Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3854703 A
Publication typeGrant
Publication dateDec 17, 1974
Filing dateSep 15, 1972
Priority dateSep 17, 1971
Also published asCA976954A1, DE2245711A1
Publication numberUS 3854703 A, US 3854703A, US-A-3854703, US3854703 A, US3854703A
InventorsE Bennet, D Gibbs, W Hopkinson
Original AssigneeVickers Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of and apparatus for promoting a reaction between a liquid specimen and a liquid reagent
US 3854703 A
Abstract
A reaction between a liquid specimen and a liquid reagent is promoted by applying the liquids to a liquid-impermeable support surface to form a mixture thereon, and the liquid mixture is agitated by directing a jet of gaseous fluid from a supply duct outlet to impinge thereon, and bringing about relative movement between the outlet and the support surface.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Gibbs et al.

METHOD OF AND APPARATUS FOR PROMOTING A REACTION BETWEEN A LIQUID SPECIMEN AND A LIQUID REAGENT Inventors: Dudley Francis Gibbs, Bracknell;

Edward John Bennet, Wokingham; William Ian Hopkinson, Camberley, all of England Assignee: Vickers Limited, London, England Filed: Sept. 15, 1972 Appl/ No.: 289,344

Foreign Application Priority Data Sept. 17, 1971 Great Britain 43575/71 Mar. 30, 1972 Great Britain 15218/72 U.S. Cl 259/11, 23/259, 259/2,

259/DIG. 24 Int. Cl B0lf 13/02 Field of Search 259/1 R, 2, ll, 17, DIG. l7, 259/DIG. 24; 23/253 TP, 259; 261/80; 34/28, 31, 33, 46, 216, 217, 221, DIG. 2

[ Dec. 17, 1974 [56] References Cited UNITED STATES PATENTS 2,099,160 11/1937 Charch 34/31 x 2,678,504 5/1954 Knopp 34/010. 2 2,927,363 3/1960 Park 34/46 x FOREIGN PATENTS OR APPLlCATlONS 2,007,036 1 1970 France 259/2 Primary Examiner-Harvey C. Hornsby Assistant Examiner-Alan Cantor Attorney, Agent, or FirmPennie & Edmonds [5 7] ABSTRACT A reaction between a liquid specimen and a liquid reagent is promoted by applying the liquids to a liquidimpermeable support surface to form a mixture thereon, and the liquid mixture is agitated by directing a jet of gaseous fluid from a supply duct outlet to impinge thereon, and bringing about relative movement between the outlet and the support surface.

10 Claims, 6 Drawing Figures PATENTELBEEIYIQH 3.854.703 sum 10F FIG! METHOD OF AND APPARATUS FOR PROMOTING A REACTION BETWEEN A LIQUID SPECIMEN AND A LIQUID REAGENT This invention relates to methods of and apparatus for promoting a reaction between a liquid specimen and a liquid reagent.

Many tests that are carried out upon samples of specimen material derived from different sources involve agitating the material with a reagent added thereto in order to produce an homogeneous mixture of the reagent and the material. This has. been achieved hitherto by stirring the material with a stirring rod. However, it is inconvenient toemploy a stirring rod with very small samples, and cross-contamination between samples may be caused if a stirring rod is employed. Accordingly the problem has arisen of how to bring about agitation of very small samples of specimen material, and particularly without causing cross-contamination between samples.

According to a first aspect of the present invention there is provided a method of agitating liquid specimen material distributed for examination over a specimen support surface, wherein a jet of gaseous fluid emerging from a supply duct outlet is caused to be incident upon the liquid material and relative movement is brought about between the support surface and the said supply duct outlet.

According to a second aspect of the present invention there is provided, in combination, a specimen support surface and a supply duct arranged for directing a jet of gaseous fluid from an outlet of the duct to be incident upon liquid specimen material that is distributed for examination over the support surface when it is in use, there being means for bringing about relative movement between the support surface and the said outlet so as to cause agitation of the liquid specimen material.

According to a third aspect of the present invention there is provided a device for agitating liquid specimen material distributed along an upper surface of an elongate specimen support, comprising guide means for determining a path along which the support can be moved in a lengthwise direction thereof through the device, and pneumatic jet-forming means having at least one outlet arranged, adjacent to the said guide means, for directing a jet of gaseous fluid so as to be incident upon the specimen material on the support surface,-when the device is in use, thereby to bring about agitation of the specimen material as the specimen support is moved, along the said path, past the or each said outlet.

