Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3855744 A
Publication typeGrant
Publication dateDec 24, 1974
Filing dateAug 21, 1972
Priority dateApr 16, 1971
Also published asUS3724157, US3789455, US3810601, US3872635
Publication numberUS 3855744 A, US 3855744A, US-A-3855744, US3855744 A, US3855744A
InventorsMiram O
Original AssigneeMiram O
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Module for building construction
US 3855744 A
Abstract
A method of constructing buildings of modules is disclosed in which the modules are formed of overhead and wall panels fabricated with means embedded therein having no portion extending beyond the boundaries thereof for distributing the weight thereof to a plurality of points spaced from each other along their edges, which edges are mechanically interconnected by removable hinge joinder means extending between the embedded means in adjacent panels when they are in selected juxtaposition. Means for raising the overhead panels to an elevated position including said removable hinge joinder means are described. Preferred means for forming the overhead and wall panels in the selected juxtaposition and preferred removable hinge joinder means are disclosed. Preferred methods and means for interconnecting vertically and horizontally adjacent modules into structural units of the final building structure before or after removal of said removable hinge joinder means are described.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

llnited States Miram ateiit 1 Dec. 24, 1974- MODULE FOR BUILDING CONSTRUCTION Oleg V. Miram, 759 Flood Bldg, San Rafael, Calif. 94102 Related US. Application Data [62] Division of Ser. No. 134,623, April 16, 1971, Pat.

[76] Inventor:

[52] US. Cl 52/126, 52/127, 52/259, 52/284, 52/293 [51] Int. Cl E0b 1/35 [58] Field of Search 52/227, 228, 251, 236, 52/69, 294, 292, 584, 582, 745

[56] References Cited UNITED STATES PATENTS 1,361,831 12/1920 Crew 52/69 3,369,334 2/1968 Berg 52/584 3,494,092 2/1970 Johnson.... 52/69 3,510,997 5/1970 Ratych 52/236 3,562,979 2/1971 Ali-Oglu 52/236 3,566,560 3/1971 Wakefield 52/127 3,621,626 11/1971 Tylius .1 52/227 FOREIGN PATENTS OR APPLICATIONS 1,045,331 10/1966 Great Britain 52/251 82,772 5/1957 Denmark 52/745 Primary Examiner-John E. Murtagh Attorney, Agent, or FirmPhillips, Moore, Weissenberger, Lempio & Strabala [57] ABSTRACT A method of constructing buildings of modules is disclosed in which the modules are formed of overhead and wall panels fabricated with means embedded therein having no portion extending beyond the boundaries thereof for distributing the weight thereof to a plurality of points spaced from each other along their edges, which edges are mechanically interconnected by removable hinge joinder means extending between the embedded means in adjacent panels when they are in selected juxtaposition. Means for raising the overhead panels to an elevated position including said removable hinge joinder means are described. Preferred means for forming the overhead and wall panels in the selected juxtaposition and preferred removable hinge joinder means are disclosed. Preferred methods and means for interconnecting vertically and horizontally adjacent modules into structural units of the final building structure before or after removal of said removable hinge joinder means are described.

5 Claims, 11 Drawing Figures PATENTEU DEC24 I974 SHEET 3 OF 3 MODULE FOR BUILDING CONSTRUCTION CROSS-REFERENCE TO RELATED APPLICATION This application is a division of patent application Ser. No. 134,623, filed Apr. 16, 1971.

BACKGROUND OF THE INVENTION This invention relates to a method of and means for constructing permanent building structures of a module or modules comprising an overhead panel and depending wall panels, and more particularly to such a method in which the overhead panels and wall panels are prefabricated with means embedded therein having no portion extending beyond the boundaries thereof for distributing the weight thereof to a plurality of points spaced from each other along their edges and a module is subsequently formed by attaching a set of wall panels to an overhead panel by removable hinge joinder means extending between the embedded means in accordance with the teaching of this invention, which hinge joinder means may be subsequently removed and the panels interconnected by other means in the final structure.

It is known in the prior art to prefabricate overhead panel structures and wall panel structures with means for interconnecting such panels into modules projecting from and forming a permanent part of each panel as shown by US. Pat. No. 1,886,962 to La Roche. Such panels may be prefabricated at the construction site or elsewhere but in any event must be individually placed in juxtaposition and interconnected with the other panels of the module either before or after the panels are in their final position in the structure. In order to accomplish the desired interconnection the individual interconnection means on the panels must be brought into registry and alignment thus requiring each panel to be individually moved and carefully adjusted in position with respect to the other panels. This is a tedious and time comsuming operation requiring much labor and equipment to handle the various panels individually.

It is also known in the prior art to prefabricate overhead and floor panels in selected juxtaposition to each other, simultaneously joining a set of wall panels to each overhead panel by means extending between and embedded in or otherwise forming an integral part of the joined panels which means are capable of bending or swinging as taught by US. Pat. No. 1,361,831 to Crew and US. Pat. No. 3,494,092 to Johnson et al. This method avoids the disadvantages attendant to the individual movement of the panels into registry and alignment for interconnection into modules but a number of non-obvious disadvantages remain.

