred feedstockscontain less than about 3 percent of sulfur and less than about 1 percent of nitrogen by weight.

, Operating Conditions in the Hydrocracking Zone Process conditions in the hydrocracking zone are those typical of hydrocracking operations. A temperature of about 500 to 900F., preferably 650 to 800F., is used. A pressure of from about 500 to about 10,000 psig, preferably 500 to 3,000 psig, is used with a LHSV of from 0.2 to 5.0, preferably 0.5 to 2.0, more preferably 0.5 to 1.0.The hydrogen supply rate (makeup and recycle) to the'hydrocracking zone is in ther'range of from about 500 to about 20,000 standard cubic feet per barrel of hydrocarbon feed, preferably about 2,000 to about 10,000 standard cubic feet per barrel.

it should be noted that while hydrocracking is the primary reaction being carried out, the feedstocks as noted above generally contain some hetero organic compounds of sulfur, nitrogen, oxygen and even metals in some cases. Therefore, h ydrodesulfurization, hydrodenitrification, etc. may also be occurring.

Hydrocracking Catalyst The catalysts employed in the hydrocracking zone are comprised of materials having hydrogenationdehydrogenation activity, together with an active cracking component support. These catalysts are well known in the art as evidenced by the wide range of patent and literature references. Exemplary cracking component supports include silica-alumina, silicaalumina-zirconia composites,'acid-treated clays, crysoxides and sulfides of molybdenum and tungsten. Thus,

examples of a hydrocracking catalyst which would be preferred for use in the hydrocracking process step are the combinations of nickel-tungsten-silica-alumina, nickel-molybdenum-silica-alumina and cobaltmolybdenum-silica-alumina. Such catalysts may vary in their activities for hydrogenation and for cracking and in their ability to sustain high activity during long periods of use depending on their compositions and methods of preparation. Obviously, the best proven catalysts available are selected, taking into consideration the above factors and cost.

A particularly preferred hydrocracking catalyst is a nickel sulfide-tungsten sulfide catalyst on a silicaalumina-titania support.

Conditions in the Hydrogenation Zone The process conditions in the hydrogenation zone include a temperature inthe range of from about 400 to 700F., preferably 500 to 600F., a pressure of from about 1,500 to 5,000 psig, preferably 2,000 to 3,000 psig, an LHSV in the range of from about 0.2 to 1.5, preferably 0.2 to 1.0, more preferably 0.3 to 0.7, and a hydrogen supply rate (makeup and recycle) in the range of from about 500 to about 20,000 standard cubic feet per barrel of hydrocarbon feed, preferably from about 2,000 to about 10,000.

Preferred operating conditions are a temperature in the range of from about 500 to 600F., a pressure in the range of from about 2,000 to 3,000 psig, an LHSV of from about 0.3 to about 0.7, and a hydrogen supply rate of about 2,000 to about 10,000 standard cubic feet per barrel of hydrocarbon feed.

Particularly preferred conditions are a temperature of about 550F., a pressure of about 2,400 psig, an LHSV of about 0.5, and a hydrogen supply rate of about 8,000.

Hydrogenation Catalyst The hydrogenation catalysts contemplated as useful herein for stabilizing the lube oil product obtained from the hydrocracking zone are those having a Group VIII noble metal component together with a refractory oxide support. Metals contemplated as useful include ruthenium, rhodium and palladium, as well as osmium, iridium and platinum. Preferred metals are platinum and palladium, more preferably palladium. The refractory oxide supports may include silica-alumina, silicaalumina-zirconia, etc.

A preferred hydrogenation catalyst is palladium or platinum deposited on a silica-alumina support having an alumina content of from 40 to 95 weight percent, preferably 50 to percent. That is, the alumina/silica weight ratio is 40/60 to /5, preferably 50/50 to 80/20. The palladium or platinum is present in an amount of from about 0.2 to about 10.0 weight percent, preferably 0.2 to 1.0 percent of the composite. The catalyst with the palladium or platinum in the oxide form is subjected to a heat treatment in a dry nonreducing gas at a temperature in the range from 1,200 to 1,800 F. Palladium is particularly' preferred as the hydrogenation component. The silicaalumina support is preferably prepared by cogellation of the silica and alumina with the palladium or platinum impregnated on the dried or undried cogel.

