Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3857543 A
Publication typeGrant
Publication dateDec 31, 1974
Filing dateMar 16, 1973
Priority dateMar 16, 1973
Publication numberUS 3857543 A, US 3857543A, US-A-3857543, US3857543 A, US3857543A
InventorsJ Mckeen
Original AssigneeJ Mckeen
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
A liquid metering device
US 3857543 A
Abstract
A liquid metering device designed primarily for metering fuel into an internal combustion engine of the reciprocating type, is installed within the intake pipe of the intake manifold. The pump device comprises an elongated housing having a port at one end, a rod-like member is arranged in a housing coaxially therewith, with one end of the member secured to the closed end of the housing. The other end of the member carries an enlarged head which is arranged to snugly but slidably fit within the port. The member and housing are made of magnetostrictive materials of different polarity and the entire housing is surrounded by an electromagnetic coil which is arranged to connect to a current pulse generator. Liquid is introduced into the housing and current pulses from the generator are applied to the coil. The magnetostrictive characteristics of the housing and piston cause the housing to elongate relative to the member with each pulse, so that a shearing action takes place between the head and wall of the port which forces the liquid out of the device in the form of uniform small diameter liquid particles, which are carried along by the air into the intake manifold and into the engine cylinders. A similar device is used to meter water into the intake manifold to increase the efficiency of the engine by increasing the anti-knock properties of the fuel and, in turn, the pollutants exhausted from the engine are minimized.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

States n91 fig MCKEEH Dec. 31, 1974 LIQUID METERING DEVICE [76] Inventor: Joseph E. McKeen, 10861 Elm Ave., Lynwood, Calif. 90262 [22] Filed: Mar. 16, 1973 [21] Appl. No.: 342,235

[52] US. Cl 251/129, 239/102, 431/1, 137/604 [51] Int. Cl. B051) 3/14, F16k 31/02 [58] Field of Search ..239/101, 102; 431/1; 251/129; 417/322 [5 6] References Cited UNITED STATES PATENTS 2,481,620 9/1949 Rosenthal 239/102 3,145,931 8/1964 Cleall 431/1 X 3,224,677 12/1965 Schmidt et al. 239/101 3,474,967 10/1969 Bodine 1 239/102 3,679,132 7/1972 Vehe 239/102 X FOREIGN PATENTS OR APPLICATIONS 256,226 10/1927 Great Britain 239/101 Primary Examiner-Arnold Rosenthal Attorney, Agent, or Firm-Dominick Nardelli [57] ABSTRACT A liquid metering device designed primarily for metering fuel into an internal combustion engine of the reciprocating type, is installed within the intake pipe of the intake manifold. The device comprises an elongated housing having a port at one end, a rod-like member is arranged in a housing coaxially therewith, with one end of the member secured to the closed end of the housing. The other end of the member carries an enlarged head which is arranged to snugly but slidably fit within the port. The member and housing are made of magnetostrictive materials of different polarity and the entire housing is surrounded by an electro magnetic coil which is arranged to connect to a current pulse generator. Liquid is introduced into the housing and current pulses from the generator are applied to the coil. The magnetostrictive characteristics of the housing and piston cause the housing to elongate relative to the member with each pulse, so that a shearing action takes place between the head and wall of the port which forces the liquid out of the device in the form of uniform small diameter liquid particles, which are carried along by the air into the intake manifold and into the engine cylinders. A similar device is used to meter water into the intake manifold to increase the efficiency of the engine by increasing the anti-knock properties of the fuel and, in turn, the pollutants exhausted from the engine are minimized.

7 Claims, 5 Drawing Figures MANIFOLD PRESSURE VARIABLE HEIGHT PULSE GENERATOR POWER SUPPLY TO MANIFOLD PATENTEI] DEC3 1 I974 32 MANIFOLD PRESSURE PULSE GENERATOR POWER SUPPLY VARIABLE HEIGHT TO MANIFOLD 1 LIQUID METERING mzv-rca FIELD OF THE INVENTION This invention relates to a liquid metering device and, more particularly, to a carburetor utilizing a liquid metering device which controllably feeds liquid into the intake of a manifold in accordance with the engines speed and acceleration.