In the first place, whether the means interconnecting the panels into modules are embedded bendable members or integral hinge structures, they become a permanent part of the finished structure which fact imposes limitations, not only on the physical dimensions of the interconnecting means, but also on the structure itself. For example, the joint between the panels of vertically or horizontally adjacent modules must be designed with the means interconnecting the panels in mind. In addition, the panels themselves must be designed and fabricated in such a way as to provide for the transportation of the modules which they form into final positions with the location and physical characteristics of the means interconnecting the panels in mind. Furthermore, the fact that the panels must be fabricated with embedded or integral means interconnecting them, imposes limitations on the fabrication techniques that may be used both in fabricating the panels and in assembling the modules formed thereby into the final structure. Finally, the means interconnecting the panels into modules while a module is being transported to its final position must remain a permanent part of the structure in spite of the fact that other means may be preferred for use in interconnecting the panels of a module or vertically and horizontally adjacent modules into desired structural units of the final structure. Thus, the use of either embedded or integral interconnecting means between the overhead panels and wall panels of modules introduces structural limitations in the design of both the panels and the interconnecting means, imposes limitations on the fabrication techniques that may be used in making the panels and adds unnecessary expense in the cost of the finished structure.

Among the primary objects of this invention is the prefabrication of modules for building constructions comprising overhead and wall panels joined to each other by removable interconnecting hinge joinder means which do not form a permanent part of the panels, modules or finished structure and thus do not impose structural or fabrication limitations on the panels, modules or finished structures nor add to the expense of the finished structure.

SUMMARY OF THE INVENTION Briefly, a module for use in building construction according to the teaching of this invention comprises an overhead panel and a wall panel each including means embedded therein having no portion extending beyond the boundaries thereof for distributing the wieght thereof to a plurality of locations along their edges and removable hinge joinder means interconnecting a plurality of locations along one edge of the wall panel to a plurality of locations along one edge of the overhead panel. The opposite edge of the wall panel is provided with a notch and an elongated structural member is embedded in the wall panel and extends from the first mentioned edge thereof into the notch in the opposite edge thereof.

BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other objects and features of this invention will be more fully understood from a reading of the following detailed description of preferred embodiments of this invention in conjunction with the appended drawing thereof wherein:

FIG. 1 is a perspective view of the foundation for building construction together with a plurality of stacks of overhead and wall panels joined to each other in sets for forming modules and includes a showing of a lifting means supporting a module in a partially raised position prior to transporting it to its final position on the foundation;

FIG. 2 is a perspective view of a plurality of modules according to this invention in their final position on a foundation slab and includes a showing of one of such modules formed of interconnected overhead and wall panels prior to being lifted into its final position;

FIG. 3 is a fragmentary perspective view showing a corner of a module in its fully elevated position together with a corner of the lifting means for raising the module to its elevated position;

FIG. 4 is a fragmentary perspective view, partially in cross-section, of a corner formed by the lower ends of two wall panels of a module and includes a showing of connecting means suitable for connecting the wall panels to each other in their final position as well as connecting means for permanently affixing the module to the foundation slab;

FIG. 5 is a fragmentary perspective view, partially in cross-section, showing a removable hinge joinder means interconnecting an overhead and a wall panel in accordance with this invention and includes a showing of the embedded weight distribution means in accordance with the teaching of this invention;

FIG. 6 is an enlarged plan view of an overhead panel and wall panels as interconnected to form a module prior to the overhead panel being raised to its elevated position with certain structural features of the panels indicated in dotted lines;

FIG. 7 is a fragmentary perspective view, partially in cross-section, showing a pair of horizontally adjacent overhead members in their final position with respect to each other including a common wall depending from a hinge structure on one of said overheard members and a further hinge structure on the other of said overhead members mechanically engaging the first hinge structure;

FIG. 8 is a perspective view, partially in crosssection, showing the joint between the overhead panels of horizontally adjacent modules including the common wall and side walls of the modules at the end of an intermediate step in the permanent interconnection of the panels and modules with the hinge structures removed and other interconnection means substituted therefor;

FIG. 9 is a fragmentary perspective view, partially in cross-section, showing the completed joint between the overhead panels and side wall panels of a pair of horizontally adjacent modules together with the common wall panel and side panel of a vertically above adjacent module;

FIG. 10a is a cross-sectional view taken along line l0al0a of FIG. 8;

FIG. 10b is a cross-sectional view taken along line l0b--l0b of FIG. 9;

DESCRIPTION OF PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2 the construction of a building according to the teaching of this invention is illustrated. As shown in these figures the building is constructed on a foundation slab l0 and comprises two floors or stories of three modules each. Each module consists of an overhead panel A to the edges of which a plurality of wall panels B are connected by hinge joinder means C. As shown in FIG. 1 the overhead panels A and wall panels B are prefabricated and arranged in co-planar relationship with an edge of each wall panel B in selected juxtaposition to a different edge of an overhead panel A. In this position the adjacent edges of the overhead panel and wall panels are hingeably interconnected by the hinge joinder means C. Thus, when the overhead panels A are subsequently raised to an elevated position the hinge joinder means C will allow the wall panels B to rotate with respect to the overhead panel A. When the overhead panels A have been fully elevated the wall panels B depend vertically from the edges of the overhead panel A and are supported by the hinge joinder means C. In this position the modules each form a box-like enclosure or room so that when such module is placed on a suitable foundation and the panels permanently fixed with respect to each other and the foundation a building or unit of a building is formed. As shown in FIG. 1 and 2 the overhead panels A form both the ceiling of one module and the floor of the vertically above adjacent module. As also shown in FIGS. 1 and 2 horizontally adjacent modules may share a common wall panel.

