Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3852893 A
Publication typeGrant
Publication dateDec 10, 1974
Filing dateNov 19, 1973
Priority dateNov 19, 1973
Publication numberUS 3852893 A, US 3852893A, US-A-3852893, US3852893 A, US3852893A
InventorsJ Smrcka
Original AssigneeAlderson Res Lab
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Training dummy with simulated wound
US 3852893 A
Abstract
There is disclosed a limb for a first aid training dummy molded of an integral skin foam. The skin of the foam is shaped to define a simulated wound. Molded into the foam and extending from outside the limb and into communication with the simulated wound is a flexible plastic tube for supplying simulated blood. Aligned with the tube is a simulated bone which permits pressure to be applied to the wound or the tube to block the flow of simulated blood. The tube is molded into the limb by a technique which includes supporting the tube on a support wire during the molding process and thereafter removing the wire from the tube.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States atent 1191 1111 3,852,893 Smrcka Dec. 10, 1974 TRAINING DUMMY WITH SIMULATED Assignee:

WOUND Inventor:

Alderson Research Laboratories, Inc., Stamford, Conn.

Filed: Nov. 19, 1973 Appl. No.: 417,363

us. or 35/17, 264/DIG. 14 1m. (:1. 60% 23/30 Field Of Search 35/17; 264/DIG. 14

References Cited UNITED STATES PATENTS 4/1962 Alderson .1. 35/17 2/1972 Nuttall 264/DIG. 14 x Joseph G. Smrcka, Norwalk, Conn. I

Primary Examinerl-larland S. Skogquist Attorney, Agent, or FirmBuckles and Bramblett [5 7] ABSTRACT There is disclosed a limb for a first aid training dummy molded of an integral skin foam. The skin of the foam is shaped to define a simulated wound. Molded into the foam and extending from outside the limb and into communication with the simulated wound is a flexible plastic tube for supplying simulated blood. Aligned with the tube is a simulated bone which permits pressure to be applied to the wound or the tube to block the flow of simulated blood. The tube is molded into the limb by a technique which includes supporting the tube on a support wire duringthe molding process and thereafter removing the wire from the tube.

S'CIaims, 7 Drawing Figures PATENTED DEC 10 1914 saw 10$ 2 w\ l 11 i PATENTEDUEI: 10 m4 3.852.893

suzaranr I HWWIHIW "4!" mil WW BACKGROUND OF THE INVENTION Dummies of many types are available for teaching various first aid techniques. The members of such dummies are usually formed from a foamed plastic flesh material and are covered by a separate simulated skin. Some of these' dummies include simulated wounds formed in the skin to which is connected a plastic tubing which runs beneath the skin to a supply of simulated blood. The blood supply might be contained, for example, in a squeezable bulb manipulated by an instructor to simulate arterial or venous bleeding. A student is taught to control bleeding by pressure applied either to a pressure point or to the wound itself.

One disadvantage of the prior art construction is that the tube, lying just beneath the skin, does not have the same pressure characteristics as a human blood vessel lying beneath a layer of flesh. It will also be apparent that it would be desirable, if possible, to eliminate the necessity for separate skin and flesh portions. It has now become possible to achieve this objective by means ofa foam which forms an integral skin at the surface of the mold. One such foam FLEXIPOL FSF- 106 is available from Flexible Products Company, Marietta, Ga. However, use of such a foam eliminates the previous pathway beneath the skin for a resilient tube and introduces the problem of how to mold such a limb around a flexible. resilient tube such as a nylon tube.

Accordingly, it is a primary object of the present invention to provide a method for supporting a resilient flexible tube within a mold during a molding operation. Another object is to provide an integral skin foam body member for a first aid training dummy, having a simulated blood vessel molded therein. Other objects, features andadvantages will become apparent from the following description and appended claims.

SUMMARY OF THE INVENTION Formation ofa simulated wound in a training dummy which comprises providing a first concave mold member defining on its inner surface a raised, wound defining projection. Means are provided adjacent the projection for temporarily supporting the end ofa wire. A

relatively stiff support wire is passed through a length of resilient tubing with the first and second ends of the wire extending, respectively, from the first and second ends of the tubing. The wire-stiffened tubing is positioned in the first mold member with the first end of the wire supported by the temporary support means and the second ends of the wire and tubing positioned outside the mold member. Asecond concave mold member is positioned against the first to define therewith a mold cavity approximating the shape of a human body member. The cavity is filled with a curable molding composition and the composition is cured to form a simulated human body member. The support wire is then removed from the tubing.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is an elevational view of the arm of FIG. 1;

. supported in the mold cavity as FIG. 3 is a cross section taken substantially along the line 33 of FIG. 2;

FIG. 4 is a partial view of an upper half mold for forming the arm of FIGS. 1-3, showing a resilient tubing positioned therein prior to molding;

FIG. 5 is a partial view of a lower half mold showing the skeletal members positioned therein prior to mold- FIG. 6 is a cross section through the assembled mold formed by the upper and lower mold halves; and

FIG. 7 is'an enlarged view illustrating the manner in which the'flexible tube is supported within the mold.

