Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3852878 A
Publication typeGrant
Publication dateDec 10, 1974
Filing dateJan 2, 1973
Priority dateJan 29, 1972
Also published asDE2302429A1
Publication numberUS 3852878 A, US 3852878A, US-A-3852878, US3852878 A, US3852878A
InventorsMunro G
Original AssigneeAmp Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Coil wound elastomer connector
US 3852878 A
Abstract
The invention concerns a method of making a connector body comprising a multiplicity of spaced resilient conductive springs disposed within a matrix of elastomeric insulating material defining a body having spaced surface parts between which the springs extend in non-rectilinear paths and at which ends of the springs are exposed. According to the method at least one wire is wound into a coil of spaced turns and the coil is potted in a mass of elastomer. The resulting body is cut through the coil turns to present the spaced surface parts. To facilitate coil formation and potting, the wire may be wound with elastomer strip or sheet spacing and the composite coil then cured to form a bond between contiguous elastomer surfaces and define a coherent matrix. Alternatively the elastomer may be injection or vacuum molded in the fluent state.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

mired States Patent [191 Munro I [54] con. WOUND ELASTOMER CONNECTOR [75] Inventor: Geoffrey Hector James Munro,

London, England I [73] Assignee: AMP Incorporated,-Harrisburg, Pa. 22 Filed: Jan. 2, 1973 [21] Appl. No.: 320,030

[30] Foreign Application Priority Data Jan. 29, 1972 Great Britain 4327 72 [52] US. Cl 29/629, 29/630 R, 317/101 CE, l 339/17 LM [51] vlint. Cl H02g 15/00 [58] Fieldof Search 339/17 E, 198 E, 17 C,

339/17 M, 17 LM,"59; 2 9/605 628, 629, 630 R; 156/171, 178, 184, 193; 174/35 GC; 317/101 CE, 101 CM, 101 CC [56] References Cited UNITED STATES PATENTS 2,195,233 3/1940 Boyer 264/272 2,674,644 4/1954 Goodloe... 174/35 GC 2,732,614 1/1956 Shower. 29/155.55 3,126,440 3/1964 Goodloe.. 174/35 GC 3,425,021 l/1969 Fow et al. 29/629 3,714,706 2/1973 Reizman et al. 29/629 [451 Dec. 10, 1974 Antier et a1 29/604 Dieterich 29 1629 Primary Examiner-C. W. Lanham Assistant Examiner-James R. Duzan Attorney, Agent, or Firm-William J. Keating; Frederick W. Raring; Jay L. Seitchik [5 7] ABSTRACT The invention concerns a method of making a connector body comprising a multiplicity of spaced resilient conductive springs disposed within a matrix of elastomeric insulating material defining a body having spaced surface parts between which the springs extend in non-rectilinear paths and at which ends of the springs are exposed. According to the method at least one wire is wound into a coil of spaced turns and the coil is potted in a mass of elastomer. The resulting body is cut through the coil turns to present the.

spaced surface parts. To facilitate coil formation and potting, the wire may be wound with elastomer strip or sheet spacing andthe composite coil then cured to form a bond between contiguous elastomer surfaces anddefine a coherent matrix. Alternatively the elastomer may be injection or vacuum molded in the fluent state.

5 Claims, 20 Drawing Figures sues-1 10F 4 PATENTED DEC 101974 I COIL WOUND ELASTOMER ()ONIIECTOR This invention concerns electrical connectors and their method of manufacture.

Generally connectors comprise metal contact portions of interfitting male and female forms each having means for connection to a wire and being releasably mountable in an insulating housing. The housing may contain several contacts arranged for respective connection with complementary contacts in a second housing. Certain disadvantageous limitations have been found with such connectors. The trend to minaturization of assemblies, the extensive use of integrated circuits and the construction of complex assemblies such as computers from small circuit modules has further revealed the need for an alternative to the traditional forms of connector which is economic to use and of wide application.