It will be understood that the building construction shown in FIGS. 1 and 2 is merely illustrative of the type of building construction to which the present invention pertains. It is not necessary that the modules be rectangular nor that they all be of the same general dimensions as shown in FIGS. 1 and 2. Similarly, it is not necessary that the building constructed from the modules be rectangular or that the modules be regularly arranged as shown in FIGS. 1 and 2 in order for the teaching of this invention to be applicable. However, the building structure illustrated in FIGS. 1 and 2 does represent a particularly desirable type of building construction for the application of the teaching of this invention. Thus, the following detailed description of this particular application of the teaching of this invention is given to insure full understanding of a particular application of the invention and not by way of limitation of the application of the invention.

In the particular application represented by FIGS. 1 and 2 the foundation slab 10, the overhead panels A and the wall panels B are all concrete slabs poured flat at the construction site. Furthermore, as represented in FIG. 1, the vertically adjacent modules of each story are identical to each other and thus the panels of such modules may be poured on top of each other with appropriate bond breaking layers therebetween as represented by stacks 12, 13 and 14. It will be seen that the modules of stack 13, which are the center modules in each story or floor of 3 modules each, have four wall panels whereas the end modules of stacks l2 and 14 have only three wall panels each. Thus, each of the end modules share a common wall panel with the central module.

As shown in FIG. 1 a building is constructed from the modules by first raising the overhead panel A of a central module from stack 13 to a elevated horizontal position thereby allowing the wall panels B of such module to rotate downwardly to vertical position. With the panels A and B in this position the module is transported to the proper location on the foundation slab l0 and the lower edges of the wall panel B lowered into contact therewith. Wall panels B are then parmanently affixed with respect to each other and with respect to the foundation slab 10 producing a free standing selfsupporting structural unit. A module is then raised and transported into position from each of the end stacks l2 and 14 and the panels thereof affixed to each other and to the central module and foundation slab to complete the first row or story of the building construction. The same process is repeated for the second story or floor of the building construction using the first story as the foundation. Thus, as shown in FIG. 2 all of the modules of the first story, as well as the central module and one end module of the second story, are in place with the final end module awaiting raising and transportation into place. As indicated by the dotted lines 15 in FIGS. 1 and 2 tension means are provided extending through the walls B form top to bottom to enable the walls of upper stories or rows of modules to be tied directly to the foundation slab as will be more fully described hereinafter.

As indicated in FIGS. 1 and 3 the raising and transportation of the modules is accomplished through the use of a lifting frame 16 attached by means of a cable 17 to an appropriate crane or similar machine (not shown). As shown in greater detail in FIG. 3 an important aspect of this invention is that the lifting frame 16 is mechanically connected directly to the hinge joinder means C in order to raise the modules and transport them into position. Thus, according to the teaching of this invention it is not necessary for the overhead panel A to support any portion of the weight of the wall panels B during the elevation and transportation of the module into position. This is made possible through the use of removable hinge joinder means C as will be more fully described hereinafter.

According to the embodiment of this invention shown in FIGS. 1 and 3, the lifting frame 16 has a shape and dimensions corresponding to that of the overhead panel A. Thus the frame 16 comprises end girders 21 and side girders 22 permanently affixed to each other at their ends as by welding or bolts to form a rectangle corresponding to the rectangular edges of the overhead panel A. A pair of brace girders 23 are affixed to and extend between the side girders 22 parallel to the end girders 21 and spaced from each other by a distance equal to a substantial portion of the length of the side girders 22. A lifting girder 24 spans the distance between the bracing girders 23 and is slideably attached thereto at each of its ends as by means of a bolt and plate arrangement 25. similarly, a lifting eye plate 26 is slideably attached to the lifting girder 24 as by means of a bolt and plate assembly as shown in FIG. 3.

The lifting eye plate 26 may be located at any point along the length of the lifting girder 24 by loosening the bolts associated therewith and sliding the plate along the girder. When the desired location is reached, the bolts may be retightened in order to fixedly secure the lifting eye plate at the desired location. Similarly, the lifting girder 24 may be located at any point along the length of the bracing girders 23 by loosening the bolts of the plate and bolt assembly 25, sliding the lifting girder 24 to the desired location and retightening the bolts. Thus, the interconnection between the frame 16 and the cable 17 may be adjusted to coincide with the center of gravity of a particular module to be lifted thereby.