The gaseous fluid (i.e., gas or vapour) is preferably air.

For a better understanding of the invention, and to show how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:

FIG. 1 shows diagrammatically an elevation of apparatus for use in testing specimen materials,

FIG. 2 shows a perspective view, partly cut away, of a device forming part of the FIG. 1 apparatus,

FIG. 3 shows a plan view of a portion 'of specimen support tape,

FIG. 4 shows diagrammatically a longitudinal sectional view of a first modification of the FIG. 2 device,

FIG. 5 shows a perspective view, cut away, of a second modification of the FIG. 1 device, and

FIG. 6 shows a plan view of a portion of specimen support tape.

The apparatus shown in FIG. 1 is used to perform tests upon specimen materials, for example blood serum, by mixing a sample of each specimen material with reagent and observing the result of the reaction, if any, between the specimen material and the. reagent. Thus, the apparatus comprises applicator means 1 whereby a succession of drops of reagent (and possibly also diluent) are applied to the upper surface of a horizontal specimen support tape 2 which is drawn through the apparatus by virtue of its being gripped between two rollers 3 of which one is driven to rotate. The applicator means 1 also dispense a drop of specimen material into each drop of reagent, to provide a succession of pools distributed along the tape and each containing specimen material and reagent. Beyond the applicator means 1 in the direction of tape movement is a pneumatic stirring device 4 whereby each pool of specimen material and reagent is thoroughly agitated to provide an homogeneous mixture. The pneumatic stirring device is shown in more detail in FIG. 2. During passage of the pools through the pneumatic stirring device the reaction, if any, between the specimen material and the reagent takes place, and the result of the reaction is observed by optical means 5.

The pneumatic stirring device illustrated in FIG. 2 comprises a tape guide 6 formed with a groove 7 which has a flat bottom and straight sides. A-distribution block 8 is positioned above the guide 6 so that it extends completely over the top of the groove 7. Above the distribution block 8 is a gasket 9 and above that is a manifold top plate 10. The components 8, 9 and 10 are held together by screws 11 and the guide 6 and the assembly 8/9/10 are held together by a spring clamp 12.

The block 8, the gasket 9 and the top plate 10 to gether define a chamber 13 which extends above the groove 7. The chamber 13 communicates with the volume bounded by the groove 7 through a plurality of outlets 14. Air from a supply cylinder 20 (FIG. 1) can be supplied under pressure to the chamber 13 through an inlet stub 15 provided on the top plate 10, and it leaves the chamber by way of the outlets 14 forming respective jets directed towards the bottom of the groove. The outlets 14 along the groove are arranged alternately as outletpairs and single outlets.

The device 2 is used to agitate pools 17, containing specimen material and reagent, distributed along the upper surface of the specimen support tape 2. To use the device the clamp 12 is removed and the assembly 8/9/10 is lifted from the guide 6 so as to expose the groove 7. A lead-in portion of the tape is laid in the groove and the assembly 8/9/10 is then clamped in position once more. The leading end of the tape is passed between the rollers 3 for drawing the tape through the groove in the direction of the arrow, and the inlet stub is connected to a supply of compressed air (not shown). The tape is then drawn through the device, along the path defined by the groove in the guide, as the air is supplied to the chamber and issues from it through the outlets 14 forming jets directed onto the upper specimen-bearing surface of the tape. As a pool of the specimen material passes under one of the single outlets that pool tends to be flattened out and pushed aside from the centre of the tape, and as the pool subsequently passes under an outlet-pair the pool is pushed back once more towards the centre of the tape (see FIG. 3). Thus as the tape is drawn through the device the specimen material is agitated. The amount of agitation is controlled by the total number of single outlets and outlet-pairs, while the rate of agitation is controlled by the pitch of the single outlets and outlet-pairs along the groove.

The agitation brought about by the FIG. 2 device is used to promote chemical reactions between the speci-.

men material and the reagent, and in order to prevent excessive drying of the reactants and/or the reaction product the air is humidified by passing the air from the cylinder 20 through a bath 18 (FIG. 1) of water and mixing it with dry air from a second cylinder 21. The temperature of the air is also controlled by heating the water of the bath 18 with a thermostatically controlled immersion heater 19. It may in some circumstances be desired to dry the reaction product, in which case the temperature and humidity of the air are adjusted accordingly. The specimen material may contain insufficient liquid in which case diluents as well as reagents may be added to the specimen material before it reaches the device.