There has been proposed in the US. publication Automotive Industries of Dec. 15, 1971, a contact material comprising a conductive elastomer which may be spongy or semi-rigid. In one application wire ends are mounted within respective plastics sleeves and pressed against a diaphragm comprising an elastomer frame containing cells of the conductive elastomer in compressed condition. The'cells are larger than the wire ends which are pressed against respective cells. The cells present a large number of contact points to the wire ends and a large number of parallel conductive paths through the cell. I

The contact material comprises amass of fine metallic or conductive particles suspended in the elastomer matrix such that on subjection to pressure, particles are urged .into contact along pressure 'linesto define conductive paths.

The present invention concerns a different form of material comprising abody of elastomeric insulating matrix containing a plurality of spaced resilient conductors extending between spaced surface parts of the body through non-rectilinear paths. An example of such a material is disclosed in German Offenlegenschrift 2,-1 l9,'567 published Nov. 25, 1971.

According to the present invention a method of manufacturing such a connector material comprises winding a metal wire in ajcoil of axially spaced turns, potting the coil in a mass of elastomeric insulating material, cutting the resulting body throughthe turns of the coil to present a'bodyportion with cut surface parts at which are exposed a multiplicity of respective ends of segments of the coil turns. g The wire is-suitably of metal having-good spring characteristics as well as electrical performance and resistance to degradation, for example phosphor bronz'e or brassQThe 'wireshouldbe fine in relation to the contact areas with which it is to be used so that within a contact area a large number of contact points are exposed.

The coil may be wound in an appropriate shape to give the desired spring form to the wire segments, for examplethe segments may bearcuate with a-coil of circular section or chevron shaped from a coil or polygonal cross-section.

To facilitate dielectric separation of adjacent turns the coil maybe wound from pre-insulated wire. The insulation may for example be of varnish type in order to maintain a thin coating and allow close spacing of adjacent wire turns or a slippery insulating material such as polytetrafluorethylene to facilitate relative movement between adjacent segments in a cut body portion, and between the wire segments and their surrounding insulation.

The invention includes a body of contact material prepared by the above method and comprising a matrix of elastomeric insulating material containing a mass of segmental resilient conductors in spaced insulated rela tionship extending between spaced surface parts of the body.

In one embodiment each wire segment is contained within an individual sheath or coating of a fine insulating material and the mass of insulated wires is potted within the elastomeric matrix of a second insulating material.

The invention will now be described by way of exam pie with reference to the accompanying partly diagrammatic drawings, in which:

FIG. 1 is a perspective view of a circular section coil of wire potted in a block of elastomeric insulating material;

FIG. 2 is a perspective view of a connector portion cut from the potted coilof FIG. 1;

FIG. 3 is'an end view of an alternative connector portion cut from the potted coil of FIG. 1;

FIG. 4 is an endview of a connector portion cut from a potted coil similar to that of FIG. 1; but containing a coil of polygonal section;

FIG. 5 is a fragmentary-section of a connector portion similar to that of FIG. 1 and containing a coil of relatively thickly insulated wire;

FIG. 6 is a fragmentary view of part of a contact surface of a coil wound connector portion having discrete contact zones;

FIG. 7 is a perspective view of a coil being wound .according to one method;

FIG. 8 is a fragmentary section taken on the line 8-8 of FIG. 7;

FIG. 9 is a perspective view ofa coil being wound,ac-. cording to a second method; a I

FIG. 10 is a section taken on the line l0-10 of FIG. 9;

FIG. 11 is a perspective view of a coil according to a third method;

FIG. 12 is a fragmentary section taken on line 12-12 of FIG. 11; v

FIGS. 13 and 14 are fragmentary sections similar to that of FIG. 12 of coils wound according to fourth and fifth methods;

FIG. 15 is a perspective view of in a polygonal cross-section;

FIG. 16 is 'a fragmentary section similar to those of FIGS. vl2 to 14 of a coil wound according to a sixth method; i

FIG. 17 is a fragmentary sectional view of a coil being wound on 'a former to define discrete contact zones;

FIG. 18 is a fragmentary end view of the coil former of FIG. 17;

FIG. 19 is a section of a coil wound to a yet further method; and I FIG. 20 is an end view of a connector. made from the coil of FIG. 19 and applied to a pair of back to back printed circuit boards.

In FIG. 1 a cylindrical coil 1 of fine insulated wire is potted in a block'2 of elastomeric insulating material to contain and support the wire turns of the coil in insulated spaced relation in a matrix of elastomer insulating being wound a coilv being wound 3 material. Various coil winding and for this purpose are described below.