Where the module consists of an overhead panel A and four wall panels B, the lifting eye plate 26 will be located at approximately the center of the frame 16 as shown in FIG. 1. However, when the frame 16 is attached to one of the end modules having only three wall panels it will be necessary to slide the lifting eye plate 26 along the lifting girder 24 toward the end of the frame 16 which is opposite the edge of the overhead panel A to which no wall panel is attached. This will enable the module to be balanced in an elevated position with the overhead panel A thereof in a horizontal plane. It will be understood that a module in accordance with this invention may have only two wall panels attached to adjacent edges of the overhead panel or even but a single wall panel attached to the overhead panel. In either of the above instances, it will be necessary to shift the location of the lifting girder 24 along the bracing girders 23, or the lifting eye 26 along the lifting girder 24, toward the edge of the overhead panel to which a wall panel is attached. Thus, it will be seen that the lifting frame 16 may be adjusted to enable a module to be lifted by means of a single cable 17 with the overhead panel thereof in a horizontal plane regardless of the number of wall panels included in the module or their position.

As most clearly shown in FIG. 3 a module is suspended from the frame 16 by means of a plurality of elongated hangers 28. One end of each of such hangers 28 is adjustably attached to an end 21 or side 22 girder of the frame 16 and terminates at its other end in an appropriate means for attachment to a hinge joinder means C. Thus, as shown in FIG. 3 the end side girders 21, 22 may be vertically slotted and the hangers 28 may comprise rods which pass through the slots and are suspended from the girders 21 and 22 by means of a washer and a nut secured to threads on the end of the rod projecting above the girder. An appropriate plate like member 27 having a transverse pin 29 fixed therethrough may be welded to the other end of the rod like member of the hanger 28. Thus, it will be seen that the members of each hanger 28 may be located at desired points along the end and side girders 21 and 22 by simply sliding the hanger members 28 along the slots provided therein. The nut at the upper end of the hanger members 28 provides a convenient means for adjusting the length of the hanger members 28 so that they all extend an equal distance below the frame 16. The hanger members 28 may be easily attached to the hinge joinder members C by simply inserting the pin 29 into an appropriate eye provided in such hinge joinder members C as will be described hereinafter.

After the frame 16 has been attached to a particular module and the overhead panel A thereof elevated to a horizontal plane at a sufficient height above the ground to allow the wall panels B to depend vertically therefrom, the lower ends of adjacent wall panels B may be temporarily attached to each other as by means of an angle iron 30 secured to such panels by screw or other convenient means at the corner formed thereby as shown in FIG. 4. This will prevent the wall panels B from moving relative to each other during transportation of the module to its desired location on the foundation slab 10. As also shown in FIG. 4 the foundation slab 10 may be provided with appropriate anchor means 31, 32 embedded in the foundation slab l0 and projecting within recesses 36 in such slab. Such anchor means may comprise, for example, a steel rod welded to a transverse plate 31 or a steel rod bent in the form of a hook 32, as shown in FIG. 4, with an appropriate portion of the steel rod exposed within the recesses 36 but not projecting above the upper surface of the foundation slab 10. Thus, the foundation slab 10 may be used as a casting bed for the overhead and wall panels A, B, if desired, since there is nothing projecting from its upper surface and the recesses 36 may be filled with sand or otherwise closed.

As shown in FIGS. 1, 2 and 4 the wall panels B may be formed with a plurality of notches in their lower edges, each corresponding to the location of an anchor means 31, 32 embedded in the foundation slab 10. The wall panels B may also be provided with an embedded steel rod 15 passing through the panels from each of the notches in their lower edges to their upper edges when in their erected position as mentioned hereinabove in connection with FIGS. 1 and 2. Each rod 15 may be permanently affixed to an anchor member 32 embedded in the foundation slab 10 as by means of welding a steel plate or other metal member between the adjacent ends of the rod and anchor member 32 within the notches. Similarly, the end of the rods 15 at the upper edge of the wall panels B may be adapted to be welded or similarly attached to the lower ends of the rods 15 passing through the wall panels of vertically adjacent modules in order to provide a continuous anchoring means from top to bottom of a multi-floor building. Such continuous anchoring means provided by the interconnection of steel rods 15 will enhance the ability of the building to withstand lateral forces due to the effects of wind or earthquake on the building structure.

Alternatively, as shown in FIG. 4, a hollow tube 33 with a post-tensioning cable 35 received therethrough may be substituted for the rods 15. The cable 35 may be attached to an anchor member 31 (embedded in the foundation slab) by means of an appropriate coupling member 37 within the associated notch. The cable 35 may pass through all vertically adjacent wall panels, from top to bottom of the building structure in order to enable the entire wall thereof to be placed in compression and thereby further enhance the ability of such wall to withstand lateral forces.