A device in accordance with FIG. 2 has been constructed using Perspex for the components 6, 8 and 10 and butyl rubber for the gasket 9. A satisfactory amount of agitation was achieved with the device using air supplied to the inlet stub at about 5 p.s.i.

It has been found that instead of using alternate single outlets and outlet-pairs, as described with reference to FIGS. 2 and 3, it is preferable in order to produce an homogeneous mixture of reagent and specimen material to employ the modification shown diagrammatically in FIG. 4.

In the case of the FIG. 4 modification, two single outlets provided by jet needles 22 are spaced apart along the groove, without an interposing outlet-pair. The needles 22 are of cylindrical cross-section, and their central axes are inclined to the vertical at 45 but lie in the same vertical plane. The inclined needles are directed forwardly, that is in the direction of tape movement, and air jets provided by the needles induce a vortex motion in the liquid of the pools, thereby producing a thorough mixing of the reacting components. The depth of the groove is such that the clearance between the needles and the free surface of a pool 0.2 mm deep is less than five times the internal diameter of the jet needles. It is found with 10 d pools containing blood serum and a water-based reagent, and a tape speed of 10 mm/sec., adequate mixing is produced with an air flow to each jet needle of approximately 0.6 l/min. The effectiveness of the jet action is reduced if the clearance between the needles and the pools is increased beyond five needle diameters or if the inclination of the needles to the vertical is reduced below 45.

Many tests in serology involve agglutination reactions, developed by rocking a mixture of blood serum and a reagent for a period of time. If the mixture is provided in the form of pools on the horizontal tape 2, the rocking action can be produced by passing the tape under a series of outlet-pairs as shown in FIG. 5. In the case of FIG. 5 the outlets are provided by respective passageways of cylindrical cross-section. The central axis of each passageway is inclined to the vertical at and lies in the same vertical plane, perpendicular to the direction of tape movement, as the central axis of the passageway providing the other outlet of the pair. The two jets provided by the outlet-pair converge to form an air curtain above the tape which causes the liquid to be carried towards the back of the pool until it finally passes through the air curtain to flow forward again. The outlet-pairs are spaced apart along the groove by slightly more than the length of the pools in order to allow this pattern of movement to become established. For example, in the case of pools l2 mm long the outlet-pairs are spaced apart along the groove by 15 mm. The outlets are approximately 4 mm above the tape, and for l0 p.l pools an air flow through each outlet-pair of approximately 0.6 l/min. is required.

Using the modification shown in FIG. 5 for reactions which require long mixing times and a large number of rocks leads to an undesirably long rocking stage, and in these circumstances it has been found preferable to employ a series of stirring jets as described with reference to FIG. 4, with a pitch (space between successive jets) less than the length of the pools on the tape. For example, for a 10 pl pool, 12 mm long, the jets are pitched at 8 mm. This creates a steady vortex flow pattern in the pools, as shown in FIG. 6. In FIG. 6 the positions at which the air jets are incident on the pool 17 and the tape 2 are shown as circles 23. For 10 pl pools an air flow to each jet of 0.3 l/min. is sufficient. Of course, to increase the amount of mixing the tape speed may also be reduced.

It is not essential for the specimen material to be in discrete pools, as shown, but it could instead be in the form of a continuous trace extending along the tape.

The device shown in FIG. 2, or as modified in accordance with FIGS. 4 or 5, may be used in combination with other devices to treat specimen material to prepare it for subsequent microscopic examination, for example in the Vickers Cytological Screening Apparatus.

2. A method as claimed in claim 1, comprising the further steps of controlling the temperature and controlling the humidity of said gaseous fluid.

3. Apparatus for promoting a reaction between a liquid specimen and a liquid reagent, comprising a liquidimpermeable support surface, first means for applying the liquid specimen to the support surface, second means for applying the liquid reagent to the support surface to form thereon a liquid mixture with the liquid specimen, a source of gaseous fluid, a supply duct having an inlet connected to said source and an outlet arranged to direct a jet of gaseous fluid from said source to impinge upon said liquid mixture on the support surface, and drive means connected to bring about relative movement between the support surface and said outlet thereby to cause agitation of the liquid mixture.

