Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3856526 A
Publication typeGrant
Publication dateDec 24, 1974
Filing dateAug 6, 1973
Priority dateAug 6, 1973
Also published asCA1031617A1
Publication numberUS 3856526 A, US 3856526A, US-A-3856526, US3856526 A, US3856526A
InventorsHamb F, Hiller G, Wise A
Original AssigneeEastman Kodak Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Protective layer for photothermographic elements
US 3856526 A
Abstract
On a photographic element comprising at least one heat-processable, photographic layer, a protective layer comprising certain carboxylic polyesters provides improved resistance to abrasion and fingerprinting, resistance to reticulation and surface cracking without adversely affecting sensitomeric properties of the photographic element upon processing. A latent image in such an element can be developed by uniformly heating the element containing the protective layer. Silica particles in the protective layer can enhance resistance of the protective layer to sticking to a heated metal surface and further enable the layer to glide smoothly over the heated metal surface.
Images(12)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Hamb et al.

[ PROTECTIVE LAYER FOR PHOTOTHERMOGRAPHIC ELEMENTS [75] Inventors: Fredrick L. Hamb, Rochester;'Gary L. Hiller, Hilton; Albert W. Wise, Rochester, all of NY.

[73] Assignee: Eastman Kodak Company,

Rochester, NY.

[22] Filed: Aug. 6, 1973 [21] Appl. No.: 385,934

[52] U.S. Cl. 96/48 HD, 96/67, 96/87 R, 96/114, 96/114.l, 117/161 K, 260/47 [51] Int. Cl G036 5/24 [58] Field of Search 96/67, 50 PL, 114.1, 84 R, 96/87 R, 48 HD; 117/161 K; 260/47 Dec. 24, 1974 3,725,070 4/1973 Hamb et al. 96/87 R 3,769,264 10/1973 Wilson et al. 260/75 R 3,772,405 11/1973 Hamb 260/860 3,793,249 2/1974 Hamb et a]. 260/47 C 3,803,096 4/1974 Wilson 260/75 R Primary ExaminerNorman G. Torchin Assistant Examiner-Alfonso T. Suro Pico Attorney, Agent, or Firm-R. E. Knapp [57] ABSTRACT On a photographic element comprising at least one heat-processable, photographic layer, a protective layer comprising certain carboxylic polyesters provides improved resistance to abrasion and fingerprinting, resistance to reticulation and surface cracking without adversely affecting sensitorneric properties of the photographic element upon processing. A latent image in such an element can be developed by uniformly heating the element containing the protective layer. Silica particles in the protective layer can enhance resistance of the protective layer to sticking to a heated metal surface and further enable the layer to glide smoothly over the heated metal surface.

8 Claims, N0 Drawings PROTECTIVE LAYER FOR PHOTOTHERMOGRAPHIC ELEMENTS BACKGROUND OF THE INVENTION 1. Field of the lnvention This invention relates to protective layers comprising certain film-forming carboxylic polyesters for photographic elements comprising at least one heatprocessable, photographic layer, said protective layers providing improved surface properties without adversely affecting sensitometric properties of the photographic element upon processing. In one of its aspects, it relates to photothermographic elements Containing such improved protective layers. In another of its aspects it relates to a method of developing a latent image in a photothermographic element employing the described protective layer.

2. Description of the State of the Art It is well known to employ protective layers, especially overcoat layers, on photographic elements and photothermographic elements. A commonly employed overcoat layer for photothermographic elements comprises cellulose acetate. Such overcoat layers are described, for example, in Belgian Pat. No. 729,043 and U.S. Pat. No. 2,732,304 issued Jan. 24, 1956. Photothermographic materials are also known as described, for example, in Belgian Pat. No. 765,452 issued May 28, 1971; Belgian Pat. No. 765,602 issued May 28, 1971; Belgian Pat. No. 765,601 issued May 28, 1971; Belgian Pat. No. 766,658issued June 30, 1971; Belgian Pat. No. 766,590 issued June 15, 1971; Belgian Pat. No. 766,589 issued June 15, 1971; Belgian Pat. No. 768,071 issued July 30, 1971; U.S. Pat. No. 3,152,903 of Shepard et al., issued Oct. 13, 1964; U.S. Pat. No. 3,152,904 of Sorensen et al., issued Oct. 13, 1964 and U.S. Pat. No. 3,457,075 of Morgan .et al., issued July 22, 1969. Photosensitive elements designed for processing with heat and which lack protective layers such as a protective overcoat layer, are especially susceptible to fingerprint marks and scratches which can become visible upon exposure to room-light handling and processing. Such photosensitive elements also are susceptible to abrasion marks, especially in machine processing wherein the photosensitive layer side of the element is contacted with a metal roller or the like. In addition, the processing of photothermographic elements by contacting the side of the photothermographic element containing the photosensitive layer with the heating means can cause surface cracking, reticulation, and bubbling which can detract from the overall image quality desired. An ethyl cellulose overcoat layer has not satisfactorily overcome these problems. It has also been proposed, as described in copending application Ser. No. 244,850 of Hiller and Hamb, filed Apr. 17, 1972, to employ certain polycarbonate polymers with silica particles in an overcoat for photographic materials. However, such polycarbonate compounds have been considered to be very expensive compared to such overcoat materials as ethyl cellulose.

Various matting agents have also been employed in photosensitive materials. Such matting agents are described, for example, in British Pat. No. 692,592 published June 10, 1953; U.S. Pat. No. 3,411,907 of Whitmore et al., issued Nov. 19, 1968; and U.S. Pat. No.