Referring to FIG. 5 a hinge joinder means C together with means 50 for distributing the weight of the panel to the hinge joinder means in accordance with the teaching of this invention are shown in detail. The hinge joinder means C comprises a first plate 41 and a second plate 42 each of which have a flat major surface for engagement with the edge of a panel. The other major surface of each of the plates 41, 42 is provided with a protruding hinge leaf 43, 44 and both of such hinge leaves are apertured to receive a hinge pin 45 whereby the plates 41, 42 are hingeably interconnected. Each of the plates 41, 42 is provided with a pair of apertures extending through the major surfaces thereof whereby the plates may be removably attached to a wall and overhead panel respectively by means of bolts 46, for example. In accordance with the teaching of this invention, the hinge leaf 43 of the plate 41 attached to the overhead panel A is provided with an upwardly extending projection 47 having an aperture or lifting eye 48 therethrough.

The lifting eye 48 is adapted to be engaged by the hook means or pin 29 of the hanger members 28 depending from the lifting frame 16 in order to enable the overhead panel A of the module to be elevated to a horizontal position so that the wall panels B may rotate to a vertical position about the pin 45 of the hinge joinder means C. Thus, it will be seen that the weight of the wall panel B is supported directly by the lifting frame 16 through the hanger means 28, hinge leaf 43, hinge pin 45, hinge leaf 44 and plate 42 attached to the wall panel B. Since no portion of the weight of the wall panel B is borne by the overhead panel A while the module is being lifted and transported into position, it is not necessary to design and fabricate the overhead panel A to bear such weight as was necessary in accordance with the teaching of the prior art.

However, it is necessary to design and fabricate the overhead panel in such a way as to distribute the weight of the overhead panel to the points of attachment of the plates 41 of the hinge joinder means C. Similarly, it is necessary to design and fabricate the wall panels B in such a way as to distribute the weight of the wall panels to the points of attachment of the plates 42 of the hinge joinder means C. This is accomplished by means of reinforcing rods 52, 53, 54 and 55 embedded in the overhead panel A and wall panel B adjacent the point of attachment of the hinge joinder members C thereto. As shown in detail in FIG. 5 a first plurality of reinforcing rods 53, 54 are embedded in the panels parallel to the edge thereof at such point of attachment and a second plurality of rods 52 are embedded in the panels extending normally to the edge at such point. Such reinforcing rods together with the usual reinforcing rods 55 embedded in the panels parallel to the edges thereof tend to evenly distribute the weight of the panels A, B to the points of attachment of the hinge joinder members C thereby avoiding the production of undue bending moments and stresses in the panels during the elevation and transportation of a module to its final location.

As shown in detail in FIG. 5 the preferred embodiment of such embedded means comprises a pair of tightly wound coils 51 having their axes extending normally to the edge of the panel in which they are embedded and having turns adapted to mate with the threads of the bolts 46. A pair of reinforcing rods 52 are welded or otherwise attached to the turns of each coil and extend generally parallel to the axis of each coil. As shown in FIG. 5 such reinforcing rods 52 may comprise the legs of a U-shape formed by bending a single reinforcing rod into a loop. Two pairs of reinforcing rods 53, 54 extending transversely to the axis of the coils 51 and parallel to the adjacent edge of the panel are welded to both coils 51. The reinforcing bars of each pair 53, 54 are spaced from each other along the length of the coil 51 and are preferably bent into a serpentine shape so that the coils 51 are received in generally U- shape convolutions thereof to partially surround the coils 51 and provide greater area for bonding the rods 53, 54 to the coils 51. It is also preferable that the reinforcing rods of the pair 54 extending adjacent the lower major surface of the panel, as fabricated; be bent to pass over the top of the coils 51; whereas the reinforcing rods 53 of the pair adjacent the upper major surface of the panel, as fabricated, be bent to extend under the coils 51. It is also preferable that the reinforcing rods 55 which are normally embedded in the panel parallel to the edges thereof, be received between the reinforcing rods 53, 54 of each pair or at least be located in sufficiently close proximity thereto to enhance the distribution of the weight of the panel to the hinge joinder means C. It will be understood that the length and spacing of the reinforcing rods 52, 53 and 54 will vary with the dimensions of the panel. It will also be understood that it is desirable to provide appropriate resilient pressure blocks 56 between the exterior ends of the coils 51 and the plates 41, 42 of the hinge joinder means C. Such pressure blocks 56 will avoid the chipping of the outer surface of the concrete and will provide for the uniform bearing of the plates 41, 42 against the concrete surface of which the slabs are formed during the attachment and removal of the hinge joinder means C.

In accordance with the teaching of this invention no portion of the means for distributing weight to the points at which hinge joinder means C are connected projects beyond the boundaries of the panels. Thus, the coils 51, reinforcing rods 52, 53, 54 and pressure plates 56 are all embedded within the panels. As will be more fully described hereinafter, this enables greater freedom in the selection of fabrication techniques for forming the panels and in addition enables the joint between adjacent panels to be completely free of any obstruction once the hinge members C have been removed after erection of the building.