The effluent from the hydrocracking zone which is fed to the hydrogenationzone preferably contains no more than about 50 ppm by weight of nitrogen and no more than about 50 ppm by weight of sulfur. Prefera- A range of lubricating oils is obtained from the subject process. As indicated above, the feedstock to the hydrocracking zone boils over a range which may extend from about 700 to 1,200F. and must extend over a range of at least about 100F. The product obtained from the hydrogenation zone covers a range of lube stocks boiling over a range of at least about 100F. These may range from light neutrals having SUS viscosities at 100F. of from about 100 to 200 and boiling in the range of 700 to 900F., through medium neutral lubricating oils having boiling ranges in the range of from about 850 to l,050F., up to and including bright stocks boiling in the range of from about l,000 to 1,200F.

It is recognized that lubricating oils are not normally specified on the basis of boiling range, the primary criteria being viscosity and viscosity index. Generally, however, lubricating oils boil essentially entirely above 550F., and more generally above 650F. or even 700F., and as high as about 1,200F.

The term lube oil" or alternatively lubricating oil has been used herein. It should be recognized that the process of the subject invention produces material which might also be referred to as lube oil base stock. Lubricating oils in use today are generally complex compositions formulated with a range of additives such as antioxidants, extreme pressure agents, VI improvers, corrosionvinhibitors, detergents, dispersants, and the like.

The term good UV stabilityf means that before a level of flock appears in the hydrocracked oil which is unsatisfactory (moderate flock of the level found in mid-Continent solvent refined 100 neutral oil after about 1 1 hours when the oil is exposed to UV light, as described in the example) will be at least about 6 hours. These UV stability values for the lube oils of this invention compare favorably with a commercial West Coast solvent-refined I26 neutral oil having 5.1 hours of stability before a fine light flock appears and 7.0 hours of stability before a moderate flock appears. The oxidation stability, as measured by the test also described in the example, will be at least about 6 hours, preferably at least 10 hours.

It should be noted that the hydrocracked stabilized lube oils of the subject invention may be dewaxed using conventional techniques, if required. Such dewaxing may be carried out by either catalytic means or by solvent extraction processes.

This invention will be better understood by reference to the following example, which is offered by way of i1- lustration and not by way of limitation. This example compares lube oils prepared by a process of the general type described by the prior art and lube oils prepared by the process of the subject invention.

EXAMPLE 1 California deasphalted oil having the inspection data shown in Table 1 below was hydrocracked under the conditions shown in Table 1.

TABLE I Feed Inspection Hydrocracking Conditions TABLE l-Continued Feed Inspection Hydroc racking Conditions Start to 10% by Volume 686/849F. 30 to 50% by Volume 944/101 1F.

, Normally, the conditions are one atmosphere of pure oxygen at 340F. and one reports the hours to absorption of 1000 ml. vof O by 100 g. of oil. In the Oxidator BN test, 0.8 ml. of catalyst is used per 100 grams of oil and an additive package is included in the oil. The catalyst is a mixture of soluble metal-naphthenates simulating the average metal analysis of used crankcase oils. The additive package is millimoles of zinc bis polypropylene phenyl dithio phosphate per grams of oil. The oxidator BN measures the response of a lubricating oil in a simulated application.

The UV stability of the lube oil is measured by placing the oil samples in glass bottles 16 mm in diameter, 50 mm high and having a wall thickness of about 1 mm. The caps are loosened and the bottles are placed in a circular rack surrounding a 450 watt cylindrical Hanovia Mercury vapor lamp (Product of Conrad Precision Industries, Inc.) mounted in a vertical position. The distance alonga line perpendicular to the longitudinal axis of' the lamp extending from the longitudinal axis of the lamp to the longitudinal axis of the bottle is 2 /2 inches. The sample is observed over a period of time. At the first appearance of a light fine floc (small particles suspended in the oil), the time to formation of the floc is noted. The additional time until a moderate floc or heavy floc is also noted. In some cases of poor stability a ring of precipitated particles is observed clinging to the walls of the bottle.