I The potted coil 1 may be cut into one or more connecto'r portions 3, for example as .shown in FIG. 2, where the coil has been cut in planes 4, 5 extending axially and radially of the coil to define a pair of orthogonal contact faces 4, 5. At each contact. face 4, 5 cut ends 6 of the wire turns 7 are disposed in closely spaced array in the elastomer matrix. After cutting, the contact surfaces 4, 5 are suitably cleaned to remove any conductive swarf and surface imperfections and the wire ends 6 are suitably then plated by known pulse plating techniques with contact material such as gold or tin to present contact tips which may project from the elastomer matrix surface 4, 5 and serve to facilitate and improve electrical contact with the wire ends 6. The cut wire turns 7 define arcuate springs supported in the elastomer matrix and extending between the contact faces 4, 5.

In the alternative connector portion 8 of FIG. 3 a coil is cut in a pair of spaced axially extending planes 9, 10 parallel to and equally spaced from a radial plane of the coil to define the connector portion 8. This presents a pair of parallel contact faces 9, 10 at which the wire ends'll are disposed in opposed identical pattern.

In the embodiment of FIG. 4, a coil has been wound about a polygonal former so that each cut wire segment 12- is of chevron formcomprising a pair of relatively inclined rectilinear portions l3, 14 compared with the I arcuately .curved segments inFIGS. 2 and 3'.

, In the embodiment of FIGS, the wire turns 15 are of insulated wire having a relatively thick coating 16 of insulationsuch as polytetra'fluoroethylene and potted within a surrounding matrix 17 of a morepliable elastomer such as a silicone rubber.

In the embodiment of FIG. 6 a coil is arranged as spaced windings 18 potted in an elastomer matrix and the connector'portion cut to present discrete contact zones 19 at spaced intervals within the elastomeric matrix 20.

Although the technique of coil winding is a highly developed art, it will be appreciated that there may be some practical difficulty in potting a closely wound coil into a coherent matrix of elastomer free from air spaces. Although elastomer such as silicon rubber may beprepared from liquid constituents and remain in the liquid phase during a curing period so as ,to be suitable for injection or vacuum molding, the flow passages through a Closely spaced 'coil particularly of fine wire may render difficult a satisfactory 'potting'in which coil turns are individually contained within the matrix.

In the coil winding method of FIG. 7, several wires 21 are wound in flat turns 22 at spaced intervals 23 axially of a cylindrical former 24 withan interleaving 25'of elastomeric sheet material. As shown in 'FIG. 8, the wire turns 22 tend to embed in the elastomeric layer 25 beneath them in the coil'and elastomerextrudes or deforms into the inter-wire spaces so that consecutive turns of the elastomer layer 25 contact each other through these spaces, for example at 29. After winding, the elastomer layers may be transformed into a coherent matrix by a method dependent on the characteristics of the elastomer being used.

' Generally an adhesive bond may be obtained between abutting elastomer surfaces by coating a surface or the-surfaces of the elastomer layer 25 with an appropriate adhesive before winding into the coil and after potting techniques" winding allowing the adhesive to set or cure. The radial pressure due to coil winding is sufficient to effect adequate bonding of the adhesive and the coil may be heated to effect or increase the rate of curing.

If the elastomer layer 25 is silicone rubber then the surfaces of the layer may be wetted by uncured silicone rubber in liquid state, curing being effected after winding by heat treatment to cause a coherent bond between the touching layers, in the spaces 23 between the wire turns 22.

If the elastomer layer is of partially cured butyl rubber, the coil winding pressure is sufficient with the application of heat to effect coherent bonding on curing. A similar effect may be obtained with other partly cured rubbers embodying a cross-linking agent such that bonding will be effected under the coil pressure and application of heat. So called B-stage polyurethane may be bonded in a similar way.

An alternative approach is to utilize an appropriate solvent to soften the surfaces of the elastomer layer before winding and after winding to evaporate the solvent by heating.