' terephthalate). However, polymers which have been 3,022,169 of Heckelman issued Feb. 20, 1962. Silica has been employed as a matting agent and for other purposes in photosensitive materials. Matting agents useful for support materials have not been found useful, as a class, for protective overcoat purposes because they do not satisfy one or more of the following characteristics: (l they do not provide sufficient resistance to abrasion and fingerprint marking, (2) they do not sufficiently provide resistance to reticulation and surface cracking, (3) they do not provide sufficient resistance to surface bubbling, (Mfiy are not sufficiently soluble in common organic solvents to provide desired coating compositions on photosensitive layers employing hydrophobic polymeric binders, such as poly(vinyl butyral), polyesters, polycarbonates, and poly(vinyl ketals), and (5) they are not sufficiently transparent for desired viewing of an image. Accordingly,'although there are many polymers that have resistance to high temperature decomposition, such as there are many polymers with so-called glass transition temperatures above about C, these polymers, as a class, are not satisfactory for use as overcoats because other properties are required than the property of high glass transition temperature.

There has, accordingly, been a continuing need to provide improved protective layers, especially protective overcoat layers for photographic materials. This continuing need has been especially important to photographic materials designed for processing with heat, such as photothermographic materials, to provide the desired described properties such as resistance to abrasion, fingerprint marks, and undesired surface properties such as reticulation, surface cracking and surface bubbling, without adversely affecting sensitometric properties of the photographic element.

1 SUMMARY OF THE INVENTION It has been found, according to the invention, that the described properties are provided in a photographic element containing at least one heatprocessable photographic layer, by a protective layer comprising a carboxylic polyester having a glass transition temperature of at least 190C. having repeating units represented by the formula:

wherein A is a radical selected from the group consisting of a. a radical represented by the. formula:

ran-6-ylidene, bicyclo[3.2.l] oct-2-ylidene, and

tricyclo[2.2.l.0 heptan-B-ylidene; each of said bivalent polycyclic radicals having bonded to at least one of the polycyclic rings at'least one radical selected from the group consisting of hydrogen, halogen, such as chlorine, bromine or iodine; phenyl, and alkyl containing 1 to 4 carbon atoms, such as methyl, ethyl or propyl; b. a radical represented by the formula:

-CH CH 2 R18 2 13 R11L wherein i. R and R are the same or different and each is hydrogen or alkyl containing 1 to 6 carbon atoms, such as methyl, ethyl or propyl;

ii. R is alkyl containing 1 to 6 carbon atoms, such as methyl, ethyl, propyl or butyl;

iii. R R R and R are the same or different and each is hydrogen; aryl containing 6 to 12 carbon atoms, such as phenyl or naphthyl; halogen, such as chlorine, bromine or iodine; nitro; cyano; amino or alkoxy containing 1 to 4 carbon atoms, such as methoxy, propoxy or butoxy;

c. a radical represented by the formula:

wherein i. R and R are the same or different and are each hydrogen or alkyl containing 1 to 12 carbon atoms, such as methyl, ethyl, propyl, butyl, or decyl; ii. R R R R R R R and R are the same or different and are each hydrogen or or alkyl having 1 to 6 carbon atoms, such as methyl, ethyl, pro-.

pyl or butyl; with the proviso that R and R are the same and R and R are the same and that the sum of the carbon atoms in R and R equals the sum of the carbon atoms in R and R and equals the sum of the carbon atoms in R R R and R plus 2,

d. a radical represented by the formula:

CH, CH

j 3 CH f. a radical represented by the formula:

and wherein X is a radical selected from the group consisting of designated radicals (a) through (i) and g. a radical represented by the formula:

5 l R, 3 R

wherein i. R and R are the same ordifferent and each is hydrogen; aryl containing 6 to 20 carbon atoms, such as phenyl and naphthyl; halogen, such as chlorine, and bromine; nitro; amino; cyano or alkoxy containing l to 5 carbon atoms, such as methoxy or ethoxy;

ii. R and R are the same or different and each is hydrogen; aryl containing 6 to 20 carbon atoms, such as phenyl or naphthyl; halogen, such as chlorine, bromine or iodine; nitro; cyano; or alkoxy containing 1 to 5 carbon atoms such as methoxy, ethoxy and propoxy;

iii. R and R are the same or different and each is hydrogen; alkyl containing 1 to 6 carbon atoms, such as methyl, ethyl, propyl or butyl; cycloalkyl containing 4 to 6 carbon atoms, such as cyclopentyl or cyclohexyl; or aryl containing 6 to 20 carbon atoms, such as phenyl or naphthyl; or R and R taken together with the carbon atoms to which they are bonded can be a bridged ring moiety, such as containing up to 12 carbon atoms, for example and GUI

or a fused ring moiety such as containing up to 12 carbon atoms, for example,

or monocyclic moiety, such as or a heterocyclic moiety, such as containing 4 to 7 atoms in the ring; and wherein m represents 1 to 100 mole percent and n represents 100-m mole percent.

Alkyl and aryl as employed herein include alkyl and aryl substituted with groups which do not adversely affect the properties of the described photothermographic materials. For example, alkyl includes substituted alkyl wherein the substituent group can be methyl or ethyl or phenyl. Aryl, for instance, includes substituted aryl wherein the substituent group can be alkyl containing 1 to 3 carbon atoms, or can be phenyl.

The described carboxylic polyesters preferably have a glass transition temperature above that employed for processing ofthe photographic material. In some cases it can be desirable to employ silica particles such as silica particles having an average particle size of 0.001 to 0.10 micron improved properties, such as enhanced resistance of the described in the protective layer to provide protective layer to sticking to a heated metal surface and further enable the layer to glide smoothly over the heated metal surface.

