Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3857232 A
Publication typeGrant
Publication dateDec 31, 1974
Filing dateJul 10, 1973
Priority dateFeb 19, 1973
Also published asDE2308138A1, DE2308138B2
Publication numberUS 3857232 A, US 3857232A, US-A-3857232, US3857232 A, US3857232A
InventorsK Heinrich, N Heichlinger
Original AssigneeHoechst Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Filament yarn and process to prepare same
US 3857232 A
Abstract
The present invention concerns a process for preparing essentially smooth filament yarns having several loose filament ends stick out, wherein at least a portion of the used filaments has a flex abrasion resistance of below abt. 1,500 revol. and wherein a filament bonding is imparted in known manner to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below 1,500 revol. break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns may, optionally, be temporarily interlaced by known methods so as to ameliorate the filament bonding and the filament yarns so obtained. These yarns are distinguished by excellent uniform characteristics all over their length and may be worked up to fabrics having an extremely low tendency to pilling.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Heinrich et al.

FILAMENT YARN AND PROCESS T0 PREPARE SAME Inventors: Karl Heinrich, Bobingen; Norbert l-leichlinger, Konigsbrunn, both of Germany Farbwerke Hoechst Aktiengesellschaft vormals Lucius & Bruning, Frankfurt/Main, Germany Filed: July 10, 1973 Appl. No.: 378,017

Assignee:

Foreign Application Priority Data Feb. 19, 1973 Germany 2308138 US. Cl. 57/157 R, 57/140 R, 57/157 TS,

57/157 F Int. Cl .1 D02g 3/34 Field of Search... 57/2, 140 BY, 157 R, 157 F,

57/157 S, 157 TS, 140 R 7/1962 Breen 57/157 F 3/1964 Stamp et al. 57/140 BY 3,214,899 11/1965 Wininger, Jr. et al 57/157 F X 3,398,220 8/1968 Port et al. 57/157 TS X 3,488,941 l/l970 Asaka 57/157 TS Primary Examiner-John W. Huckert Assistant Examiner-Charles Gorenstein Attorney, Agent, or Firm-Connolly and l-lutz [5 7] ABSTRACT The present invention concerns a process for preparing essentially smooth filament yarns having several loose filament ends stick out, wherein at least a portion of the used filaments has a flex abrasion resistance of below abt. 1,500 revol. and wherein a filament bonding is imparted in known manner to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below 1,500 revol. break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns may, optionally, be temporarily inter- 6 Claims, 1 Drawing Figure FILAMENT YARN AND PROCESS TO PREPARE SAME Threads made of synthetic highpolymers normally come out of the production as smooth filamentthreads, which, when being further processed, result in textile fabrics of an accordingly smooth surface lacking the usual soft touch and covering power of fabric surfaces made of spun fiber yarns. Though attempts have been made to ameliorate thesepropertiesby texturizing the filament threads, same did not bring the results hoped for; obviously, it is of decisive importance, for evaluation of the texturized fabric surface, whether some fibers stick out of the fiberryarns.

The production of spun fiber yarns requires many processing steps, all of them implying a high portion of wage costs. Therefore, process methods have been developed which are supposed to enable the production of filament yarns having filament ends stick out, with-' out having to take to cutting the synthetic filaments to: staple fibers and to subsequent secondary spinning.

The German Offenlegungsschrift No. 1660 606 describes a processing method for the'production of such fluffy yarn, wherein the surface of drawn filament yarn is ripped and unraveled mechanically by rotating brushes. This process remains, however, limited to foamed thermoplastic polymers and, moreover, it is obviously applicable to coarse yarns only.

According to the British Pat. No; 924 086 it is said to be possible to draw simultaneously filaments of different stretchability in such a way, that one of the components breaks and thus provides the loose ends as desired.

British Pat. No. 971 573 claims a similar process, jointly submitting two yarns of different elongation at break to a simultaneous drawing and texturizing process, whereby the stretching force applied has to be adjusted so as to break the yarn filaments with a lower elongation at break. This process provides bulk yarns with filament ends sticking out, which may be transcess is rather troublesome and, moreover, includes quite a series of drawbacks.