In the embodiment of FIGS. 9 and 10, a double layer coil 30 is wound in a similar manner to the single layer coil of FIGS. 7 and 8 but with sets 31, 32 of spaced wires and associated layers 33, 34 of elastomer started from diametrically opposite locations of the coil former 35. As seen in FIG. 10 the wires 31 of alternate layers of the composite winding are staggered longitudinally of the coil in relation to the wires 32 of intermediate layers so that in section a wire of any layer is aligned radially of the coil with the space between adjacent wires in the adjacent layer or layers. This accentuates the tendency for the elastomer layers 33, 34 to extrude into and completely fill the interwire spaces under the coil winding pressure and facilitates the formation of a coherent voidless matrix of elastomer encasing the wire turns.

In the embodiment of FIGS. 11 and 12 a multi-layer coil 35 is helically wound from a single wire 36 and an elastomer strip 37 arranged side-by-side so that adjacent turns of wire 36 are spaced axially of the coil by the elastomer strip 37. As seen in FIG. 12, successive windings 38, 39, 40, 41 are stepped axially of the coil so that wire turns 36 in one layer abut the elastomer strip 37 in the adjacent layers. Suitably the elastomer strip 37 is wider than the wire diameter so thatthe wire receiving spaces between adjacent turns of the elastomer strip 37 in one layer are totally bridged by the elastomer strip 37 in the adjacent layer.

In the embodiment of FIG. 13, which is similar to that of FIGS. 11 and 12, layers of the coil or successive windings 42, 43 are interleaved by layers 44 of elastomer sheet wound in a concentric coil. In this case the intervening coils of elastomer strip 37 need not be wider than the wire diameter and may allow closer pitching of the wire turns.

FIG. 14 shows a further embodiment in which a coil is woundv in successive layers 45, 46, 47 similar to that of FIGS. 11 and 12 but the elastomer strip 48 is of round cross-section of larger diameter than the intervening wire 49. This allows bridging of the inter-wire spaces by the alternate layers of the elastomer strip 48 which under the coil winding pressure will deform substantially to fill the spaces and maintain the wires in insulating spaced relation.

FIG. shows the winding technique disclosed in FIG. 7 applied to the winding of a polygonal section coil 50 on a polygonal former 51.

FIG. 16 shows a fragmentary coil section in which insulated wire 52 is wound in a multi-layer coil with the turns of adjacent layers 53, 54 and 54, 55 leading in opposite directions. Adjacent turns 56, 57 in each layer are spaced apart so that a multi-layer mesh is formed as viewed radially of the coil. With windings of this form there is adequate flow space 58, 59, 60 through the coil for effectivepotting of the turns 52 by injection or vacuum molding techniques using an uncured elastomer resin. To facilitate this the core 61 may be formed with flow passageways, not shown, through which the resin may pass for radial fiow through the coil mesh and filling of the coil spaces 58, 591, 60.

In the embodiment of FIGS. 17 and 18, a coil core 62 is provided with radially projecting spacers 63 arranged in axially spaced groups 64, the spacers 63 of each group 64 being circumferentially distributed around the core 62. First coils 65 are wound by any of the above described techniques between the adjacent groups 64 of spacers 63.0f spaced pairs of groups 64. The spaces 66 between adjacent first" coils 65 being filled with elastomer by winding or potting to the radial level of the first coils 65. Second coils 67are-then.

wound over these elastomer fillings and the corresponding spaces 68 over the first coils 65 are elastomer filled. In this way' a composite coil may be built up in which groups 65, 67 of closely spaced wire turns are spaced'apart in the elastomer matrix for manufacture of a connector of the kind shown in FIG. 6.

When cutting a connector matrix from the potted coil of FIGS. 17 and 18, the contact surfaces are cut in the spaces 69 between adjacent spacers 63 of the groups. As a result any spacer 63 remaining within a connector matrix can be contained within the matrix remote from the contact faces.