DESCRIPTION OF THE PREFERRED EMBODIMENT With particular reference to FIGS. l3, there is illustrated a simulated limb 10 in the shape of an upper arm molded from an integral skin foam 12. At the shoulder area the foam defines a recess 14 for receiving a female pivot joint (-not shown) on a torso. Extending into the. recess is a male pivot joint 16 which defines a circular opening 18 therethrough. Formed in the foam 12', and aligned with the opening 18, is a hinge pin passage 20 which extends through the surface of the integral skin foam. A portion of the pivot joint 16 is molded within the limb and defines a circular socket 22 which supports one end of a simulated upper arm bone 24. Cemented or otherwise secured to the arm bone 24 is a short length of rigid tubing 26 whosepurpose will be later explained. The skinned surface of foam l2'defines a depression forming a simulated wound 28. The wound 28 is positioned on a portion of the surface relatively close to the tubing 26. Molded into the foam 12 is a resilient flexible tube 30 formed of a material such as nylon. One end of this tube communicates with the surface of the limb through wound 28 and the other end is adapted to be connected to a suitable fluid reservoir or pump.

It will now be apparent that there is illustrated in FIGS. l3, a limb for a training dummy formed of an integral skin foam. The foam contains a flexible tubing through which the simulated blood may be pumped to emerge from the wound. By applying force, either directly onto the wound 28 or at a pressure point above the wound, the tube 30 may be pinched closed by being squeezed between the externally applied force and the rigid tubing 26. In this manner proper control of bleeding can be taught.

The method by which the limb is formed will now be explained with reference to FIGS. 4-7. FIG. 4 illusity 34 and a recess 36 communicating with the cavity.

The wall of theupper mold also defines an opening 38 therethrough. The inner surface of the mold half 32 carries wound defining projection 40 upon which is mounted an eyelet 42. The lower half mold 44 shown in FIG. 5 defines a mating half cavity 46 and recess 48. A hole 50 extends through the mold wall as shown in FIG. 6. Mounted in the recess 48 is a support bracket 52 to which is mounted at its inner end the male pivot 16 by means of a pin 54 supported in hole 50. The socket 22, upper arm bone 24,

shown in FIG. 5. Prior to assembling the mold, a relatively stiff support wire 56 is pushed into the end of the flexible tubing 30 with its ends protruding from the ends of the tubing. The tubing is then inserted through the opening 38 in the and tubing 26 are thus' upper mold half and the end of the wire 56 is inserted into the eyelet 42 as illustrated in FIGS. 4 and 7. In this manner, the tube is supported within the mold cavity. Thereafter, the mold halves 32, 144 are assembled as shown in FIG. 6, and the resulting mold cavity is filled with the integral skin foam. When the foam has cured, the pin 54 and the bracket 52 are removed, leaving the skeletal structure embedded within the limb. The lower half mold is then removed. Next, the protruding end of the support wire 56 is grasped and pulled out of the tube 30. Thefinished limb is then removed from the upper half mold, at the same time pulling the flexible tube 30 from the opening 38. It will, of course, be apparent that those portions of the foam formerly occupied by the wire 56 and the eyelet 42 provide fluid passages from the skin surface to the interior of the tube 30.

It is believed that the many advantages of this invention will now be apparent to those skilled in the art It will also be apparent that a number of art. and modifications may be made therein, without departing from its spirit andscope. Accordingly, the foregoing description is to be taken as illustrative only, rather than limiting. This invention is limited only by the scope of the following claims. 5

I claim:

1. The method of forming a simulated wound in a training dummy which comprises: providing a first concave mold member defining on its inner surface a raised, wound defining, projection; providing, adjacent said projection, means for temporarily'supporting the end of a wire; passing a relatively stiff support wire through a length of resilient tubing with the first and second ends of said wire extending; respectively, from the first and second ends of said tubing; positioning the wire stiffened tubing with the first end of said wire supported by said temporary support means and the second ends of said wire and tubing outside the first mold member; positioning a second concave mold member against said first mold member to define therewith a mold cavity approximating the shape of a human body member; filling said cavity with a curable molding composition; curing said composition to form a simulated human body member; removing said supportwire from said tubing; and removing said simulated body member from said first and second mold members.