When drawing and texturizing treatments are arranged simultaneously, the drawing step is set at the beginning of the heater built into the false twist texturizing apparatus. Since this known treatment implies that part of the filaments breaks within the stretch area, the

loose ends jam the twister of the texturizing apparatus again and again. A filament never breaks before being exposed to too high a tensile stress. The passage, however, which immediately follows the break, is not picked up right away by the stretching godet, so that it remains unstretched or, at most, partially stretched over a certain length. An irregular stretch on one hand is the reason for an irregular dyestuff adsorption on the other hand and thus, of course, an uneven coloration of the woven or knitted fabrics made thereof is the result. Moreover, filament yarns prepared as per the state of the art, several filament ends of which stick out, show a strong tendency to pilling such as it is known from spun fiber yarns made of high polymers.

Therefore, it is object of the present invention to de-' velop an operationally safe process for preparing nontexturized filament yarns, wherein the filaments of the Yam Show uniform Phases-aware?! er lh i le th and may be worked up to fabrics having an extremely low tendency to pilling.

This problem could be solved by applying a transversal stress to the filament yarns consisting, at least partially, of filaments having a flex abrasion resistance of less than about 1,500 revolutions. Due to the transversal stresses applied to the yarn, the filaments with the reduced flex abrasion resistance break in irregular intervals. In order to simplify post-treatment, the obtained filament yarns may further be submitted to a subsequent treatment to ameliorate filament bonding.

For the production of the non-texturized filament yarns according to the invention. all filaments are appropriate that consist, at least partially, of filaments having originally a folding and rubbing wear resistance of less than 1,500 revolutions, or the flex abrasion resistance of which may be brought down to this level by known methods. Best suitable are filaments the flex abrasion resistance of which is below 1,000 revol., especially below 500 revol. The value of the flex abrasion resistance influences the number of loose filament ends produced by the process according to the invention, whereby the filaments having the lower flex abrasion resistance break easier under the transversal stress. 0n

the other hand, the number of loose filamentends may also'be influenced by the portion within the total filament yarn of filaments having a lower flex abrasion resistance. The more the flex abrasion resistance of woven and knitted materials is reduced, the less they show a tendency to pilling. However, as the term of flex abrasion resistance already implies, it is normally impossible'to produce or utilize practically useful filament yarns havinga folding and rubbing wear resistance of, e.g., zero; However, in special cases requiring woven or knitted fabrics of particularly low tendency to pilling, filaments having flex abrasion resistance values of, e.g., less than 5 revol. 'may be used:

The flex abrasion'resistance is measured by means of the flex abrasion device suchas it is described e.g. by Griinewald in Chemiefasern 12 (1962), pg. 853. By revol, i.e., revolutions, as used herein with reference to flex abrasion resistance is meant cycles. This is clearly understood to one skilled in the art, and also from the property of flex abrasion resistance in connection with which the term is used as well as from the device employed in measuring said property as described in said publication just cited in this paragraph. Filaments having a reduced flex abrasion re- Ari average flex abrasion resistance of abt. 1,500. revolutions is linked to an average molecular weight of abt. 12,500, whilst flex abrasion resistance values below 10 revol. may be linked to average molecular weights of abt. 8,000.

Polyethylene-terephthalate filaments of so low a molecular weight cannot be melt-spun on an economically reasonable basis due to the low fusion viscosity of the polymers; they may, however, be prepared e.g. of the Po ymers .E, Dsmsshs et sls sss f 9-. Q.