Referring to FIG. 6, it will be understood that hinge joinder means are attached to all edges of the overhead panels A including those edges to which no wall member is attached. This is necessary in order to enable the modules to be raised and subsequently supported without placing undue stresses on the overhead panel A. However, the hinge joinder means C attached to the edge of an overhead panel A to which no wall panel is attached are different from the hinge joinder means attached to other edges of the panel A in accordance with the teaching of this invention. As shown in FIG. 7 such hinge joinder means C comprise a plate 41 having a hinge leaf 43 that includes a projection 47 and lifting eye 48. However, instead of being apertured to receive the hinge pin 45, the hinge leaf 43' is provided with an open ended slot 49 adapted to hook over the hinge pin 45 of an aligned hinge joinder means C of a horizontally adjacent module. Thus, as shown in FIG. 7 one wall panel B may be common to two horizontally adjacent modules when the modules are placed in their final positions in the building structure. 7 According to the preferred embodiment of this invention each module includes only two load bearing walls at least one of which is shared in common with a horizontally adjacent module. Thus, as shown in FIG. 6 two of the opposite edges 61 and 62 of the overhead panel A are load bearing edges and are each adapted to cooperate with wall panels B which are load bearing as indicated by the numeral 65. The other two opposite edges 63, 64 are non-load bearing edges and the wall panels B attached thereto are non-load bearing wall panels 66. In addition as shown in FIG. 6 and in accor dance with a further embodiment of this invention a plurality of tubular openings 68, indicated by dotted lines, extend through the overhead panel A from one load bearing edge 61 to the other load bearing edge 62, through which post-tensioning cables may be passed so that all of the overhead panels of a particular floor or story may be affixed to each other and post-tensioned as a unit, as will be more fully described hereinafter.

Referring to FIG. 7 each of the load bearing edges 61, 62 of the overhead panels A which are associated with a load bearing wall 65 are formed with planar surfaces 71, 72 each extending at an angle less than 90 with respect to the extended plane of the major surface of the panel A adjacent thereto in order to thereby form a projecting ridge 73 extending the length of the edge 61, 62. It will be seen that the planar surfaces 71, 72 and ridge 73 formed thereby are interrupted periodically along the length of the load bearing edges 61, 62 to provide recessed portions or pockets 75 in which the hinge joinder means C and C are mounted. The purpose of such pockets 75 is to facilitate the attachment of the hinge joinder means C and C' to the load bearing edges 61, 62 of the overhead panels A by providing a flat surface perpendicular to the major surfaces of the overhead panels A at the point of attachment of the hinge joinder means. The non load bearing edges 63,

64 of the overhead panels are provided with a single flat planar surface extending between the major surfaces thereof and perpendicular to such major surfaces.

As most clearly shown in FIGS. 3 and 7 the hinge joinder means C and C according to the teaching of this invention are constructed and dimensioned so that the plane of the lower major surfaces of overhead panels A is maintained above the upper extremity of the wall panels 65, 66 when a module has been raised and transported into its final position. It will also be seen that the hinge joinder means C and C are constructed and dimensioned so that the only portion of the overhead panels A which overlaps wall panels and 66 when a module has been raised and transported into position is a portion of the ridge 73 formed by planar surfaces 71 and 72 on the load bearing edges of the panels A which slightly overlaps the upper extremity of the load bearing wall panels 65.

Referring now to FIGS. 8, 9, 10a, and 1012 the permanent interconnection of the overhead panels A and wall panels B to each other and to the overhead panels and wall panels of horizontally and vertically adjacent modules according to this embodiment of the invention will be described in detail. Referring to FIG. 8 the joint between a pair of horizontally adjacent modules is shown in perspective at the end of an intermediate step in the permanent interconnection of the overhead and wall panels thereof. As shown in FIG. 8 the hinge joinder means C and C have been removed from the panels. However, it will be understood that the hinge joinder means C and C cannot be removed before a permanent interconnection is made between the overhead and wall panels. In the case of the non load bearing wall panels 66, each hinge joinder means C may be removed one at a time and an appropriate bracket 81 substituted for each in turn to provide a mechanical interconnection between the overhead panels A and wall panels 66. Such bracket 81 may be a simple angle iron provided with apertures by which it may be fixed to the panels using the same bolts 46 that were used to attach the hinge joinder means C. The primary function of the brackets 81 is to hold the non load bearing wall panels 66 in place during subsequent steps in the permanent interconnection of the wall panels 66 to the overhead panels A and to resist lateral forces throughout the life of the building structure.