Also, according to the invention a process is provided for developing an image in the described photographic element comprising a support having thereon at least one heat developable photographic layer and a protective overcoat layer comprising the described carboxylic polyester by uniformly heating the element, such as from about 80C. to about 250C. for a sufficient time to provide the desired developed image. This process can be carried out by contacting the photographic element with a suitable heating means to provide the described temperature.

DETAILED DESCRIPTION OF THE INVENTION A range of carboxylic polyesters within the designated formula, having glass transition temperatures of at least C., are useful in protective layers according to the invention. In photographic materials designed for processing with heat, a carboxylic polyester protective layer is useful which has a glass transition temperature greater than the processing temperature of the photographic material in order to prevent distortion of the protective layer during heating. The most useful carboxylic polyesters have a glass transition temperature above 200C. and preferably above 220C. Useful carboxylic polyesters have an average molecular weight of at least 10,000 and preferably from about 30,000 to 100,000. The molecular weight can be determined by methods known in the polymer art. The glass transition temperatures, as used herein, unless otherwise specified, can be determined by differential thermoanalysis as described in Techniques and Methods of Polymer Evaluation, Volume 1, Marcel Dekker, Inc., New York, 1966. Useful carboxylic polyesters are soluble in common organic coating solvents such as methylene chloride, chloroform, 1,1,2-trichloroethane, acetone, Z-pentanone, ethyl acetate and toluene. This is a useful property in order to facilitate application of a layer as described. Other useful properties are that the selected carboxylic polyester should be chemically and physically stable and have good flexibility. Useful carboxylic polyesters are described, for example, in US. Pat. No. 3,725,070 of I-Iamb and Wilson, issued Apr. 3, 1973; Research Disclosure, Vol. 101, September 1972, pages 3640 (Item 10120); and Research Disclosure section of the Product Licensing Index, Vol. 92, December, 1971, pages 39-411 (Item 9205).

The described carboxylic polyesters can be prepared employing procedures known in the polymer art, such as described in US. Pat. No. 3,725,070 of I-Iamb and Wilson, issued Apr. 3, 1973. Generally, any of the known esterification procedures used in the polymer art are useful for making the described carboxylic polyesters. These include so-called interfacial procedures, solution procedures and ester procedures known in the art.

Useful carboxylic polyesters are typically completely transparent and colorless when coated on a support. It is necessary, however, if the polymer is not completely transparent that it at least be transparent to the wavelength of radiation employed to provide a latent image in the photographic element when exposure is through the protective layer.

While various methods known II'Il the art can be employed for preparing the described carboxylic polyesters, typical reactants employed when preparing the polymers within the described generic structure are ter ephthalic, phthalic or isophthalic acid with: g

A. moiety A being for example:

3,3,3,3'-tetramethyl-1,1'-spirobi[indan]-6,6-diy1;

3,3 -diethyl-2,3,3,5,5 ',7,7 -heptamethyl-1 ,1

7,7 -dibutyl-3 ,3 '-dipropyl-2-ethyl-1 ,1

7 5,5-bis(2-ethylhexyl)-6,6'-diamino-3,3-dibutyl- 3 ,3 -diethyl-2-propyl-2,7,7'-trimethyl-1,1- spirobi[indan]-6,6-diyl; 3,3-di-isopropyl-2,2,3,3-tetramethyl-5,5,7,7-

tetrapropyl-l ,l '-spirobi[indan]-6,6'-diyl; 2,2-diethyl-3,3-di-sec.-butyl-2-methyl-3,3,7.7-

tetrapropyl-l ,l '-spirobi[indan]-6,6-diyl; 7,7-dibutyl-3,3-di-isopropyl-3,3-di-sec.-butyl-2- ethyl-2,2,2',5,5'-pentamethyl-l,1'-spirobi[indan]- 6,6-diyl; or 3,3-bis(l-ethylpropyl)-3,3'-bis(1-propylbutyl)-2,2- dipropyl-Z ,2-diethyl-5 ,5 ,7 ,7-tetramethyll l spirobi[indan]-6,6-diyl; and moiety X being, for example, those moieties listed for A and the following:

2,2-bis(4-hydroxyphenyl)propane l-phenyl-l ,l-bis(4-hydroxyphenyl )ethane l,l-bis(4-hydroxyphenyl)cycloh'exane 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane The described carboxylic polyesters have a glass transition temperature which is much higher than, for example, cellulose acetate. This property provides an advantage for photothermographic materials enabling the photothermographic materials to be processed at higher temperatures without formation of the described surface defects. In addition, the described carboxylic polyesters do not adversely affect the sensitometric properties of photothermographic materials such as minimum density, maximum density, photographic speed and the like, whereas cellulose acetate, a commonly employed overcoat causes changes in sensitometric behavior.

The concentration of carboxylic polyester which is useful in the protective layer of a photographic element, especially a photothermographic element, according to the invention can vary depending upon the particular photographic element, processing conditions, components in the photographic element, particular carboxylic polyester and the like. A useful concentration range, or coating coverage, is about milligrams to about 400 milligrams or carboxylic polyester per 929'square centimeters of support of the photographic element. An especially useful concentraion of carboxylic polyester in a protective layer of a photothermographic element is about 50 milligrams to about 200 milligrams of carboxylic polyester per 929 square centimeters of support of the photothermographic element.