A portion of the 700F.+ product described above was hydrogenated over a noble metal hydrogenation catalyst containing 0.4 percent palladium on a silicaalumina (40-60 weight ratio of silica to alumina) support wherein the catalyst had been heat treated in substantially dry nonreducing gas at a temperature of about 1,400F. Run conditions and inspections of the resulting product are shown in Table 11 below.

TABLE 11 Product Inspection I Hydrogenation Conditions (After Dewaxing) 2400 psig A second portion of the 700 F.+ product described above was hydrogenated over a prior art catalyst hav- 7 ing the properties set forth in Table III below. The

, properties of the resulting products as well as operating conditions are also shown in Table Ill.

8 2. a hydrogenating component comprising a noble metal; to produce a lubricating oil having good UV stability.

AS can be seen matte"dstreatstmbs jagar 1 the noble metal catalyst in the hydrogenation step resulted in a product havingsignificantly improved UV stabilization and oxidator BN stabilization. Stable oil was still being produced with this noble metal catalyst when the 2,400 psig test run was ended at 850 hours, I It is apparent that many widely different embodiments of the invention may be made without departing from the scope and spirit thereof; and, therefore, it is not intended to be limited except as indicated in the appended claims.

Whatis claimed is: 1. A two-stage process for producing a lubricating oil having good UV stability from a hydrocarbon feedstock boiling in the range 700 to l,200F., which comprises: V A. catalytically hydrocracking said feedstock in a hydrocracking zone at hydrocracking conditions at a per pass conversion of at least 20 volume percent to materials boiling belowthe initial boiling point of said feedstock; and

cataiytically 'hydrogenating in a hydrogenating zone at least a-substantial portion of the effluent from said hydrocracking zone boiling in the range 550-1,200F. at hydrogenation conditions including':

a tanpmtuiaor tro rn i00 to 700l 'i Y a pressure of from 1,500 to 5,000 psig, an LHSV of from 0.2 to 1.5, and a hydrogen supply rate of from 500 to 20,000

SCF/barrel of said effluent fed to said hydrogenating zone,

inthe presence of 'Yhy'cTr'ogenatiofi catalyst EUfip'rTs ing l. a refractory oxide, and

atis es essential; martin ale hydrogenation conditions include a temperature of from 500 to 600F., a pressure of from 2,000 to 3,000 psig, an LHSV of from 0.2 to 1.0, and a hydrogen supply rate of from 2,000 to 10,000 SCF/barrel of said effluent fed to said hydrogenating zone.

3. The process of claim 1 wherein said hydrocarbon feedstock is selected from the class consisting of heavyrun gas oil, deasphalted oil, vacuum gas oil and atmo- 6. The process of claim 5 wherein said hydrogenation I conditions include a temperature in the range of 500 to 600F., a pressure in the range of from about 2,000 to 3,000 psig, an LHSV of from about 0.2 to about 1.0, and a hydrogen supply rate of from about 2,000 to 10,000 SCFper barrel of hydrocarbon feed to said hydrogenation zone.

7. The process of claim 6 wherein said hydrogenation catalyst has a silica to alumina weight ratio of 40 to 60 and contains 0.4 weight percent palladium.

8. The process of claim 7 wherein said lubricating oil has,after dewaxing, a UV stability of at least 9 hours. 7 9. The process of claim 6 wherein said hydrogenation catalyst was subjected to said heat treatment at a temperature in the range of 1,200 to 1,800