According to the embodiment of this invention shown in FIGS. 6l0, one step in the interconnection of the overhead panels A to each other and to the load bearing wall panels 65 is to pass the post-tensioning cables 69 through the tubular openings 68 in the overhead panels A. In doing so, a plurality of hollow tubes 82 are placed in the space between adjacent load hearing edges of overhead panels A and each tube 82 extends between a pair of aligned openings 68 in the overhead panels A. Thus, the post-tensioning cable 69 is conducted through the tubular member 82 in passing from the tubular opening 68 in one overhead panel A to the tubular opening 68 in an adjacent overhead panel A. A pair of baffle or dam members 83 are then placed on opposite sides of each pocket containing hinge joinder means C, C. The dam members 83 extend between the opposed load bearing edges 61, 62 of adjacent overhead panels A and have a width sufficient to extend from near the upper major surfaces of panels A to the top of wall 65. At the same time a pair of forming strips 84 (see FIG. a) are affixed to opposite sides of the load bearing wall 65 each in abutment with the lower major surface of one of the overhead panels A. The baffles 83 and forming strips 84 may be inexpensive material, such as wood for example, and may be attached by any convenient means since their only function is to serve as forming members in connection with a layer 85 of grout which is then poured into the space between the adjacent overhead panels A and wall panels B. Such grout may be poured either before or after applying post-tensioning forces to the overhead panels A through the use of cables 69 passing through the tubular openings 68 and tubular member 82 and either before or after the removal of the hinge joinder means C and C. However, the preferred sequence of steps, as will be more fully described hereinafter, is to first partially post-tension the overhead panels A, either by applying full or partial post-tensioning forces to the cables 69 passing through a selected number of the tubular openings 68, or by applying partial posttensioning forces to all of the cables 69 passing through the tubular openings 68 in the overhead panels. The layer 85 of grout is then poured and the hinge joinder means C and C are removed after the grout has set. It will be noted that the layer 85 of grout is sufficient to half fill the space between the adjacent overhead panels A and wall panel B.

It will be seen that the planar surface 72 adjacent the lower major surface of the overhead panels A serves to interface with the hardened layer of grout 85 in such a way as to provide for the efficient transfer of the weight of the overhead panels A to load bearing wall panel B. It will also be seen that the post-tensioning forces applied by means of the cables passing through the tubular openings 68 in overhead panels A and the tubes 82 between adjacent overhead panels A will not only strengthen the overhead panels A and tie them together as a structural unit, but will also cooperate with the layer of grout 85 and the planar surface 72 to provide for the incremental support of the overhead panels A on the load bearing wall panels B throughout substantially the entire length of the load bearing edges 61, 62.

Referring to FIGS. 9 and 10b the planar surfaces 71 on the load bearing edges of the overhead panels A enable the load bearing wall 65 of an upper vertically adjacent module to be supported directly on the load bearing wall 65 of a lower vertically adjacent module. It is an important feature of the method of building construction according to the teaching of this invention that the stress imposed on the joint between an overhead panel A and the load bearing wall B of a particular module by modules located vertically above it is reduced toward minimum. Thus, as shown in FIGS. 9 and 10b the planar surfaces 71 of the overhead panels A enables the weight of the upper load bearing wall panel B to be conducted through grout layers 85 and 86 directly to the lower load bearing wall panel B with minimum contribution of stress to the joint between the overhead panel A and such lower load bearing wall panel. When the building structure is completed, it will be seen that the vertically adjacent load bearing wall panels 65 together with grout layers 85 and 86 will form a vertical column with the load of the overhead panels A of each floor of the structure being tributarily conducted thereto in such a way as to reduce toward minimum the additive contribution of stress to the joint between the lower overhead panels and such vertical column by the upper modules.

When the wall panels and 66 of the vertically adjacent module have been transported into place and interconnected with the wall panels of lower module by means of rods 15 or post-tensioning cable 35 (if such are used) a final layer of grout is poured on top of the layer 85 to complete the joint. Such final layer 86 of grout may fill the space created by the darn members 83 from which the hinge joinder members C and C have been removed. In addition, the horizontal space between the non load bearing edges 63, 64 of the overhead panels A and the non load bearing wall panels 66 as well as the vertical space between the wall panels 65, 66 themselves may be filled with the final pour of grout 86. It is, of course, necessary to attach further forming members 87, to the non load bearing walls to close all of the seams between the panels. The bracket 81 need not be dammed off but may be embedded in the grout 86. It will be seen in FIGS. 8 and 9 that the non load bearing panels 66 may be fabricated with flanges 89 along their vertical edges in order to reduce the dimensions of the gaps in the exterior surface of the completed wall which must be filled by the grout 86.

Referring to FIGS. 7-10, it will be seen that one important advantage of the use of removable hinge joinder means C and C in accordance with this invention is that it would be impossible to design integral or embedded hinge joinder means which would enable the modules to be elevated and transported by the hinge joinder without interfering with the desired characteristics of the final joint between the overhead panels A and wall panels B. This is due, in part, to the incompatible dimensional considerations introduced by the need for the size of the hinge joinder means to be large and for the size of the space between the panels to be small. The hinge joinder means must be large in order to have sufficient strength to support the weight of the module in transit. The space between the panels must be small in order to insure intimate interconnection therebetween with as little grout as possible in order to approach the characteristics of a monolithic structure. Finally, the use of integral or embedded hinges will not only add to the expense of the structure where some additional interconnecting means is required such as post-tensioning, for example, but may actually interfere with the efficiency of such additional interconnecting means. In other words, the use of embedded or integral hinge joinder means may prevent the overhead panels of a particular floor of a building structure form being post-tensioned to form a single structural unit without introducing undesired stresses into the load bearing wall panels through such hinge joinder means. The fact that the removable hinge joinder means can be repeatedly used in constructing a particular building or in constructing other buildings will provide important economic advantages over the use of integral or embedded hinges.