2. The method of claim 1 wherein said temporary support means comprises an eyelet.

3. The method of claim 1 wherein said molding composition comprises an integral skin foam.

4. An artificial body member which comprises: a simulated bone; an integral. skin foam surrounding said simulated bone and shaped to resemble a human body member, the external surface of said foam defining a simulated wound; and a flexible tube molded in said foam with a first end communicating with said wound and a second end extending outwardly from said foam.

5. The member of claim 4 wherein said flexible tube is positioned to be pinched between said wound and said bone.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3027655 *Sep 17, 1959Apr 3, 1962Alderson Res Lab IncSynthetic casualty
US3642965 *Dec 23, 1968Feb 15, 1972Mattel IncMethod of removing essentially seamless foamed parts from a mold by fluid pressure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4789340 *Aug 18, 1987Dec 6, 1988Zikria Bashir ASurgical student teaching aid
US5215469 *Feb 7, 1992Jun 1, 1993Ambu International A/STraining apparatus for the practice of puncturing blood vessels
US5945056 *May 28, 1997Aug 31, 1999Simutech LimitedMethod of making a surgical simulator
US6241525Sep 28, 1999Jun 5, 2001Basf CorporationPressure ulcer wound care models, methods and kits
US7887330 *Feb 15, 2011The United States Of America As Represented By The Secretary Of The ArmyTrauma training system
US8221129Jun 3, 2008Jul 17, 2012Techline Technologies, Inc.Wearable wound simulant
US8342852Jan 19, 2011Jan 1, 2013The United States Of America As Represented By The Secretary Of The ArmyTrauma training system
US8568147Mar 12, 2008Oct 29, 2013Industrial Technology Research InstituteTissue mimicking phantom
US8690580 *Oct 20, 2009Apr 8, 2014Stiftelsen ArcadaCannulation simulator
US8827720Mar 16, 2012Sep 9, 2014Chi Systems, Inc.Simulation tools, trainers, systems and methods for trauma assessment and tourniquet training applications
US9280917Jun 25, 2013Mar 8, 2016Techline Technologies, Inc.Simulant with vascular element mechanically responsive to a tourniquet
US9342996 *Nov 21, 2012May 17, 2016The United States Of America, As Represented By The Secretary Of The ArmyTrauma training system
US20070243512 *Apr 23, 2007Oct 18, 2007King Lynn RTrauma Training System
US20070292829 *Jun 7, 2007Dec 20, 2007King Lynn RIntravenous (iv) training system
US20090011394 *Apr 2, 2007Jan 8, 2009Simquest LlcLimb hemorrhage trauma simulator
US20090098521 *Mar 12, 2008Apr 16, 2009Industrial Technology Research InstituteTissue mimicking phantom
US20090298034 *Dec 3, 2009Techline Technologies, Inc. Dba Mps Techline Of Pennsylvania, Inc.Wearable Wound Simulant
US20110111380 *May 12, 2011Government Of The United States, As Represented By The Secretary Of The ArmyTrauma Training System
US20110200977 *Oct 20, 2009Aug 18, 2011Stiftelsen ArcadaCannulation simulator
US20130078604 *Mar 28, 2013Government Of The United States Of America, As Represented By The Secretary Of The ArmyTrauma Training System
EP2010068A2 *Apr 13, 2007Jan 7, 2009Simquest LLCLimb hemorrhage trauma simulator
WO2006060724A2 *Dec 2, 2005Jun 8, 2006United States Government As Represented By The U.S. ArmyTrauma training mannequin
WO2006060724A3 *Dec 2, 2005Aug 24, 2006Lynn R KingTrauma training mannequin
WO2007121341A2 *Apr 13, 2007Oct 25, 2007Simquest LlcLimb hemorrhage trauma simulator
WO2007121341A3 *Apr 13, 2007Dec 18, 2008Simquest LlcLimb hemorrhage trauma simulator
WO2007127194A2 *Apr 24, 2007Nov 8, 2007U.S. Government As Represented By The Secretary Of The ArmyTrauma training system
WO2007127194A3 *Apr 24, 2007Apr 24, 2008Us Gov Sec ArmyTrauma training system
Classifications
U.S. Classification434/268, 264/DIG.140, 428/16
International ClassificationG09B23/32
Cooperative ClassificationG09B23/32, Y10S264/14
European ClassificationG09B23/32