10. The process of claim 7 wherein said hydrogenation catalyst was subjected to said heat treatment at:

about 1 ,400F.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2960458 *Aug 2, 1957Nov 15, 1960Gulf Research Development CoProcess for preparing a multi-grade lubricating oil and product
US3487005 *Feb 12, 1968Dec 30, 1969Chevron ResProduction of low pour point lubricating oils by catalytic dewaxing
US3530061 *Jul 16, 1969Sep 22, 1970Mobil Oil CorpStable hydrocarbon lubricating oils and process for forming same
US3629096 *Jun 21, 1967Dec 21, 1971Atlantic Richfield CoProduction of technical white mineral oil
US3666657 *Nov 16, 1970May 30, 1972Sun Oil Co PennsylvaniaOil stabilizing sequential hydrocracking and hydrogenation treatment
US3732156 *May 20, 1971May 8, 1973British Petroleum CoProduction of lubricating oils
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3962071 *May 13, 1974Jun 8, 1976Toa Nenryo Kogyo Kabushiki KaishaProcess for producing lubricating oils
US4162962 *Sep 25, 1978Jul 31, 1979Chevron Research CompanyNickel, cobalt, molybdenum, and/or tungsten metals, oxides, or sulfides on alumina
US4263127 *Jan 7, 1980Apr 21, 1981Atlantic Richfield CompanyWhite oil process
US4283271 *Jun 12, 1980Aug 11, 1981Mobil Oil CorporationHydrorefining, hydrogenation catalysts
US4283272 *Jun 12, 1980Aug 11, 1981Mobil Oil CorporationManufacture of hydrocracked low pour lubricating oils
US4574043 *Nov 19, 1984Mar 4, 1986Mobil Oil CorporationCatalytic process for manufacture of low pour lubricating oils
US4627908 *Oct 24, 1985Dec 9, 1986Chevron Research CompanyProcess for stabilizing lube base stocks derived from bright stock
US4657661 *Dec 11, 1985Apr 14, 1987Chevron Research CompanyProcess for improving the storage stability and bulk oxidation stability of lube base stocks derived from bright stock
US4747932 *Apr 10, 1986May 31, 1988Chevron Research CompanyThree-step catalytic dewaxing and hydrofinishing
US4941967 *Jan 27, 1987Jul 17, 1990Kinetics Technology International B.V.Purification, distillation, vacuum evaporation of lubeoils
US5026472 *Dec 29, 1989Jun 25, 1991UopUpgrading heavy feedstock to aromatic hydrocarbons, kerosene, diesel and jet fuels
US5059299 *May 11, 1990Oct 22, 1991Exxon Research And Engineering CompanyMethod for isomerizing wax to lube base oils
US5139647 *Aug 14, 1989Aug 18, 1992Chevron Research And Technology CompanyProcess for preparing low pour middle distillates and lube oil using a catalyst containing a silicoaluminophosphate molecular sieve
US5158671 *Dec 13, 1988Oct 27, 1992Exxon Research And Engineering CompanyHydrorefining by treating with group 8 metal on support
US5246566 *Jun 29, 1992Sep 21, 1993Chevron Research And Technology CompanyWax isomerization using catalyst of specific pore geometry
US5382349 *Sep 14, 1992Jan 17, 1995Idemitsu Kosan Co., Ltd.Demetallization, desulfurization, denitrogenating, catalytic cracking
US5393408 *Apr 30, 1992Feb 28, 1995Chevron Research And Technology CompanyProcess for the stabilization of lubricating oil base stocks
US5453176 *Oct 13, 1993Sep 26, 1995Narloch; Bruce A.Process for preparing white oil containing a high proportion of isoparaffins
US6030921 *Jun 26, 1997Feb 29, 2000Chevron U.S.A. Inc.Increased sulfur tolarences
US6110879 *Oct 15, 1998Aug 29, 2000Chevron U.S.A. Inc.Hydrocracker-derived, highly naphthenic, low viscosity index mineral oil prepared by catalytic dewaxing and hydrofinishing a bottoms fraction; polymethacrylate polymer(s); and performance additives; low and high temperature performance