BACKGROUND OF THE INVENTION In conventional internal combustion engines, the fuel is divided by the carburetor by using an asperating principle, and the-fuel is divided into fine particles or droplets which are mixed with the air to form a combustion mixture. These fine particles are inherently unequal in size. This mixture is fed to the engine, where it is ignited. These prior art engines have several drawbacks. First, they are pressure sensitive; that is, the air fuel ratio depends upon the atmospheric pressure in which the engine is operated. Thus, at low speeds, the air-fuel ratio is different than at high speeds. Also, while accelerating, the accelerator pump pumps relatively large amounts of fuel into the manifold, wetting the internal surfaces. Then at a steady speed, the liquid fuel evaporates, enriching the mixture that results in unburned fuel being exhausted.

Compounding the problem is the fact that present day engines require fuel additives (tetraethyl lead) to prevent preignition, commonly known as engine ping or knock. Many of the additives do not enter into the combustion process, but pass through the engine. The high combustion temperatures (of about 3000F) changes the equilibrium constant of the combustion process wherein relatively large amounts of ammonia and oxides of nitrogen are produced. In other words, the higher temperature increases the production of toxic compounds which are discharged into the atmosphere. Water has been known, for a long time, as an anti-knock compound, and is used in present day aircraft with reciprocating engines. Water is known to have a cooling effect on the combustion process so that the production of these toxic compounds is sharply reduced as well as preventing engine knock. However, water injection, as presently known, is costly and relatively complex and heretofore has not been used in commercial and passenger highway vehicles utilizing these reciprocating type internal combustion engines.

OBJECTS OF THE INVENTION An object of this invention is to provide a simple, economical means for reducing knock and toxic emission compounds from reciprocating internal combustion engines.

Another object of this invention is to provide a means for delivering liquids to an internal combustion engine in droplets of a relatively uniform size wherein the drop size increases with engine speed.

Another object is to provide a means for delivering fuel to an internal combustion reciprocating engine wherein the droplets are substantially of the same size at any given time.

Another object is to provide a liquid metering device which delivers precise controlled amounts of liquid in controlled droplet size.

Another object is to provide a liquid metering device which performs reliably for relatively long periods with minimummaintenance.

Another object of the invention is to provide a device for metering fuel to an internal combustion engine which is relatively insensitive to changes in ambient temperature and pressure conditions.

Another object of this invention is to provide a device for metering fuel to an engine which requires a minimum amount of adjustment :in use.

Another object of this invention is to provide a device for metering fuel to an engine which'is rugged and has a minimum number of working parts, giving it a long useful service life.

Other objects and features of advantage of the invention will become more apparent after perusing the description of the preferred embodiment, together with the appended drawing.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is an enlarged section of the outlet of the device of FIG. 1, showing the piston thereof fully retracted.

FIG. 3 is the same view as in FIG. 2 wherein the piston has started its movement to the extended position.

FIG. 4 is the same view as FIG. 3 wherein the piston has moved further to its extended position, showing the droplets being formed.-

FIG. 5 is the same view as FIG. 4 wherein the piston is in a fully extended position, showing the droplets drifting away therefrom.

DETAILED DESCRIPTION OF THE DRAWINGS Referring to FIG. 1, item 10 represents an intake pipe to the manifold (not shown) of a reciprocal internal combustion engine. The intake pipe 10 is preferably of the down-draft type, and over and above the pipe 10 would be placed a conventional air cleaner. Unlike the intake pipes in standard present day engines, this pipe would be nonmagnetic for reasons that will become apparent hereinafter. The butterfly valve (not shown) for acceleration would be located preferably above the intake pipe shown in FIG. 1. Axially disposed within the pipe 10 are two novel devices, Ill and 12, which are used to feed fuel and water, respectively, into the en gine. Both devices 11 and 12 are constructed the same, and therefore only device 11 will be described in detail. The device has a tubular body 13, with a closure disk 14 at one end, and on the other end is formed an outlet port or opening 16 that is smaller than the internal diameter of the body 13. Snugly disposed within the opening 16 is a piston head 17. The head is suitably fixed by an axially disposed rod 18 to the disk 14. Near the disk 14 is formed an inlet port into which is disposed a tube 19 to allow liquid to be pumped into the cavity of the device. In device 11 the liquid would be fuel while in device 12 the liquid would be water. A suiter spider means 21 supports the device axially within the pipe l0. Since the air is flowing down through the pipe 10, as viewed in the drawings, ends 14 of the respective devices are provided with a streamlining means 15. In contrast with present day intake pipes,