In winding a composite coil by this technique it is possible to shield the groups of wire turns from each other by disposing metal foils within the elastomer. For example a foil tape maybe wound above and below each coil layer and annular foil spacers provided at axially spaced intervals betweencoils. The annular foil spacers may replace the groups of spacers show in FIG. 18. I

In the embodiment of FIGS. 19 and' a coil 70, FIG. I), wound by-one of the-above techniques is provided with an'outer coil, layer 71 of spring wire of enhanced spring characteristics compared with the inner coil turns 72. After potting the composite coil a connector body is formed'by removing the coil core 73 and cutting a segment from the coil along the broken lines 74 todefine-a generally C-spring form having'a pair of spaced contact faces 75, 76 from which the ends 77 of the'outer spring turns are suitably cut back. In use as shown in FIG. 20 a pair of back to back printed circuit boards 78 having conductive paths 79 on their remote faces are clamped together between the contact faces 75 the mechanical clamping action is essentially due to the outer spring turns 71 which urge the contact faces against the boards 78 and the conductive paths 79.

In the embodiments described above, use has been made of a core for the coil winding which may be formed of cured elastomer for bonding in the matrix on potting the coil windings. Alternatively a rigid core may be used and removed after potting the coil.

Although the embodiments have been wound with conventional round wire, wire of any section may be used. Where an elongated section is used it may be arranged with its longer axis extending radially of the coil so that the winding segments are bent against their maximum stiffness.

What is claimed is:

'1. A method of manufacturing a connector body comprising a multiplicity of spaced resilient conductive springsdisposed within a matrix of elastomeric insulating material defining a body having spaced surface parts between which the springs extend in nonrectilinear'paths and at which ends of the springs are exposed, said method comprising the steps of winding a plurality of wires into individual coils of flat turns at spaced intervals axially of a cylindrical former, interleaving a sheet of elastomeric material in a manner so as to be common to the plurality of wires, said elastomeric material being wound in a coil disposed between each turn of the individual coils of said wires, bonding adjacent layers of the elastomeric sheet material through the interwire spaces to form a coherent matrix, and cutting through the coil turns to define the connector body with cut portions presenting the spaced surface parts.

2. A method as claimed in claim 1, in which two sets of several wires each associated with a respective sheet of elastomeric insulating material are wound into a composite coil as alternating layers, the wires of one set being staggered longitudinally of the coil in relation to those of the other set so that a wire in any layer lies between adjacent wires in the adjacent layer or layers.

3. A method as claimed in claim I, in which uncured I or partly cured elastomer is wound into the coil and curing is then completed to effect bonding between adjacent layers of the elastomer.

4. A method as claimed in claim 1, in which elastomer strip or sheet having an adhesive or solvent surface coating is wound into the coil and subsequently set or cured or evaporated to bond adjacent layers.