US6136181 *Jun 26, 1997Oct 24, 2000Chevron U.S.A. Inc.Hydrocracking petroleum feedstock using catalyst comprising oxide-supported platinum-palladium alloy, desulfurization and dewaxing to yield hydrofinished lubricant
US6143940 *Dec 30, 1998Nov 7, 2000Chevron U.S.A. Inc.Method for making a heavy wax composition
US6150577 *Dec 30, 1998Nov 21, 2000Chevron U.S.A., Inc.Method for conversion of waste plastics to lube oil
US6187725Oct 15, 1998Feb 13, 2001Chevron U.S.A. Inc.Process for making an automatic transmission fluid composition
US6274029Dec 16, 1999Aug 14, 2001Exxon Research And Engineering CompanySynthetic diesel fuel and process for its production
US6296757Oct 17, 1995Oct 2, 2001Exxon Research And Engineering CompanyOxidation resistance; antiknock; fischer-tropsch catalysis; hydrotreating; distillate heavier than gasoline
US6309432Jun 16, 1998Oct 30, 2001Exxon Research And Engineering CompanySynthetic jet fuel and process for its production
US6337010Aug 2, 1999Jan 8, 2002Chevron U.S.A. Inc.Hydrocracking the heavy hydrocarbon feedstock, separating waxy intermediate, dewaxing in isomerization zone, stabilizing product, separating base oil from hydrogen, routing hydrogen, recovering stabilized oil
US6369286Mar 2, 2000Apr 9, 2002Chevron U.S.A. Inc.Conversion of syngas from Fischer-Tropsch products via olefin metathesis
US6441263Jul 7, 2000Aug 27, 2002Chevrontexaco CorporationEthylene manufacture by use of molecular redistribution on feedstock C3-5 components
US6503956Jan 11, 2001Jan 7, 2003Chevron U.S.A. Inc.Determination of heteroatom content in Fischer-Tropsch wax
US6518473Jan 11, 2001Feb 11, 2003Chevron U.S.A. Inc.Subjecting C5-11 olefin-containing feedstock to dimerization using nickel ZSM-5 catalyst to give first product where majority of olefins in olefinic feed are converted to c10-22 hydrocarbons, subjecting to additional dimerization step
US6531515Feb 20, 2001Mar 11, 2003Chevron U.S.A. Inc.Isolating a methane-rich stream from well gas from a natural gas sources for use in hydrocarbon synthesis in a first separation zone, and treating in hydroconversion reaction zone to remove sulfur compounds
US6562230Dec 22, 1999May 13, 2003Chevron Usa IncMolecular averaging of various feedstocks to form lube oils
US6566411Feb 20, 2001May 20, 2003Chevron U.S.A. Inc.Removing sulfur from hydroprocessed fischer-tropsch products
US6566569Jun 23, 2000May 20, 2003Chevron U.S.A. Inc.Contacting a C5 containing paraffinic feedstock with a hydrogenation/dehydrogenation catalyst and an olefin metathesis catalyst to dehydrogenate the paraffins to olefins, metathesizing, and rehydrogenating
US6605206Feb 8, 2002Aug 12, 2003Chevron U.S.A. Inc.Process for increasing the yield of lubricating base oil from a Fischer-Tropsch plant
US6607568Jan 26, 2001Aug 19, 2003Exxonmobil Research And Engineering CompanySynthetic diesel fuel and process for its production (law3 1 1)
US6635171Jan 11, 2001Oct 21, 2003Chevron U.S.A. Inc.Process for upgrading of Fischer-Tropsch products
US6669743Feb 27, 2001Dec 30, 2003Exxonmobil Research And Engineering CompanySynthetic jet fuel and process for its production (law724)
US6686511Jan 11, 2001Feb 3, 2004Chevron U.S.A. Inc.Separating an olefinic feedstock into light and medium olefinc fractions, contacting light fraction with oligomerization catalyst to produce first product, contacting medium fraction with second catalyst produce second product
US6700027Aug 7, 2002Mar 2, 2004Chevron U.S.A. Inc.Process for the oligomerization of olefins in Fischer-Tropsch condensate using chromium catalyst and high temperature
US6702937Feb 8, 2002Mar 9, 2004Chevron U.S.A. Inc.Process for upgrading Fischer-Tropsch products using dewaxing and hydrofinishing