within the said ranges of flex abrasion resistance values( It depends on the use intended, whether all the filaments of the filament yarn may have the desired low flex abrasion resistance. of less than 1,500 revol. and thus produce loose filament ends or whether only a portion of the filaments has this property while the rests shows a high flex abrasion resistance and, therefore, does not break during exposure to transversal stress. In order to attain a sufficient yarn strength, slightly tighter interlacing of the filaments has to be chosen in the first case, whilst in the latter case sufficient yarn strength is guaranteed anyway by the filaments. Filament yarns blended at 7:3 to 3:7 of filaments having a lower flex abrasion resistance (below 1,500 revol.) with filaments, resistance of which exceeds 1,500 (e.g. 3,000 revol.), resulted in knitted or woven fabric which excels in especially attractive appearance and touch of the product and by excellent wear as well. Furthermore, titer, profile and number of the filaments, i.e., the total titer of the filament yarn used, may be determined freely as best they suit-the use in mind. Most often the titer will remain within the range of from 1 to dtex per filament and of below 300 dtex for the yarn, usually set for textile application purposes; however, special purposes such as decorative fabric may also require higher titers. In case that different filaments are used to make up a yarn, their titers and cross sections may differ as well, of course; filaments may also consist of diverse raw materials so that their diversified characteristics may contribute to realize further special effects, such as those caused by use of mixture yarns or coloured twist yarns due to the fact that the different components absorb the applied dyestuff differently; the flame resistance may be increased by using yarn components which are frame-proof or flameretarding; yarns of a potential crimp effect may be prepared by using bicomponent threads or filaments of different shrinkage. On the other hand it is also possible, of course, to modify conveniently the dyeing reaction of the filaments so as to adapt same to enable uniform colorations. Since in the process according to the invention the filaments are regularly drawn before breaking, a uniform coloration all over their total length including the loose ends is guaranteed, differing from known processing methods wherein overstretching causes the break of the filaments while drawing same.

A preferred embodiment of the invention is represented by essentially smooth filament yarns consisting of component mixtures showing individually diversified titers and where the yarn component of the lowest individual titer provides the loose filament ends sticking out of the yarn.

It is generally useful to mix the individual components while processing various filaments into a filament yarn. Mixing may take place at anyone of the different preceding processing stages. For instance, the two kinds of filaments may be spun either from one single spinning nozzle or from two adjacent spinning nozzles as described for-example in British Pat. No. l 208 801. A particularly simple mixing method is to ply the different yarn components before drawing.

The application of atransversal stress to the filament yarns, necessary according to the invention for preparing crimp-free filament yarns with individual loose ends, may be realized, for example, by twisting the filament yarns. Depending on the applied torsion per length unit, a larger or smaller number of threads are breaking in the filament yarns according to the invention. Thus it is possible to prepare these yarns, for instance, by using regular draw-twist devices. Another form of transversal stress is to move the filament yarns to be treated around a thread guide having a small diameter. When chosing this form of the process according to the invention, it is very important to make sure that the processing conditions are set in such a way that overstretching at the thread guide devices and crimping of the thus treated threads be prevented. It is also possible to apply a combination of these two embodiments of transversal stress.

Though the filaments with a lower flex abrasion resistance break in irregular intervals under application of transversal stress, the loose filament ends stick out of the filament yarn in a regular not in a periodical distribution all over its length. Contradictory to' the aforesaid, the hitherto known methods for preparing filament yarns with loose ends, breaking the filaments by overstretching during the drawing process, very easily produced a simultaneous break of numerous filaments and thus lead at least to an irregular accumulation of loose filament ends.

For the execution of the process according to the invention all such filament yarns may be used, that consist at least partially of filaments having a flex abrasion resistance below 1,500 revol. These yarns may comprise, e.g highmolecular polyamides, polyesters, polyolefins, polyacryl-nitriles, cellulose or threadforming copolymers or derivatives of these materials.

The filaments used should be drawn evenly and thoroughly before applying the transversal stress according to the invention for producing the individual loose filament ends. in orderto prevent processing difficulties, it is necessary that the filament yarns used do not show yet any broken single filaments immediately after being drawn. The rear transversal stress should not be applied before filament bonding has increased sufficiently so as to avoid sliding open of the broken ends. A particularly simple process is twisting the filaments, e.g., by means of a ring twister. A torsion is here applied to the filament yarn as it is usually done for fiber'yarns. This twist is at the same time sufficient as transversal stress for breaking the individual filaments with a reduced flex abrasion resistance. The lower limit of the twist required (in revol./m) for still'producing a yarn according to the invention, depends as well on the flex abrasion resistance of theyarns or yarn components used as of their titer, too and may be easily determined in each case by pre-testing. However, to increase the filament bonding other knownmethods are also applicable, such as interlacing in a gas jet orexposure to electrostatic forces, whereby the necessary transversal stress may then be built up by moving the filaments around a thread guide having a small diameter. If desired, combinations are possible. of the different treatments for increasing filament bonding and of said methods for applying transversal stress.