It is often useful to employ a matting agent, especially silica particles, in the described materials to provide further increase in resistance of the protective layer to sticking to a heated metal surface and further enable the layer to glide smoothly over the heated metal surface. Silica particles are especially useful in the described protective layer. Silica particles typically having an average particle size range of 0.001 micron to 0.05 micron, preferably 0.005 micron to 0.10 micron are useful. Silica products for this purpose are available commercially, such as silica sold under the trade name of Cab-O-Sil which is a registered trademark of Cabot Corporation, USA. A useful silica productis colloidal silica in the form of a dry powder which is mixed with the described carboxylic polyester before coating. This enables writing information on the photographic element with a pencil or ball-point pen after processing.

Another useful product is fSyloid" which is registered trademark of W. R. Grace Company, USA.

The concentration of matting agent, especially silica. which is useful in a protective layer according to the invention can vary depending upon the particular photographic element, processing conditions, particular carboxylic polyester employed, and the like. A useful concentration is about 2 milligrams to about 25 milligrams of silica per 929 square centimeters of support of the photographic element. In photothermographic elements an especially useful concentration is about 5 milligrams to about 15 milligrams of silica per 929 square centimeters of the photothermographic element.

The described protective layer according to the invention can be employed with various photographic elements. Accordingly, one embodiment of the invention is: in a photographic element comprising a support having thereon at least one heat-processable, photographic layer and a protective layer, the improvement comprising as said protective layer a carboxylic polyester having a glass transition temperature of at least 190C. having repeating units represented by the formula of the described generic structure. Especially useful car boxylic polyesters in this embodiment are copolymcrs of (i) terephthalic acid, (ii) 3,3,3',3'-tetramethyl-l,l spirobi[indan]-6,6-diol and (Ill) bisphenol A. This c0- polymer is especially useful in combination with the described silica particles to provide improved resistance to reticulation.

The term bisphenol A asemployed herein refers to the compound 4,4-isopropylidene diphenol also known as 2,2-(para-hydroxyphenyl)propane and 2,2- bis(4-hydroxyphenyl) propane.

A useful embodiment of the invention is: in a photographic element comprising a support having thereon at least oneheat-processable, photographic layer and a protective overcoat layer, the improvement comprising as said protective, overcoat layer a carboxylic poly ester having a glass transition temperature of at least 200C. represented by the formula:

o K o c@c H H wherein K is selected from the group consisting of i. 3 ,3 ,3,3'-tetrarriethyl-l l l-spirobi[indan]-6,6-

diyl, 4,4,4,4-tetramethyl-2,2-spirobi[chroman] 7,7-diyl, and i ii. 9,9-dimethylxanthene-3,6'diyl, m represents 1 to mole percent and n represents l00-m mole percent.

A preferred embodiment of the invention is one in which the described photographic layer comprises:

1. an oxidation-reduction image-forming combination comprising i. a silver salt oxidizing agent with ii. an organic reducing agent, 2. photosensitive silver halide,

3. a polymeric binder, and

4. a so-called activator-toning agent, also known as a toner.

The photosensitive layers and other layers of an element according to the invention and described herein can be coated on a wide variety of supports. Typical supports include cellulose nitrate film, cellulose ester film, poly(vinyl acetal) film, polystyrene film, poly- (ethylene terephthalate) film, poly(ethylene 2,6- naphthalene dicarboxylate), polyesters of 1,1,3- trimethyl-3-(p-carboxyphenyl)-5-carboxyindan and bisphenols, as described in US. Pat. No. 3,634,089 issued Jan. 1 1, 1972,- polycarbonate film and related films or resinous materials, as well as glass, paper, metal and the like. Typically a flexible support is employed, such as a paper support which can be partially acetylated or coated with baryta and/or an alpha-olefin polymer such as a polymer of an alpha-olefin containing 2 to carbon atoms such as polyethylene, polypropylene, ethylene-butene copolymers and the like.

The photographic elements according to the invention, especially photothermographic elements, contain a photosensitive component. The photosensitive component is typically a photosensitive silver salt or complex, such as photosensitive silver halide or a complex or silver with an organic compound such as a silver dye complex. The photosensitive silver halide is especially useful as a photosensitive component because of its high photosensitivity. A typical concentration of photo sensitive component in a photothermographic element according to the invention is about 0.005 to about 0.50 moles of photosensitive component per mole of oxidizing agent in the photothermographic element. Especially useful photosensitive silver halides include silver chloride, silver bromide, silver bromoiodide, silver chlorobromoiodide, or mixtures thereof. The photosensitive silver halide can be coarse or fine-grain, very fine-grain silver halide being especially useful. The photosensitive silver halide can be prepared by any of the procedures known in the photographic art. Such procedures and forms of photosensitive silver halide are described, for example, in the Product Licensing Index, Volume 92, December, 1971, publication 9232, pages 107-110, paragraph-l. g

The photosensitive silver halide employed according to the invention can be unwashed or washed, can be chemically sensitized, can be protected against the production of fog and stabilized against loss of sensitivity during keeping, as described in the Product Licensing Index, Vol. 92, December, 1971, publication 9232, pages 107-110.

Photographic elements according to the invention can contain development modifiers that function as speed-increasing compounds, developing agents, hardeners, antistatic layers, plasticizers and lubricants, coating aids, brighteners, spectral sensitizing dyes, absorbing and filter dyes, also as described in the Product Licensing Index, Vol. 92, December, 1971, publication 9232, pages 107-110.