US6706936Jan 11, 2001Mar 16, 2004Chevron U.S.A. Inc.Dehydrogenating paraffinic feedstock to produce an olefinic feedstock, which is catalytically oligomerized to produce a product of higher number average molecular weight than the feedstock, separating the heavy fraction as lube base stock
US6774272Apr 18, 2002Aug 10, 2004Chevron U.S.A. Inc.Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
US6806237Sep 27, 2001Oct 19, 2004Chevron U.S.A. Inc.Stability to oxidation both during storage and during use in engines or other applications, even in the substantial absence of anti-oxidant additives and oxidation promoters
US6822126Apr 18, 2002Nov 23, 2004Chevron U.S.A. Inc.Pyrolysis, hydrotreating, catalytic isomerization dewaxing and distillation
US6822131Nov 17, 1997Nov 23, 2004Exxonmobil Reasearch And Engineering CompanyFischer-tropsch wax is separated into heavier and lighter fractions; hydroisomerization
US6841711Jan 11, 2001Jan 11, 2005Chevron U.S.A. Inc.Process for making a lube base stock from a lower molecular weight feedstock in a catalytic distillation unit
US6864398Dec 28, 2001Mar 8, 2005Chevron U.S.A. Inc.Conversion of syngas to distillate fuels
US6900366Aug 23, 2002May 31, 2005Chevron U.S.A. Inc.Purifying substantially paraffinic product in a purification process to remove oxygen, nitrogen, and other impurities; monitoring nitrogen content of purified product; adjusting the conditions of purification to increase nitrogen removal
US6908543Oct 23, 2000Jun 21, 2005Chevron U.S.A. Inc.Method for retarding fouling of feed heaters in refinery processing
US6939999Apr 29, 2003Sep 6, 2005Syntroleum CorporationIntegrated Fischer-Tropsch process with improved alcohol processing capability
US6962651Mar 10, 2003Nov 8, 2005Chevron U.S.A. Inc.a paraffinic feedstock is hydroisomerized over a medium pore size molecular sieve catalyst under hydroisomerization conditions, separating isomerized product into a heavy and a light fractions, dehazing heavy fraction
US6982355Aug 23, 2004Jan 3, 2006Syntroleum Corporationdehydration of FT synthesis product; isomeric distillation of olefins; dehydrogenation of paraffins; distillation and dehydration of primary alcohols; low temperature, high yield
US7018525Oct 14, 2003Mar 28, 2006Chevron U.S.A. Inc.have low pour points and extremely high viscosity indexes; producing commercial lubricants with the lubricant base oils comprising paraffinic hydrocarbon components with optimized branching from waxy feeds.
US7166643Mar 8, 2004Jan 23, 2007Chevron U.S.A. Inc.Fischer Tropsch process where both hydrocarbons and high purity hydrogen are produced; use of a reverse-selective membrane to provide a hydrogen-containing retentate which is passed through a water gas shift reactor, and hydrogen-containing stream is passed through a pressure swing adsorption unit
US7173160Jul 16, 2003Feb 6, 2007Chevron U.S.A. Inc.From petroleum feedstocks; hydrocracking; recovering, purification
US7198710Mar 10, 2003Apr 3, 2007Chevron U.S.A. Inc.Lubricants from catalytic hydroisomerization for oils to get pour point
US7252753Dec 1, 2004Aug 7, 2007Chevron U.S.A. Inc.Dielectric fluids and processes for making same
US7273834May 19, 2004Sep 25, 2007Chevron U.S.A. Inc.Gear oils, low temperature properties
US7374657Dec 23, 2004May 20, 2008Chevron Usa Inc.Production of low sulfur, moderately aromatic distillate fuels by hydrocracking of combined Fischer-Tropsch and petroleum streams
US7374658Apr 29, 2005May 20, 2008Chevron CorporationMedium speed diesel engine oil