What is claimed is:

1. A module for use in constructing a building comprising:

a. an overhead panel having a plurality of edges and means embedded therein having no portion extending beyond the boundaries thereof for distributing the weight thereof to a plurality of locations spaced from each other along the edges thereof, said means including a metallic coil at each of said locations having its axis perpendicular to the edge of said panel associated therewith one end of said coil adjacent said edge;

b. a wall panel having a plurality of edges and means embedded therein having no portion extending beyond the boundaries thereof for distributing the weight thereof to a plurality of locations spaced from each other along one of said plurality of edges thereof, said means including a metallic coil at each of said locations having its axis perpendicular to said one edge and with one end of said coil adjacent said one edge; and

c. removable hinge joinder means including a lifting eye for attachment to a lifting means attached to said overhead panel at each of said plurality of locations spaced from each other along said plurality of edges of said overhead panel, said hinge joinder means along one of said plurality of edges of said overhead panel interconnecting said plurality of locations along said one edge of said wall panel to said plurality of locations along said one of said plurality of edges of said overhead panel; said hinge joinder means comprising apertured plates each adapted to be fastened to said panels at one of said locations by means of a threaded bolt passing through said apertured plates and into engagement with the inner surface of said metallic coil at such location;

d. said wall panel having a notch formed in the edge thereof opposite from said one of said plurality of edges thereof and an elongated structural member embedded therein and extending between said one edge and said opposite edge substantially perpendicularly thereto with one end of said elongated member terminating in said notch.

2. A module for use in constructing a building as claimed in claim 1 wherein said one of said plurality of edges of said overhead panel is provided with a pair of planar surfaces each extending at an angle less than with respect to the extended plane of the major surface of said overhead panel adjacent thereto, said pair of planar surfaces intersecting each other to provide a projecting ridge along said one of said plurality of edges of said overhead panel.

3. A module for use in constructing a building as claimed in claim 1 wherein said elongated structural member is provided with a tubular opening extending therethrough from said one of said plurality of edges to said notch in said opposite one of said plurality of edges.

4. A module for use in constructing a building as claimed in claim 1 wherein an edge of said wall panel extending transversely of said one of said plurality of edges thereof is provided with a flange.

5. A module for use in constructing a building as claimed in claim 2 wherein a recessed portion is provided in said pair of planar surfaces on said one edge of said plurality of edges of said overhead panel at each of said plurality of spaced locations therealong.

* l l =l UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 5 Dated December 24. 1974 Inventofls) DLEG V. MIRAM It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 5, line 2, delete "form" and substitute --from-- therefor; Column 5, line 35, "similarly"-should read --Similar1y--;

Column 6, line 16, after "end" insert -and--;

Column 11, line 4, after '-'be"-insert --o:E--;

Column 12, line 7, change-"85" to --86--; v

Q Column 12, line 51, delete-"form" and substitute --from-- therefor Column 13, line 2, after "therewith" insert --with---.

Signed and Sealed this sixth D of January 1976 [SEAL] Attest:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ofParents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1361831 *Mar 22, 1920Dec 14, 1920Crew Walter EConcrete-slab construction
US3369334 *Sep 28, 1965Feb 20, 1968Ralph R. BergBuilding system
US3494092 *Jul 5, 1967Feb 10, 1970Johnson Delp WIntegrated folding slab construction
US3510997 *Aug 26, 1968May 12, 1970Ratych EugeneBuilding system of preformed units
US3562979 *Dec 16, 1968Feb 16, 1971Componoform IncBuilding construction
US3566560 *Feb 14, 1969Mar 2, 1971Wates LtdPre-cast concrete panels
US3621626 *May 7, 1970Nov 23, 1971Alvic Dev CorpSystem for connecting precast concrete slabs together
DK82772A * Title not available
GB1045331A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4557099 *Aug 1, 1983Dec 10, 1985Johnson Delp WMethod of constructing foldable concrete slab buildings with access slots thru ceiling slabs for installing hingeable connectors
US4603522 *Aug 12, 1983Aug 5, 1986Johnson Delp WHingeable connection device for thru the slab connections in foldable building construction
US4669231 *Mar 13, 1986Jun 2, 1987Binistar International, N.V.Building construction and method utilizing modular components
US4819394 *Nov 2, 1987Apr 11, 1989M & J Operations CorporationQuick-connect lateral force coupling
US5584151 *May 15, 1995Dec 17, 1996R.A.R. Consultants Ltd.Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom
US7661231 *Oct 9, 2002Feb 16, 2010Michael E. DaltonConcrete building system and method
Classifications
U.S. Classification52/125.5, 52/259, 52/284, 52/293.1
International ClassificationE04B1/35, E04B1/04, E04B1/02
Cooperative ClassificationE04B1/3538, E04B1/043, E04B1/04
European ClassificationE04B1/35E1, E04B1/04B, E04B1/04