The described photothermographie elements can comprise an oxidation-reduction image-forming combination which contains an oxidizing agent, typically a heavy metal salt oxidizing agent. The heavy metal salt oxidizing agent can be a heavy metal salt of an organic acid such as a fatty acid which is resistant to darkening upon illumination. An especially useful class of heavy metal salts of organic acids is represented by the water insoluble silver salts of long-chain fatty acids which are stable to light. Compounds which are suitable silver salt oxidizing agents include silver behenate, silver stearate, silver oleate, silver laurate, silver hydroxystearate. sil ver caprate, silver myristate and silver palmitate. Silver salts can be employed as the silver salt oxidizing agents which are not silver salts of long-chain fatty acids. Such silver salt oxidizing agents which are useful according to the invention include, for example, silver benzoate, silver benzotriazole, silver terephthalate, silver phthalate, and the like. Oxidizing agents which are not silver salts can be employed if desired such as gold stearate, mercury behenate, gold behenate, and the like, but silver salts are preferred. Combinations of the described oxidizing agents can be employed if desired.

Reducing agents which can be employed in the described oxidation-reduction image-forming combination include, for example, substituted phenols and naphthols, for example, bis-B-naphthols. Suitable bis-B- naphthols include, for example, 2,2'-dihydroxy-1,1'- binaphthyl, 6,6dibromo-2,2-dihydroxy- 1 ,1 binaphthyl, 6,6-dinitro-2,2-dihydroxy-l,1-binaphthyl and/or bis-(Z-hydroxy-l-naphthyl)methane. Other reducing agents which can be employed in photographic elements according to the invention include polyhydroxybenzenes such as hydroquinone silver halide de veloping agents, e.g., hydroquinone, alkyl-substituted hydroquinones such as tertiary butyl hydroquinone, methyl hydroquinone, 2,5-dimethyl hydroquinone and 2,6-dimethyl hydroquinone; catechols and pyrogallols; chloro-substituted hydroquinones such as chloro'hydroquinone or dichloro hydroquinone; alkoxysubstituted hydroquinone such as methoxy hydroquinone or ethoxy hydroquinone; aminophenol developing agents, such as 2,4-diaminophenols and methylaminophenols; ascorbic acid developing agents such as ascorbic acid, ascorbic acid ketals and ascorbic acid derivatives; hydroxylamine developing agents; 3- pyrazolidone developing agents such as l-phenyl-3- pyrazolidone and 4-methyl-4-hydroxymethyl-1-phenyl- 3-pyrazolidone and the like. Reducing agents which are also useful include sulfonamidophenols as described in pending U.S.S application Ser. No. 272,832 of Evans and McLaen, filed July 18, 1972 and now US. Pat. No. 3,801,231. Combinations of the described reducing agents can be employed if desired.

It is often desirable to employ a so-called activatortoning agent in the photothermographic elements according to the invention to obtain a desired image. The activator-toning agent is typically useful in a range of concentration, such as a concentration of about 0.10 moles to about 1.1 moles of activator-toning. agent per mole of oxidizing agent in the photothermographic element. A typical suitable activator-toning agent is a bet erocyclic activator-toning agent containing at least one nitrogen atom as described in Belgian Pat. No. 766,590 issued June 15, 1971. Typical activator-toning agents include, for example, phthalimide, N- hydroxyphthalimide, N-potassium phthalimide, N- silver phthalimide, N-mercury phthalimide, succinimide, N-hydroxynaphthalimide, and/or N- hydroxysuccinimide. Other activator-toning agents which can be employed include phthalazinone, 2- ace tylphthalazinone, and the like.

It is desirable in some cases to employ an image stabilizer and/or image stabilizer precursor in the described elements of the invention, Typical image stabilizers or stabilizer precursors are described, for example, in Belgian Pat. No. 768,071 issued July 30, 1971. Typical stabilizer precursors include, for example, azothioethers and blocked azole thione stabilizer precursors as de scribed in this Belgian patent and the stabilizers described in U.S. Pat. No. 3,707,377 issued Dec. 26, 1972.

A photographic element, especially a photothermographic element, as described according to the invention can contain various colloids alone or in combination as vehicles, binding agents and in various layers, including the described protective layer. Suitable materials can be hydrophobic or hydrophilic depending on the particular means of processing employed. They are transparent or translucent and include both naturallyoccurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic and the like; and synthetic polymeric substances such as water soluble polyvinyl compounds like poly(vinyl pyrrolidone), acrylamide polymers and the like. Other synthetic polymeric compounds which can be employed include dispersed vinyl compounds such as in latex form and particularly those which increase dimensional stability of photographic materials. Effective polymers include water-insoluble polymers of alkyl acrylates and methacrylates, acrylic acid, sulfoalkyl acrylates, methacrylates and those which have cross-linking sites which facilitate hardening or curing as well as those having recurring sulfobetaine units as described in Canadian Pat. No. 774,054. Especially useful high molecular weight materials and resins include poly(vinyl butyral), cellulose acetate butyrate, poly(methyl methacrylate), poly(vinyl pyrrolidone), ethylcellulose, polystyrene, poly(vinyl chloride), chlorinated rubber, polyisobutylene, butadiene-styrene copolymers, vinyl chloridevinyl acetate copolymers, copolymers of vinyl acetate, vinyl chloride and maleic acid andpolyvinyl alcohol.

If desired, the photosensitive silver halide employed in the described photothermographic elements can be prepared ex situ, that is, away from other components of the photothermographic materials, and/or in situ,

that is, in with components of the described materials.

The photosensitive silver halide can be prepared in situ such as described in U.S. Pat. No. 3,457,075 of Morgan et a1. issued July 22, 1969.

The photosensitive layers and other layers according to the invention can be coated by various coating procedures including dip coating, air knife coating, curtain coating or extrusion coating using hoppers such as described in U.S. Pat. No. 2,681,294 of Beguin issued June 15, 1954. If desired, two or more layers can be coated simultaneously such as described in U.S. Pat. No. 2,761,791 of Russell issued Sept. 4, 1956 and British Pat. No. 837,095.