5. A method as claimed in claim 1, in which a vulcanizable elastomer is wound into the coil and is subsequently vulcanized to bond adjacent layers.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2195233 *Jul 8, 1938Mar 26, 1940Gen ElectricElectrical coil
US2674644 *Jan 22, 1952Apr 6, 1954Metal Textile CorpShielding and sealing gasket for electronic equipment
US2732614 *Jul 2, 1949Jan 31, 1956 shower
US3126440 *Jun 27, 1961Mar 24, 1964 Shielding and sealing gasket material
US3425021 *Jul 28, 1966Jan 28, 1969Rca CorpMethod and apparatus for connecting leads to a printed circuit board
US3714706 *Aug 21, 1970Feb 6, 1973Perkin Elmer CorpArray of conductors fixed through dielectric plate
US3739467 *May 17, 1971Jun 19, 1973Commissariat Energie AtomiqueMethod of fabrication of a wired magnetic memory plane
US3755892 *May 10, 1972Sep 4, 1973F DieterichPotentiometer contact springs
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3952411 *Sep 30, 1974Apr 27, 1976Litton Systems, Inc.Multi-wire wiper contact for potentiometers and other electromechanical devices and method for making same
US3982320 *Feb 5, 1975Sep 28, 1976Technical Wire Products, Inc.Method of making electrically conductive connector
US4008519 *Jan 30, 1976Feb 22, 1977Amp IncorporatedElastomeric connector and its method of manufacture
US4016647 *Oct 3, 1975Apr 12, 1977Amp IncorporatedMethod of forming a matrix connector
US4199209 *Aug 18, 1978Apr 22, 1980Amp IncorporatedElectrical interconnecting device
US4494818 *Sep 6, 1983Jan 22, 1985Allied CorporationMounting member for electrical contacts
US4593961 *Dec 20, 1984Jun 10, 1986Amp IncorporatedElectrical compression connector
US4686492 *Mar 4, 1985Aug 11, 1987Tektronix, Inc.Impedance match connection using multiple layers of bond wires
US4820170 *Jan 27, 1988Apr 11, 1989Amp IncorporatedLayered elastomeric connector and process for its manufacture
US4862588 *Jul 21, 1988Sep 5, 1989Microelectronics And Computer Technology CorporationMethod of making a flexible interconnect
US4871316 *Oct 17, 1988Oct 3, 1989Microelectronics And Computer Technology CorporationPrinted wire connector
US4991290 *Jun 16, 1989Feb 12, 1991Microelectronics And Computer TechnologyFlexible electrical interconnect and method of making
US5071359 *Apr 27, 1990Dec 10, 1991Rogers CorporationArray connector
US5101553 *Apr 29, 1991Apr 7, 1992Microelectronics And Computer Technology CorporationMethod of making a metal-on-elastomer pressure contact connector
US5104327 *Feb 28, 1991Apr 14, 1992Amp IncorporatedWire form socket connector
US5199162 *Jul 31, 1991Apr 6, 1993Berkenhoff GmbhMethod for the manufacture of a wire-electrode for spark-erosive cutting
US5245751 *Oct 25, 1991Sep 21, 1993Circuit Components, IncorporatedArray connector
US5274917 *Jun 8, 1992Jan 4, 1994The Whitaker CorporationMethod of making connector with monolithic multi-contact array
US5293017 *Oct 1, 1992Mar 8, 1994Motorola, Inc.Right angle elastomeric control switch
US5364276 *Apr 30, 1993Nov 15, 1994Nec CorporationMicropin array and production thereof
US5451169 *Jan 23, 1995Sep 19, 1995The Whitaker CorporationConnector with monolithic multi-contact array
US5460677 *May 24, 1994Oct 24, 1995Nec CorporationFilament winding production method for a micropin array
US5585138 *May 23, 1995Dec 17, 1996Nec CorporationBundling coated wire composed of metal core and insulation;fixing; cutting
US5788516 *Mar 30, 1995Aug 4, 1998Telefonaktiebolaget Lm EricssonElastomeric connector
US5890915 *May 17, 1996Apr 6, 1999Minnesota Mining And Manufacturing CompanyElectrical and thermal conducting structure with resilient conducting paths
US6245175Aug 6, 1997Jun 12, 2001Nitto Denko CorporationAnisotropic conductive film and production method thereof
US6403226May 17, 1996Jun 11, 20023M Innovative Properties CompanyElectronic assemblies with elastomeric members made from cured, room temperature curable silicone compositions having improved stress relaxation resistance
US6566608Apr 18, 2001May 20, 2003Nitto Denko CorporationProduction method of anisotropic conductive film and anisotropic conductive film produced by this method
US7176131Oct 12, 2004Feb 13, 2007Infineon Technologies AgElectronic component having at least one semiconductor chip and flip-chip contacts, and method for producing the same
US7231706Apr 3, 2003Jun 19, 2007Nitto Denko CorporationMethod of manufacturing an anisotropic conductive film
US8264854Nov 12, 2009Sep 11, 2012Roche Diagnostics Operations, Inc.Consumer electronic device with elastomeric mat
DE10215654A1 *Apr 9, 2002Nov 6, 2003Infineon Technologies AgElektronisches Bauteil mit mindestens einem Halbleiterchip und Flip-Chip-Kontakten sowie Verfahren zu seiner Herstellung
EP0918371A1 *Aug 6, 1997May 26, 1999Nitto Denko CorporationAnisotropic conductive film and method for manufacturing the same
EP1487059A1 *Mar 20, 2003Dec 15, 2004J.S.T. Mfg. Co., Ltd.Anisotropically conductive block and its manufacturing method
WO1995027323A1 *Mar 30, 1995Oct 12, 1995Ericsson Telefon Ab L MElastomeric connector
Classifications
U.S. Classification29/878, 439/85, 29/883, 439/723, 361/787
International ClassificationH01R43/00, H01R12/16, H01R12/00, H01R13/33, H01R13/02
Cooperative ClassificationH01R13/33, H01R43/007
European ClassificationH01R43/00E, H01R13/33