4. Apparatus as claimed in claim 3, further comprising means for controlling the temperature of said gaseous fluid and means for controlling the humidity of said gaseous fluid.

5. Apparatus as claimed in claim 3, wherein said support surface is an upper surface of an elongate specimen support and the apparatus further comprises guide means determining a path along which said support is movable in a longitudinal direction thereof through the apparatus.

6. Apparatus as claimed in claim 5, wherein said outlet is one of a plurality of such outlets all connected by way of the supply duct to said inlet and spaced apart along the path without additional outlets therebetween, each outlet of the plurality defining the end of a cylindrical passageway having a central axis lying in vertical plane parallel to said path and extending from said outlet both downwardly, at 45 to the vertical, and in said longitudinal direction.

7. Apparatus as claimed in claim 6, wherein said first and second means are arranged to co-operate to provide on said upper surface as said drive means operate a succession of pools of given depth, distributed along said upper surface and each containing a mixture of liquid specimen and liquid reagent, which are carried on the specimen support from said first and second means and subsequently along said path, and there being between each outlet of the plurality and the upper surface of said support a clearance that is less than the sum of said given depth and five times the internal diameter of said cylindrical passageways.

8. Apparatus as claimed in claim 7, wherein the number of outlets of the plurality is more than two and the distance between successive outlets is less than the length of said pools.

9. Apparatus as claimed in claim 5, wherein said outlet is one of a plurality of such outlets which are connected to said inlet and which are distributed along said path, the outlets being arranged alternately singly and in pairs, the two outlets of each pair being spaced apart transversely with respect to said path.