Spectral sensitizing dyes can be used in the described photographic elements and photothermographic elements of the invention to confer additional sensitivity to the elements of the inveniton. Useful sensitizing dyes are described, for example, in the Product Licensing Index, Vol. 92, December, 1971, publication 9232, pages 107-110, paragraph XV.

Photographic elements according to the invention containing the described protective layer can be processed by various methods including processing in alkaline solutions containing conventional developing agents and by processing by other means as described in the Product Licensing Index, Vol. 92, December, 1971, publication 9232, pages 107-110, paragraph XXIII.

The protective layers employed according to the invention can be provided in elements designed for color photography, for example, elements containing colorforming couplers or elements to be developed in solutions containing color-forming couplers; or in so-called false sensitized color materials such as described in U.S. Pat. No. 2,763,549 of Hansen issued Sept. 18, 1956.

After exposure of the described photothermographic element according to the invention, the resulting latent image can be developed merely by heating the element to moderately elevated temperatures. This merely involves heating the described photothermographic element overall to about C. to about 250C. such as for about 0.5 seconds to about 60 seconds. By increasing or decreasing the length of time of heating, a higher or lower temperature within the described range can be employed depending upon the desired image. A developed image is typically produced within several seconds, such as about 0.5 seconds to about 60 seconds.

Any suitable means can be used for providing the desired processing temperature range. The heating means can be, for example, a simple hot plate, iron or roller; or hot air convection heating means; or dielectric heating means. As described, the photothermographic element containing the protective layer of the invention can be contacted with the heating means with the protective layer contacting the heating means directly.

If desired, one or more components of the photographic element, or photothermographic element, can be in one or more layers of the element. For example, in some cases it can be desirable to include certain percentages of the reducing agent, activator-toner, image stabilizer and/or stabilizer precursor in the described protective layer. This can reduce migration of certain addenda throughout the layers of the element.

The following examples are included for a further understanding of the invention.

EXAMPLE 1 A photothermographic element is prepared as follows:

A silver behenate dispersion, designated as dispersion A, is prepared by ball-milling the following components for 72 hours:

silver behenate 168 g. behenic acid 128 g. poly(vinyl butyral) g. phthalimide 34 g. acetone-tolucne (1:1 by volume) 2 liters After ball-milling, 300 ml. of an acetone solution containing 1% by weight lithium bromide is added to the resulting dispersion which is then mixed thoroughly for 16 hours.

A photothermographic composition is prepared by combining 639 ml. of dispersion A with the following components in the order indicated:

acetone-methanol solution (33:1 by

volume) containing 0.1% by weight 3-carboxymethyl-5-[3- methyI-Z-thiazolidinylidene)-1- methylethylidenel-rhodanine 18.0 ml.

-Continued acetone containing 10% by weight 2.2'-dihydroxy-l,l'-binaphthyl 149.0 ml.

acetone containing 10% by weight 2.4-dihydroxybcnzophcnonc 22.5 ml.

acetone containing 1% by weight 5-acetyl-2-benzyloxycarbonylthio- 4-mcthylthiazole 72.0 ml.

acetone-toluene (1:1 by volume) 225 ml.

This photothermographic composition is coated at 6.0 g. of photothermographic composition per 929 square centimeters on a paper support. The coverage corresponds to 6.46 mg. of silver per dm After the coating is dry, the resulting photothermographic element is overcoated with a dichloromethane-methanol solution (19:1 by volume) containing 5% by weight ofa copolymer of (i) terephthalic acid, (ii) 3,3,3,3'-tetramethyll,1'-spirobi[indan] 6,6-diol and (iii) bisphenol A. This copolymer has a glass transition temperature of 254C. and is represented by the formula:

H CH C 3 3 e ag Q 11 1| C CCE2 3 3 o 3 0 at 3 O o (lOOk) wherein k is 30 mole percent. The solution was overcoated onto the photothermographic element at a rate of solution of copolymer per dm sufficient to provide 24.75 mg. of copolymer per dm The overcoat is permitted to dry to provide a transparent, adherent coating. The overcoated photothermographic element is then imagewise exposed for 1 second to tungsten light to provide a latent image. The latent image is developed by uniformly heating the element by holding the side of the element opposite the overcoat layer against a heated metal block at 160C. for 4 seconds. A neutral, (jet black) developed image having a beige background results.

The resulting, overcoated photothermographic element is not susceptible to fingerprint marks and abrasion, exhibits no surface cracking or reticulation, and exhibits no surface bubbling.

The copolymer is amorphous and is more than 5% by weight soluble in organic solvents such as methylene chloride, chloroform, 1,1,2-trichl0roethane, acetone, 2-pentanone, ethyl acetate and toluene. No adverse sensitometric effects are observed in the photothermographic element as a result of the copolymer overcoat.

EXAMPLE 2 This is a comparative example.

The procedure set out in Example 1 is repeated with the exception that the photothermographic element is not overcoated with the described copolymer of Example l.

The resulting developed image is neutral (jet black) with a beige background. However, the element is susceptible to abrasion and fingerprinting which becomes visible upon room-light exposure, such as after 1 week storage under -foot candles of light and 80% relative humidity.

EXAMPLE 3 The procedure set out in Example 1 is repeated except that silica particles are mixed with the described polyester before overcoating the photothermographic element to provide an overcoat containing 10 mg. of silica per 929 square centimeters of support. The silica particles have an average particle size of 0.001 to 0.10 microns.