After the transversal stress succeeded in producing broken filament ends, these still stick out more or less, depending on the degree of filament bonding chosen.

In order to facilitate the further processing of the yarn, its running properties may, optionally, be ameliorated either by application of an additional preparation coating or sizing product. If desired, other known methods may as well be applied to increase filament bonding.

When being submitted to further treatment, the crimp-free filament yarns with loose filament ends prepared as per theprocess of the invention excel in the unusual uniformity of textile-technological properties displayed all over the length of these yarns. In comparison to filament yarns composed of continuous filaments, the afore described yarns have a greater covering power and a finer hand, though their volume did not increase substantially. Surfaces formed by the filament yarns according to the invention display properties which place them between these made of smooth filament yarns on one hand and those made of staple fiber yarns on the other hand. They are especially well appropriate for plain fabrics, such as cambric-like ones. Compared to known knitted and woven fabrics of fiber yarns, those made of the filament yarns according to the invention are outstanding by their low tendency to pilling. The fundamental structure of the yarns according to the invention is explained by the drawing.

Though the development of so-called low-pilling fiber types succeeded in reducing to an acceptable degree (cf. in this respect P. Braun, Chemiefaser/Textilindustrie 1972, pg. 537 540), the known high tendency to pilling to which fabrics are prone formed by spun fiber yarns of synthetic polymers, it has been found, surprisingly, that the yarns as per the invention comparably twisted can be worked up to fabrics, the tendency to pilling of. which does not even attain the degree stated for the least pilling spun fiber yarns known'to the art. The tendency to pilling of specific fabrics was examined by the Random Tumble Pilling Tester (cf., e.g., Baird, Legere, Stanley, in Textile Research Journal 26 (1956), pg. 731 and ASTM Standards on textile materials 1961, pg. 552). The tendency to pilling is evaluated visually byapplication of the Reutlinger pill grades (synopsis cf. e.g. Grilnewald in Chemiefasern (12) 1968, pg. 936).

The flex abrasion resistance was defined, as said before, by means of a flex abrasion device, whereby the filaments to be examined are subject to a transversal stress of 0.45 g/dtex, the diameter of the wire being from 0.02 mm to 6.7 dtex, 0.04 mm to l3 dtex and 0.05 mm for even higher titers, folding occurs in an angle of 1 at a velocity of 126 revol./min.

The following examples illustrate the invention: Example A filament yarn with individual loose filament ends was prepared according to the process of the invention as a blended yarn composed of 12 filaments having the titer dtex 5.5 (yarn component dtex 67f 12") and of 40 filaments having the titer dtex 1.7 (yarn comp0- nent dtex 67 f40).

The yarn component 67 f l 2 consisted of a polyethylene terephthalate of the relative viscosity he: 1.81 (measured by a solution of l g in 100 ml of a mixture of phenol-tetrachlorethane, weight proportion 3:2 at 25C). The spinning temperature amounted to 290C, at a melt output of 35.5 g/min, the take-up rolls were fed at a speed of 2,400 m/min.

The polymer material for the yarn component 67 f 40 was prepared in adaptation to the details given by example of Deutsche Auslegeschrift No. l 720 647,

however, the 2.4 g of zinc acetate were replaced by 3.1 g of manganese acetate and the portion of trimethoxysilanethane phosphonic acid diethyl ester was increased from 48 g to 72 g. The melt temperature during the spinning process amounted to 290C, the melt output was by 32.5 g/min, take-up speed 2,200 m/min.

Bobbins of each of the two yarn components were linked to a draw-twister with ring traveler and jointly drawn at a stretch-proportion of 12.2 over a pin heated to C and an adjacent heater plate having a temperature of C. The two yarn components were plyed on the draw-twister, the blended yarn thus obtained had a torsion of 20 revol./m, no loose ends sticking out could be observed.

A separate measuring of the textile values showed a strength of 36.5 g/tex at an elongation of 27 for dtex 67 f 12 and a flex abrasion resistance of abt. 3,800 revol., whilst the yarn component 67 f 40 showed a strength of 27 g/tex at 32 elongation and a flex abrasion resistance of 415 revol.