the outside of pipe has an electromagnetic coil 22 therearou'nd. The purpose of the coil 12 is to activate the devicesto supply fuel and water to the engine. In order that the devices respond to. the magnetic field, the rods 18 are preferably made of magnetostrictive material that contracts within a magnetic field. For example, such a material is cobalt-iron alloy, which is normally referred to as a negative magnetostrictive material. The body 13 is preferably non-magnetic and of zero magnetostrictivity, or it could be made, for example, of nickel which is positive magnetostrictive. Therefore, when a magnetic field is formed by coil 22, the piston head 17 retracts into the body 13 of the device, as shown in FIG. 2. For a given set of magnetostrictive materials, this distance that the head retracts is dependent on the strength of the magnetic field. With the head retracted, a somewhat toroidal meniscus 23 grows because the liquid flows out or is forced out by being displaced by the head 17 of the ring-shaped opening formed therein. FIG. 3 shows the meniscus 23 larger and the head 17 closer to the periphery of the outlet opening 16. FIG. 4 shows that the liquid has been sheared by the head 17 and the toroidal-shaped liquid breaking up into droplets 24. A point 26 on the head 17 aids in the formation of the toroidal-shaped meniscus. Because the toroid is uniform is the reason the resulting droplets are believed to be uniform.

FIG. 5 shows the droplets 24 driftingapart and the head 17 is in the home position. The droplets inherently are of uniform size and the size thereof are also inherently relative to the stroke of the piston head, i.e.,

the larger the stroke the larger the droplet size. Due to the shearing action of the piston head, the droplets are electrically charged, having under normal circumstances a positive charge. The charge on the droplets cause the droplets to repel each other, and this is believed to be the reason that the ring of droplets 24 in FIG. 5 grows larger. The bell-shape 26 on the end of the body 13 aids the growth of the rings of the charged droplets which tend to be attracted to the wall thereof. The droplets are formed at a rate, for example, of 1,000 I-IZ (cycles per second) and the pulsating power to the coil is supplied by a suitable, variable high-pulse generator 31. Since amplitudes of the pulse determine the magnetic field strength, the generator 31, should be of the type that changes the amplitude of the pulses in order to increase the drop size. As the engine is speeding up, therefore fulfilling the requirement for more fuel. This, besides taking care of the increased fuel requirements of the engine, inherently provides an antiknock feature. The anti-knock feature is explained as follows: the large drops within the cylinder absorb heat from the compression stroke as they vaporize. Therefore the temperature of the combustion mixture is lower than in standard present day engines. If the vaporization of fuel alone is not sufficient to prevent engine knock,'the function of the water pump 12 is to introduce droplets of water into the combustion mixture to provide more pre-cooling. One sees that, as the engine speeds up, the anti-knocking properties of the fuel should increase since the pressures increase. This invention inherently provides a feature that increases the anti-knock properties of the fuel as the engine speeds up.

Since the system is to be automatic in that the flow of fuel should increase with demands and without human adjustments, the pulse generator 31 has an additional feature and at the pulse height responds to an increase in amplitude of the impressed voltage thereon. This feature is also attained in a state of direct pulse generator. In this case, the voltage is attained from a suitable pressure transducer 32. The presssure transducer 32 responds, for example, to manifold pressure. The pressure within the manifold is directly related to the amount of fuel required. In addition, if one requires, one could also sense the RPM of the engine by another state of the art transducer (not shown) to provide a feedback signal to prevent what is commonly termed a hunting or oscillating effect. Thus, by monitoring the RPM and the manifold pressure, the system could make a decision by the use of a suitable circuit (not shown) that the engine is accelerating; therefore supplying more fuel than when the engine is at a steady state condition. If, in addition, the system could decide, with a high RPM and a low manifold pressure, that the engine is decelerating and therefore would sharply reduce the supply of fuel to the engine; therefore, also aiding in reducing toxic emissions.

Although one embodiment of the invention has been described, the invention is not limited to the described embodiment. One skilled in the art, after studying this disclosure, could conceive other embodiments which incorporate the scope of this invention. Therefore, the invention is considered to be limited only by the scope of the appended claims.

I claim:

1. A liquid metering device comprising:

a compartment having an opening therein;

a head slidably disposed within said opening;

a rod disposed within said compartment having one end connected to said head and the other end to said compartment;

said rod and said housing being made of a material which, when under the influence of a magnetic material, will cause said head to retract into said compartment.

