Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3857643 A
Publication typeGrant
Publication dateDec 31, 1974
Filing dateAug 28, 1973
Priority dateApr 3, 1970
Also published asDE2016067A1, DE2016067B2, US4033539
Publication numberUS 3857643 A, US 3857643A, US-A-3857643, US3857643 A, US3857643A
InventorsBardocz A
Original AssigneeBardocz A
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Optical rail system
US 3857643 A
Abstract
An optical rail system is provided in which the rails have top and bottom bearing surfaces and locating surfaces at about sixty degrees to the horizontal. The rails are clamped together at angles to each other and optical devices are secured to the rails by carriers. The clamping means and carriers have grooves with walls corresponding to the bearing and locating surfaces.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Bardocz 1 OPTICAL RAIL SYSTEM [76] Inventor: Arpad Bardocz, Rumannstr. 57,

8000 Munich 40, Germany [22] Filed: Aug. 28, 1973 [21] Appl. No.: 392,218

Related US. Application Data [62] Division of Ser. No. 126,562, March 22, 1971.

[30] Foreign Application Priority Data [58] Field of Search 403/52, 53, 104, 106, 110, 403/63, 188, 205, 217, 391, 400, 231;

52/758 C, 753 D, 760, 753 K, 588; 248/124,

[ Dec. 31, 1974 Primary Examiner-Jordan Franklin Assistant ExaminerWayne L. Shedd Attorney, Agent, or Firm-Edwin E. Greigg 5 7] ABSTRACT An optical rail system is provided in which the rails have top and bottom bearing surfaces and locating surfaces at about sixty degrees to the horizontal. The rails are clamped together at angles to each other and optical devices are secured to the rails by carriers. The clamping means and carriers have grooves with walls [56] References Cited corres ondin to the bearin and locatin surfaces UNITED STATES PATENTS p g g g 1,149,762 8/1915 Hendrickson 403/53 X 7 Claims, 10 Drawing Figures l ,ll -"ii I 11, 11 4 J "PATENTED EBBI I 14 SHEET 30F 3 This application is a divisional application of copending application Ser. No. 126,562, filed Mar. 22, 1971 by Arpad Bardocz entitled Optical Rail System.

The invention concerns an optical rail system, in which each rail possesses a. at least two locating surfaces located symmetrically with respect to a longitudinal section and intersecting on the center line of the cross section plane. which are associated with demountable locking elements of optical carriers set upon the rails, and

b. at least one bearing surface lying in a plane perpendicular to the above-mentioned longitudinal section and symmetrically intersecting the locating surfaces at their extreme limits away from the cross section center;

enabling the application of coupling parts holding two or more rails rigidly together.

Systems of optical rails in which two rails set at an angle to each other but lying in a common plane can be rigidly fastened together by a coupling part are already known for example, the system of I-Iilger, or systems derived from this one. This means that although the rails are set at an angle to each other, they cannot be laid in parallel planes, the one rail crossing over the other, and then rigidly joined by coupling parts which have grooves of the type found on the optical carriers usually mounted onthe rails. The reason for this is that all known optical rails (and in fact not only those of the Hilger system or systems derived from it, but also likewise known triangular rails) can be joined together only along a single direction; they cannot be joined making an angle to each other. Thus, it would be possible to attach existing rails at an angle to each other and in two parallel planes, using special coupling parts; but in this case the coupling parts must be so designed that one of the rails, for example the lower one,'is attached in a groove corresponding to the groove of an optical carrier while the other rail (in this example, the upper one) requires a demountable coupling of another type. This, however, would require a large number of special coupling parts, and'is uneconomical, lacks in flexibility, and results in limited applicability of the whole system.

This invention proposes the creation of an improved arrangement for the rigid, demountable attachment of two rails which cross each other and lie in parallel planes, using a coupling part which joins and fastens to each of the two rails in the same way as the optical rail carriers are fastened to the rails. This is achieved (1) by providing each rail with an approximately X-shaped cross section, with two locating surfaces intersecting 0n the center line of the cross section, in addition to at least one additional bearing surface lying parallel to the usual optical carrier bearing surface, and (2) by providing the coupling part with two grooves, lying on opposite sides and running at an angle (preferably a right angle) to each other, each groove having a demountable locking element.