Subsequently, the blended yarn was fed into a multiple twisting machine. At the thread entrance a contact heater plate was placed having a surface temperature of 210C and a length of 70 cm. At a feed-in speed of 8.7 m/min and spindle revolutions of abt. 13,000 r/min a twist of 1,500 r/meter was imparted to the yarn, presenting an average of one filament end per cm of yarn length. When reducing the torque to 1,000 r/meter a loose filament stuck out abt. every 2 to 3 cm only.

When testing in the Random Tumble Pilling Tester woven and knitted fabrics made of this filament yarn, not later than after a testing period of 2 hours the value zero was hit, i.e., at the endof this test the surfaces of the fabrics did not show the least modifications.

We claim:

1. A process for preparing essentially smooth filament yarns having several loose filament ends sticking out, wherein at least a portion of the filaments used have a flex abrasion resistance of below about 1,500 cycles and wherein a filament bonding is imparted to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below about 1,500 cycles break in irregular intervals.

2. Process according to claim 1, wherein the transversal stress is produced by imparting a torque to the filament yarn.

3. Process according to claim 1, wherein the transversal stress is produced by moving the filament yarns around a thread guide of small diameter.

4. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of below approximately 1,000 cycles.

5. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of less than approximately 500 cycles.

6. Process for preparing essentially smooth filament yarns having several loose filament ends sticking out,

' wherein at least a portion of the filaments used have a casion the filaments having a flex abrasion resistance of below about 1,500cycles break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns are temporarily interlaced.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2196975 *Apr 22, 1939Apr 16, 1940Celanese Corporation of AmericaApparatus for stapiuzing yarn
US3001358 *Nov 28, 1956Sep 26, 1961Midland Ross CorpBulked continuous multi-filament yarn
US3043088 *Nov 26, 1958Jul 10, 1962Du PontProcess for making bulky yarn
US3123972 *Aug 26, 1958Mar 10, 1964Cejanese Corporation of AmerSlub yarn
US3214899 *Feb 12, 1965Nov 2, 1965Eastman Kodak CoCordage product
US3398220 *Jun 26, 1964Aug 20, 1968Parker Pace CorpProcess for converting a web of synthetic material into bulk yarns
US3488941 *Dec 1, 1967Jan 13, 1970Teijin LtdProcess for splitting a narrow film or false twisting a fibrous material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3991549 *Sep 27, 1974Nov 16, 1976Hoechst AktiengesellschaftFilament yarn and process to prepare same
US4054025 *Jul 20, 1976Oct 18, 1977Bayer AktiengesellschaftProcess for the production of filament yarns with statistically distributed, broken individual filaments
US4110965 *Dec 20, 1976Sep 5, 1978Monsanto CompanySpun-like hand yarn process
US4157419 *Sep 16, 1977Jun 5, 1979E. I. Du Pont De Nemours And CompanyPolyester feed yarn for draw-texturing
US4302929 *Nov 20, 1979Dec 1, 1981Hoechst AktiengesellschaftHairy monocomponent yarn
US4414801 *Feb 9, 1981Nov 15, 1983Fiber Industries, Inc.Process for making spun-like yarn with variable denier filaments
US4590032 *Jun 25, 1984May 20, 1986Eastman Kodak CompanyProcess for draw-fracturable yarn
US4829761 *Jun 5, 1987May 16, 1989Eastman Kodak CompanyContinuous filament yarn having spun-like or staple-like character
DE2803401A1 *Jan 26, 1978Jul 27, 1978Eastman Kodak CoTextilfaeden, verfahren zu ihrer herstellung sowie aus den faeden hergestellte garne
WO1979000149A1 *Jun 26, 1978Mar 22, 1979Du PontPolyester feed yarn for draw-texturing
Classifications
U.S. Classification57/2, 57/908, 57/284, 57/310, 57/362
International ClassificationD02G3/26, D02G1/02
Cooperative ClassificationD02G1/0286, D02G3/26, Y10S57/908
European ClassificationD02G1/02D, D02G3/26