US7384536May 19, 2004Jun 10, 2008Chevron U.S.A. Inc.Blending a Group II and/or III base oil, a pour point depressant and a Fischer-Tropsch derived lubricant base oil containing less than 0.30 weight % aromatics and greater than 5 % molecules with cycloparaffinic functionality; blend has a Brookfield viscosity at -40 degrees C. of less than 100,000 cP.
US7390395Jun 16, 2006Jun 24, 2008Saleh ElomariHydrocarbon conversion using molecular sieve SSZ-56
US7390763Oct 31, 2003Jun 24, 2008Chevron U.S.A. Inc.Improved isomerization selectivity; higher lube product yield and lower gas production; has less defined crystallinity, altered Argon adsorption ratios, increased external surface area and reduced cracking activity over other intermediate pore size molecular sieves used for isomerization
US7405243May 13, 2004Jul 29, 2008Chevron U.S.A. Inc.Fischer Tropsch process yields both hydrocarbons and high purity hydrogen; involves use of a reverse-selective membrane to provide a hydrogen-containing retentate which is passed through a water gas shift reactor, and hydrogen-containing stream is passed through a pressure swing adsorption unit
US7435328Jan 24, 2008Oct 14, 2008Chevron U.S.A. Inc.Process for making medium-speed diesel engine oil
US7468126Aug 24, 2006Dec 23, 2008Chevron U.S.A., Inc.Preparing small crystal SSZ-32 and its use in a hydrocarbon conversion process
US7473345Dec 2, 2004Jan 6, 2009Chevron U.S.A. Inc.Processes for making lubricant blends with low Brookfield viscosities
US7473346Jan 24, 2008Jan 6, 2009Chevron U.S.A., Inc.Method for using medium-speed diesel engine oil
US7476645Mar 3, 2005Jan 13, 2009Chevron U.S.A. Inc.Synthesizing a Fischer-Tropsch oil containing less than or equal to 6 weight % molecules with monocycloparaffinic fuictionality and less than 0.05 weight % aromatics and blending it with a poly-alpha-olefin lubricant base oil with a kinematic viscosity at 100 degrees C. of 30-150 cSt
US7510674Dec 1, 2004Mar 31, 2009Chevron U.S.A. Inc.Dielectric fluids and processes for making same
US7527778Jun 7, 2007May 5, 2009Chevron U.S.A. Inc.Zinc-containing zeolite with IFR framework topology
US7569507Aug 24, 2006Aug 4, 2009Chevron U.S.A., Inc.Producing dewaxing, isomerization catalysts having less defined crystallinity, reduced micropore volume, increased surface area and reduced cracking activity; controlling alumina to silica ratio; increases yield, decreases light end production
US7572361Dec 2, 2004Aug 11, 2009Chevron U.S.A. Inc.Lubricant blends with low brookfield viscosities
US7578926 *Apr 20, 2005Aug 25, 2009Chevron U.S.A. Inc.Process to enhance oxidation stability of base oils by analysis of olefins using Â1H NMR
US7622032Dec 21, 2006Nov 24, 2009Chevron U.S.A. Inc.Hydrocarbon conversion using molecular sieve SSZ-74
US7655605Feb 14, 2006Feb 2, 2010Chevron U.S.A. Inc.Processes for producing extra light hydrocarbon liquids
US7745502Dec 13, 2006Jun 29, 2010Chevron U.S.A. Inc.Hydrogen recovery from hydrocarbon synthesis processes
US7763161May 19, 2006Jul 27, 2010Chevron U.S.A. Inc.Fischer-Tropsch synthesis on syngas to provide a product stream; isolating from said product stream a paraffinic wax feed free of oxygen, nitrogen and sulfur; hydroisomerization dewaxing in presence of a specific pore size molecular sieve using noble metal hydrogenation component, hydrofinishing
US7776206Aug 14, 2008Aug 17, 2010Chevron U.S.A. Inc.Separating the heavy petroleum residuum-derived stream into a heavy fraction and a light fraction; hydrocracking the light fraction under lube hydrocracking in the presence of a hydrocracking catalyst and hydrogen; hydrodesulfurization; hydrodenitrogenation; to suitable levels for hydroisomerization