Results are observed similar to those of Example 1.

EXAMPLE 4 This is a comparative example.

The procedure set out in Example 1 is repeated except that a copolyester (Tg is 127C.) represented by the formula:

0 H II OCH CH -O C@C 9 3 t E? 0 O 3 O-- C CH3 y wherein x is 60 mole percent and y is 40 mole percent, is employed in place of the copolymer described in Example l, and'with the exception that the overcoat side of the imagewise exposed photothermographic element is contacted with the described,'heated metal block at C. for 4 seconds. 9

Results similar to Example 1 are observed except that the overcoat is susceptible to abrasion and fingerprint marks and is very soft compared to the overcoat of Example l.

CD -O EXAMPLES 5-9 Other copolymers employed as overcoats for abrasion resistance as in Example 1 are as follows:

EXAMPLE 5 lOO-l wherein l is about mole percent. CH

EXAMPLE 6 O O C C 5 II II 10 wherein fis about mole percent.

EXAMPLE 9 CH CH CH3 CH CIH CHCH CH CH3 0 O C C II H CHCH CH CH3 CH CH C CH CH CH CH CH o 30 CH CH lOO-p O CH 3 3 3 wherein p is about 25 mole percent.

EXAMPLE 7 lOO-h wherein b is about 20 mole percent. wherein h is about 15 mole percent. I

The invention has been described in detail with par- EXAMPLE 8 ticular reference to preferred embodiments thereof,

17 18 but it will be understood that variations and modifica- 26 25 tions can be effected within the spirit and scope of the 2 2 invention. 2 R

What is claimed is: R 1. In a photothermographic element having a protec- 23 tive layer, the improvement comprising as said protective layer a. carboxylic polyester having a glass transi- R R tion temperature of at least 190C. represented by the R 2]. formulazh 10 wherein I 1. R and R are the same or different and are each- 0 A O C Q C hydrogen or alkyl containing 1 to 12 carbon u H atoms, 0 0 ii. R R R R R R, R and R are the same or different and are each alkyl having 1 to F" 6 carbon atoms;

In n with the proviso that R and R are the same and R O X O C and R are the same and that the sum of the carbon n n atoms in R and R equals the sum of the carbon O atoms in R and R and equals the sum of the carbon atoms in R, R, R and R plus 2,

d. a radical represented by the formula:

wherein A is a radical selected from the group consisting of 3\ 3 a. a radical represented by the formula: 25

CH 2 R R l c 9 l o R ca 30 2 ll 8 R R CH n wherein a l 1. R R R and R are the same or different and e a radlcal represented by the formu a each are hydrogen, halogen or alkyl containing 1 0 to 4 carbon' atoms, 7 ii. R is a bivalent polycyclic radical selected from the group consisting of Z-norbornylidene, hexahydro-4,7-methanoindane-5-ylidene, decahydro- 3 3 l,4:5,8-dimethanonaphth-2-ylmethylene, octah- 4O ydro-4,7-methanoisobenzofuran-6-ylidene, bicyand Clo [321] ocglylidenes and tricycle f. a radical represented by the formula: [22.10 heptan-3-ylidene; each of said bivalent polycyclic radicals having bonded to at least one of the polycyclic rings at least one radical selected from the group consisting of hydrogen, halogen, phenyl and alkyl containing 1 to 4 carbon atoms; 5 b. a radical represented by the formula:

and wherein X is a radical selected from the group consisting of designated radicals (a) through (f) and g. a radical represented by the formula: I

l wherein I Lt i. R and R are the same or different and each are R R hydrogen or alkyl containing 1 to 6 carbon atoms; wherein ii. R is alkyl containing 1 t 6 carbon atoms; i. R and R are the same or different and each are iii. R, R, R and R are the same or different hydrogen, aryl containing 6 to 20 carbon atoms,

and each are hydrogen, aryl containing 6 to 12 halogen, nitro, amino, cyano or alkoxy containcarbon atoms, halogen, nitro, cyano, amino or ing Ho 5 carbon atoms; alkoxy containing 1 to 4 carbon atoms; ii. R and R are the same or different and each are c. a radical represented by the formula: hydrogen, aryl containing 6 to 20 carbon atoms,

halogen, nitro, cyano or alkoxy containing 1 to carbon atoms;

iii. R and R are the same or different and each are hydrogen, alkyl containing 1 to 6 carbon atoms, cycloalkyl containing 4 to 6 carbon atoms, or aryl containing 6 to carbon atoms, or R and R taken together with the carbon atom to which they are bonded can be a monocyclic, bicyclic or heterocyclic moiety containing 4 to 7 atoms in the ring;

m represents 1 to 100 mole percent and n represents 100-m mole percent.

2. In a photothermographic element having a protective overcoat layer, the improvement comprising as said protective, overcoat layer a carboxylic polyester having a glass transition temperature of at least. 200C. represented by the formula:

20 spirobi[indan]-6,6-diol and (iii) bisphenol A.

4. A photothermographic element as in claim 1 wherein said protective layer comprises about 50 mg. to about 300 mg. of said carboxylic polyester per 929 square centimeters of support.

5. A photothermographic element having thereon a protective layer as in claim 1 wherein said photothermographic element comprises a support and I. an oxidation-reduction image-forming combination comprising i. a silver salt oxidizing agent with ii. an organic reducing agent,

ll. photosensitive silver halide,

III. a polymeric binder, and

IV. an activator-toning agent.

6. In a photothermographic element having thereon a protective layer wherein said photothermographic element comprises a support and a. an oxidation-reduction image-forming combination comprising i. silver behenate with ii. a sulfonamidophenol reducing agent,

b. photosensitive silverhalide,

c. a poly(vinyl butyral) binder, and

d. an activator-toning agent comprising N- hydroxynaphthalimide, and a protective layer the improvement wherein said protective layer is a copolymer of (i) terephthalic acid, (ii) 3,3,3,3-

tetramethyl-l ,l -spirobi[indan]-6,6'-diol, and (iii) bisphenol A, said copolymer having a glass transition temperature of at least 190C.