2. The device of claim 1 wherein a bell-shaped surface extends from the outer periphery of said opening, and a conical surface extends from the inner periphery of said head, so that an annular volume is formed outside the compartment which increases in size.

fixed to said head and with the other end fixed to said compartment; said rod being made of a material that contracts under the influence of a magnetic field; means for producing a pulsating magnetic field that is substantially aligned with said rod to cause said rod to repeatedly contract and pull said head into said compartment to form an annular opening; and means for feeding liquid into said compartment.

5. The device of claim 4 wherein said compartment passes increases in size. is made of a material that expands under the influence 7. The device of claim 5 wherein said compartment of a magnetic field. has an internal bell-shaped surface extending away 6. The device of claim 4 wherein said compartment from the outer periphery of said opening; and has an internal bell-shaped surface extending away 5 said head having an external conical surface extendfrom the outer periphery of said opening; and ing away from the periphery of said head so that said head having an external conical surface extendthe annular cross-section through which the liquid ing away from the periphery of said head so that passes increases in size. the annular cross-section through which the liquid

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2481620 *Feb 8, 1945Sep 13, 1949Skiatron CorpDevice for dispensing liquid fuel into combustion air of furnaces
US3145931 *Feb 19, 1960Aug 25, 1964Babcock & Wilcox LtdLiquid atomizers generating heat at variable rate through the combustion of liquid fuel
US3224677 *Sep 14, 1964Dec 21, 1965Kelroy CorpVaporizing apparatus
US3474967 *Nov 30, 1967Oct 28, 1969Bodine Albert GSprayer
US3679132 *Jan 21, 1970Jul 25, 1972Cotton IncJet stream vibratory atomizing device
GB256226A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3968898 *Aug 26, 1974Jul 13, 1976Beer Andrew EMagnetostrictive closure member
US4034025 *Feb 9, 1976Jul 5, 1977Martner John GUltrasonic gas stream liquid entrainment apparatus
US4158368 *May 12, 1976Jun 19, 1979The United States Of America As Represented By The Secretary Of The NavyMagnetostrictive transducer
US4176634 *Jul 13, 1977Dec 4, 1979Plessey Handel Und Investments AgFuel injection system
US4300483 *Feb 4, 1980Nov 17, 1981The Goodman System Company, Inc.Electronically controlled fluid injection system for an internal combustion engine
US4300484 *Feb 4, 1980Nov 17, 1981The Goodman System Company, Inc.Electronically controlled fluid injection system for an internal combustion engine
US4300485 *Mar 3, 1980Nov 17, 1981The Goodman System Company, Inc.Electronically controlled fluid injection system for an internal combustion engine
US4364370 *Aug 27, 1980Dec 21, 1982Smith Byron DMethod and apparatus for supplying fluid to an internal combustion engine
US4377135 *Nov 3, 1980Mar 22, 1983Daimler-Benz AktiengesellschaftAdditive means for an air compressing internal combustion engine
US4389999 *May 17, 1982Jun 28, 1983Rockwell International CorporationUltrasonic check valve and diesel fuel injector
US4406255 *Jul 15, 1981Sep 27, 1983The Goodman System Company, Inc.Fuel detonation-responsive fluid injection system for an internal combustion engine
US4524746 *Apr 9, 1984Jun 25, 1985Hansen Earl SClosed circuit fuel vapor system
US5280773 *Nov 2, 1990Jan 25, 1994Man Nutzfahrzeuge AgMethod and apparatus for injecting fuel into a combustion chamber of an air compressing, spontaneous ignition, internal combustion engine
US9453439 *Aug 31, 2010Sep 27, 2016Ford Global Technologies, LlcApproach for variable pressure oil injection
US20110144882 *Aug 31, 2010Jun 16, 2011Ford Global Technologies, LlcApproach for variable pressure oil injection
WO1981002324A1 *Jan 30, 1981Aug 20, 1981T GoodmanElectronically controlled fluid injection system for an internal combustion engine
WO2013098705A1 *Dec 17, 2012Jul 4, 2013DUKIC, AnnaAnti-pollution economiser device
Classifications
U.S. Classification251/129.6, 137/896, 431/1, 123/25.00L, 251/129.8, 239/102.2, 123/25.00M
International ClassificationF02M7/16, F02M27/04
Cooperative ClassificationF02M25/022, F02M27/04, F02M7/16, Y02T10/121
European ClassificationF02M25/022, F02M7/16, F02M27/04