US7951287Dec 23, 2004May 31, 2011Chevron U.S.A. Inc.Production of low sulfur, moderately aromatic distillate fuels by hydrocracking of combined Fischer-Tropsch and petroleum streams
US7956018Dec 10, 2007Jun 7, 2011Chevron U.S.A. Inc.Lubricant composition
US7981270Feb 14, 2006Jul 19, 2011Chevron U.S.A. Inc.Extra light hydrocarbon liquids
US8088961Dec 27, 2007Jan 3, 2012Chevron U.S.A. Inc.Process for preparing a pour point depressing lubricant base oil component from waste plastic and use thereof
US8188019Jun 8, 2009May 29, 2012Chevron U.S.A. IncAliphatic acyclic triesters, for example, octadecane-1,9,10-triyl trihexanoate; reducing an unsaturated fatty acid to unsaturated fatty alcohol, epoxidation, ring opening to form triol, and esterification
US8372368Sep 14, 2012Feb 12, 2013Chevron U.S.A. Inc.Synthesis of a crystalline silicoaluminophosphate
US8431014Oct 6, 2009Apr 30, 2013Chevron U.S.A. Inc.Process and catalyst system for improving dewaxing catalyst stability and lubricant oil yield
US8475648Jun 14, 2011Jul 2, 2013Chevron U.S.A. Inc.Catalytic processes and systems for base oil production from heavy feedstock
US8480880Jan 18, 2011Jul 9, 2013Chevron U.S.A. Inc.Process for making high viscosity index lubricating base oils
US8540869Dec 10, 2007Sep 24, 2013Chevron U.S.A. Inc.Method for forming finished lubricants
US8586519Aug 26, 2009Nov 19, 2013Chevron U.S.A. Inc.Multi-grade engine oil formulations comprising a bio-derived ester component
US8617387Jun 14, 2011Dec 31, 2013Chevron U.S.A. Inc.Catalytic processes and systems for base oil production from light feedstock
US8747650Dec 21, 2006Jun 10, 2014Chevron Oronite Technology B.V.Engine lubricant with enhanced thermal stability
US8790507Jun 14, 2011Jul 29, 2014Chevron U.S.A. Inc.Catalytic processes and systems for base oil production using zeolite SSZ-32x
DE2924567A1 *Jun 19, 1979Apr 3, 1980Chevron ResVerfahren zur herstellung von uv-stabilen schmieroelen
DE2924567C2 *Jun 19, 1979Nov 15, 1984Chevron Research Co., San Francisco, Calif., UsTitle not available
DE112008003541T5Nov 20, 2008Dec 9, 2010Chevron U.S.A. Inc., San RamonVerfahren zur Herstellung einer Pourpunkt erniedrigenden Schmierbasisölkomponente aus Kunststoffabfall und deren Verwendung
DE112009002718T5Nov 12, 2009Aug 23, 2012Chevron U.S.A. Inc.Synthese von Diester-Schmierstoffen aus enzymgesteuert gewonnenen Epoxiden
DE112010004112T5Oct 18, 2010Sep 13, 2012Chevron U.S.A. Inc.Formulieren einer dichtungsflüssigkeit anhand von gas-to-liquid-basierten ausgangsmaterialien
EP1688476A1Jan 31, 2006Aug 9, 2006Chevron Oronite Company LLCLubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
EP1927647A1Nov 29, 2007Jun 4, 2008Chevron Oronite Company LLCTraction coefficient reducing lubricating oil composition
EP1947164A1Dec 19, 2007Jul 23, 2008Chevron Oronite Technology B.V.Engine lubricant with enhanced thermal stability
EP2085360A1Mar 26, 2008Aug 5, 2009Chevron U.S.A. Inc.Synthesis of a crystalline silicoaluminophosphate
EP2314664A1Apr 5, 2007Apr 27, 2011Chevron U.S.A. Inc.Gear lubricant with a base oil having a low traction coefficient
WO2012134688A1Feb 28, 2012Oct 4, 2012Exxonmobil Chemical Patents Inc.Polyalphaolefins by oligomerization and isomerization
WO2013154671A1Feb 13, 2013Oct 17, 2013Chevron U.S.A. Inc.Processes using molecular sieve ssz-87
WO2013169367A1Mar 14, 2013Nov 14, 2013Chevron U.S.A. Inc.Process for making high vi lubricating oils
Classifications
U.S. Classification208/58, 208/264, 208/18
International ClassificationC10G45/52, C10G65/12
Cooperative ClassificationC10G2400/10, C10G45/52
European ClassificationC10G45/52