7. A process of developing an image in a photothermographic element having thereon a protective overcoat layer comprising a carboxylic polyester as defined in claim 1 comprising heating said element from about C. to about 250C.

8. A process as in claim 7 wherein said heating is carried out for about 0.5 to about 60 seconds.

Pew Weiss sisiss (5/ 9) u M @EBLTEMQATE @LF Ufiilll Eatent No. 3,856 5 526 Dated December 2 4-, 191m Inventofls) Fredrick L. Hamb Gary L liller and Albert W. Wise It is certified that error appears in the above-identified patent and that said Letters Patent are hereby eorrected as shown below:

FID- mflr In the Abstract, line 6, "sensitomeric should read sensitometric-- Column 6 line H6, after ester insert ----interchange---n Column 7, line 13, "or should read -----of--.

Column 8 line 1 after "which is insert ---a---- Column 9, line 26, "or should read ---oi Column 12, line 67", weight 3-carboxymethyl-5-[3-" should read weight 3-ca.rboXymethyl-5-[(3- ----u Signed and sealed this 15th day of July 1.975.,

(SEAL) Attests C E XARSHALL DANN RUTH Ca MASGN Commissioner of Patents Attesting Officer and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3079837 *Mar 15, 1960Mar 5, 1963Agfa AgProtective coatings for photographic films
US3190197 *Aug 11, 1960Jun 22, 1965Eastman Kodak CoProtective colloidal silica lacquer for developed photographic prints
US3317466 *Jul 1, 1963May 2, 1967Eastman Kodak CoThree-dimensional polycyclic bisphenol polycarbonates and polyesters
US3634089 *Apr 4, 1969Jan 11, 1972Eastman Kodak CoFilm-forming polyester compositions
US3656954 *Aug 26, 1969Apr 18, 1972Agfa Gevaert NvPhotographic material with improved surface properties
US3657185 *Apr 2, 1970Apr 18, 1972Minnesota Mining & MfgCopolymers of phenylindan dicarboxylic acid and an aromatic dihydroxy compound
US3725070 *May 7, 1971Apr 3, 1973Eastman Kodak CoPhotographic element comprising film forming polymeric support
US3769264 *Nov 1, 1971Oct 30, 1973Eastman Kodak CoFilm forming condensation polymers
US3772405 *Feb 2, 1972Nov 13, 1973Eastman Kodak CoProcess for preparing aromatic diester containing copolyesters and products obtained thereby
US3793249 *Jun 30, 1971Feb 19, 1974Eastman Kodak CoPolyesters of 2,2'-spirobi(chroman)diols
US3803096 *Dec 1, 1972Apr 9, 1974Eastman Kodak CoPolyesters from hydroxymethyl-phenylindans
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3893860 *Jul 16, 1974Jul 8, 1975Eastman Kodak CoPhotothermographic element and process
US3997346 *Sep 11, 1974Dec 14, 1976Fuji Photo Film Co., Ltd.Method for stabilizing the image of a thermally developable photosensitive material
US4021245 *Apr 30, 1975May 3, 1977Fuji Photo Film Co., Ltd.Photographic light-sensitive material
US4022622 *Mar 1, 1976May 10, 1977Agfa-Gevaert N.V.Dispersing polymeric particles in aqueous medium for coating silver halide emulsion layers
US4123282 *Aug 9, 1976Oct 31, 1978Minnesota Mining And Manufacturing CompanyPhotothermographic toners
US4199615 *Feb 18, 1977Apr 22, 1980Energy Conversion Devices, Inc.Simultaneous imaging and development by electromagnetic radiation above a threshold value
US4463162 *Dec 4, 1981Jul 31, 1984Asahi-Dow LimitedPolynuclear fused aromatic ring type polymer and preparation thereof
US4552949 *Oct 21, 1983Nov 12, 1985General Electric CompanyPolycarbonate of spiro dihydric phenol
US5928857 *Dec 18, 1996Jul 27, 1999Minnesota Mining And Manufacturing CompanyAdhesion promoting resin and group ia or iia metal soap; spectrally sensitized to infrared or red light; bonding strength
US6436616Apr 14, 2000Aug 20, 2002Eastman Kodak CompanyPhotothermographic element with reduced woodgrain interference patterns
US6599686Jun 5, 2002Jul 29, 2003Eastman Kodak CompanyPhotothermographic element with reduced woodgrain interference patterns
US6746831Jan 27, 2003Jun 8, 2004Eastman Kodak CompanyBarrier layer capable of retarding diffusion of or reacting with long chain aliphatic carboxylic acids formed from their silver salts which are non-photosensitive source of reducible silver ions
EP1246002A2 *Mar 18, 2002Oct 2, 2002Eastman Kodak CompanyThermally developable imaging materials containing polyester polymeric barrier layer
Classifications
U.S. Classification430/353, 528/183, 430/542, 428/481, 528/191, 528/193, 430/619, 430/533, 528/184, 528/190, 430/355, 430/336, 430/617
International ClassificationG03C1/498, G03C1/76
Cooperative ClassificationG03C1/7614, G03C1/49872
European ClassificationG03C1/498F, G03C1/76D