10. Apparatus as claimed in claim 5, wherein said first and second means are arranged to provide on said upper surface a succession of pools of given length dis tributed along said upper surface and each containing a liquid specimen and a liquid reagent, and said outlet is one of a plurality of such outlets, said outlets being arranged in pairs and the pairs of outlets being spaced apart along said path by a distance greater than said given length and there being no additional outlets between successive pairs of outlets along' the path, each outlet of each pair defining the end of a cylindrical passageway having a central axis which is inclined to the vertical and lies in a vertical plane perpendicular to said path and which crosses the central axis of the cylindrical passageway whose end is defined by the other outlet of the pair below the pair of outlets.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2099160 *Oct 23, 1935Nov 16, 1937Du PontMethod and apparatus for drying
US2678504 *Jun 14, 1951May 18, 1954American Viscose CorpApparatus for drying cut staple
US2927363 *Feb 7, 1955Mar 8, 1960Saco Lowell ShopsSlasher
FR2007036A1 * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4676656 *Jan 25, 1985Jun 30, 1987Syntex (U.S.A.) Inc.Fluid handling apparatus and method
US4855601 *Oct 27, 1987Aug 8, 1989Societe Civile De Brevets, J.L.S.Method and device for automatic spectrometric analysis of a liquid, particularly of milk
US5650327 *Jun 6, 1995Jul 22, 1997Ventana Medical Systems, Inc.Method for mixing reagent and sample mounted on a slide
US5654199 *Jun 6, 1995Aug 5, 1997Ventana Medical Systems, Inc.Automatic immunostaining; applying stream of pulsed rinse liquids
US5654200 *Jun 6, 1995Aug 5, 1997Ventana Medical Systems, Inc.Horizontal during incubation
US5948359 *Mar 21, 1997Sep 7, 1999Biogenex LaboratoriesAutomated staining apparatus
US6093574 *Aug 11, 1997Jul 25, 2000Ventana Medical SystemsPlacing consistent amount of fluid on slide in automated biological reaction apparatus by pressurizing tubing by predetermined amount, turning on and off valve creating wave effect, delaying until effect is lessened, turning on valve
US6192945Jan 14, 2000Feb 27, 2001Ventana Medical Systems, Inc.Fluid dispenser
US6284546Jun 6, 1995Sep 4, 2001Dade Behring Marburg GmbhForming a liquid droplet with two or more liquids on a planar surface and causing the droplet to deform using an acoustic energy or electrostatic field in a zero air flow environment; with movable photodetector and two part reflective housing
US6416713Jan 14, 2000Jul 9, 2002Ventana Medical Systems, Inc.Fluid dispenser
US6827901May 2, 2002Dec 7, 2004Ventana Medical Systems, Inc.Improved biological reaction platform which can be used for a wide variety of assays, such as, automatic immunostaining of tissue sections, in situ DNA analysis, and immunoassays
US6943029Jan 22, 2002Sep 13, 2005Ventana Medical Systems, Inc.Automated biological reaction apparatus
US6945128Jun 29, 2001Sep 20, 2005Ventana Medical Systems, Inc.Fluid dispenser
US7118918 *Aug 16, 2001Oct 10, 2006Ventana Medical Systems, Inc.Apparatus for the continous preparation of samples; for use in immunological staining, nucleotide sequences analysis, immunoassays
US7270785Oct 30, 2002Sep 18, 2007Ventana Medical Systems, Inc.Device for automated staining and/or treating multiple tissue samples mounted on slides
US7303725Apr 15, 2003Dec 4, 2007Ventana Medical Systems, Inc.Automated high volume slide staining system
US7378055Apr 28, 2003May 27, 2008Ventana Medical Systems, Inc.Automated molecular pathology apparatus having fixed slide platforms
US7400983Dec 19, 2003Jul 15, 2008Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US7404927Dec 2, 2005Jul 29, 2008Ventana Medical Systems, Inc.Automated molecular pathology apparatus having fixed slide platforms
US7468161Apr 27, 2005Dec 23, 2008Ventana Medical Systems, Inc.apparatus used for high speed automatic staining of biological samples on microscope slides
US7470541Nov 17, 2004Dec 30, 2008Ventana Medical System, Inc.Using carousel device to zonally dispense immunoglobulin mixture to slides; immunostaining
US7648678Dec 8, 2003Jan 19, 2010Dako Denmark A/SMethod and system for pretreatment of tissue slides
US7758809Dec 3, 2009Jul 20, 2010Dako Cytomation Denmark A/SIncluding a slide positioner adapted to pivot a slide between a submerged position and a position in which reagent can be applied to the tissue sample; pivoting of slides ensures an appropriate orientation of the slides for both pretreatment and staining
US7937228Mar 19, 2008May 3, 2011Dako Denmark A/SAutomated sampling of histological tissues; bioinformatics
US7960178Dec 19, 2003Jun 14, 2011Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US8048373Oct 22, 2007Nov 1, 2011Ventana Medical Systems, Inc.Automated high volume slide staining system
US8137619Sep 23, 2005Mar 20, 2012Ventana Medical Systems, Inc.Memory management method and apparatus for automated biological reaction system
US8147773Mar 17, 2011Apr 3, 2012Ventana Medical Systems, Inc.Method and apparatus for modifying pressure within a fluid dispenser
US8216512Dec 19, 2003Jul 10, 2012Dako Denmark A/SApparatus for automated processing biological samples
US8257968Dec 19, 2003Sep 4, 2012Dako Denmark A/SMethod and apparatus for automatic staining of tissue samples
US8298815Dec 22, 2003Oct 30, 2012Dako Denmark A/SSystems and methods of sample processing and temperature control
US8323984 *Dec 19, 2002Dec 4, 2012Beckman Coulter, Inc.Using air jet mixing to prepare homogenous mixtures of whole blood for leukocyte hematological analysis
US8386195Mar 28, 2011Feb 26, 2013Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US8394635May 6, 2011Mar 12, 2013Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US8529836Jun 11, 2012Sep 10, 2013Dako Denmark A/SApparatus for automated processing biological samples
US8609023May 16, 2000Dec 17, 2013Ventana Medical Systems, Inc.Memory management method and apparatus for automated biological reaction system
US8663978Aug 6, 2012Mar 4, 2014Dako Denmark A/SMethod and apparatus for automatic staining of tissue samples
US8663991Jul 13, 2005Mar 4, 2014Ventana Medical Systems, Inc.Automated high volume slide processing system
US8673642Feb 4, 2013Mar 18, 2014Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
EP1604734A2 *Jun 9, 2005Dec 14, 2005Boehringer Mannheim GmbhMethod and apparatus for the detection of analytes
WO1999049295A1 *Mar 24, 1998Sep 30, 1999Biogenex LabAutomated staining apparatus
Classifications
U.S. Classification436/44, 366/101, 422/224, 436/174, 366/349
International ClassificationB01F13/02, G01N35/00, B29C53/20
Cooperative ClassificationB29C53/20, B01F13/0272, G01N35/00009, B29L2023/22
European ClassificationB29C53/20, G01N35/00B, B01F13/02J