It is therefore a part of the invention that each rail is provided with two parallel bearing surfaces, with each of which is associated a pair of locating surfaces, so that either a coupling part as described in this invention or an optical carrier may be attached to either of two opposing sides of the rail. Thus two optical rails lying in parallel planes can be rigidly attached together at an angle, using a coupling part as described in this invention, whose grooves are like those of the optical carriers.

stitutes the main part of the arrangement claimed in this invention, the rail is oriented with one bearing surface on top and the other on the bottom, with optical carriers or the coupling parts claimed in this invention being placed on the upper bearing surface, and with the lower bearing surface resting in the open groove of the coupling part claimed in this invention and located by the adjacent locating surfaces. However, this arrangement of the optical rails, in which the bearing surfaces lie in horizontal planes, represents only a preferred ap plication. Quite generally, it is possible to orient the rails (withrespect to their cross section) so that the two bearing surfaces make any arbitrary angle with the horizontal or vertical.

The invention is further described in terms of the accompanying illustrations:

FIG. 1 shows in cross section a first example of execution of the optical rail claimed as a part of this invention.

FIG. 2 shows in cross section a second example of execution of the optical rail claimed as a part of this in-. vention.

FIG. 3 shows in cross section a third example of execution of an optical rail claimed as a part of this invention.

FIG. 4 shows in cross section a fourth example, in this case in the style of an optical bench with a large cross section, of execution of the optical rail claimed as a part of this invention.

FIG. 5 shows in cross section a fifth example, in this case in the stable form of an optical bench, of execution of the optical rail claimed as part of this invention.

FIG. 6 shows in perspective a first basic form of the arrangement claimed in this invention for the coupling of two optical rails with a coupling part.

FIG. 7 shows in perspective a further example of the arrangement claimed in this invention, in this case a combination of three optical rails of the type shown in FIG. 6, and the associated coupling parts.

FIG. 8 shows in cross section a further example of the combination of two optical rails of the type shown in FIG. 1. I

FIG. 9 shows in cross section a further example of the arrangement claimed in this invention, consisting of two optical rails of the type shown in FIG. 1, and one optical rail with associated coupling parts and carriers.

FIG. 10 shows in cross section a second basic form of the arrangement claimed in this invention, consisting of one optical rail of the type shown in FIG. 3 and one optical rail of the type shown in FIG. 5, with the associated coupling part.

In the following figures, parts in different species with the same function are provided with the same reference numbers and are distinguished only by an attached letter with, in some cases, a prime.

The optical rail illustrated in FIG. 1 has an approximately X-shaped cross section with two pairs of flat locating surfaces 1, 2 and 3, 4, intersecting at the middle of the vertical dimension of the cross section. The pair 1 and 2 and the pair 3.and 4 form two pairs of associated locating surfaces. Locating surfaces 1 and 2 intersect the flat bearing surface 9 at the edges 5 and 6, and similarly, locating surfaces 3 and 4 intersect the flat bearing surface 10 at edges 7 and 8, and the bearing In the usual application of the rail, which (rail) con surfaces 9 and 10 are parallel to each other. The bearing surfaces 9 and 10 do not intersect the locating surfaces I, 2, 3,4 directly to form sharp edges, the edges 5, 6, 7 and 8 actually being cut off to form short vertical or rounded surfaces. Similarly, the locating surfaces 1 and 3 and the locating surfaces 2 and 4 do not intersect directly to form an angle with a sharp reentrant edge; instead small grooves are formed at the locations where the surfaces 1, 3 and 2, 4 would intersect.

It will be noted also, as clearly shown in FIG. 1, that each locating surfaces 1, 2,3, 4 forms an angle of 60 with the horizontal, that bearing surfaces 9 and 10 are equal in width and that the dimension a of the narrowest part of the cross section between the side grooves is in the range of one third to one fourth of the width of the bearing surfaces 9 and 10. The rail, as indicated in the various perspective views, is, of course, of uniform cross-sectional dimension throughout its length.

The basic proportions of the rail of FIG. 1 are maintained in the various other species shown in FIGS. 2, 3, 4 and with the distinctions noted in the descriptions of those figures and with the added distinction that interior bottom locating surfaces have been omitted in the species of FIGS. 3, 4 and 5.

Optical rails of the type shown in FIG. 1 can be joined, as shown in FIG. 6, with a coupling part 11 to form an arrangement claimed in this invention, where at least two optical rails I and II lie at right angles to each other. The coupling part 11 is provided with two grooves 12 and 13, each having two opposing sides (in this case, the grooves run at right angles to each other), and each groove is provided with a locking element, in this case a fastening screw 14. In FIG. 6 only a single fastening screw 14 is illustrated, since the other fastening screw, which locks the rail ll into groove 13, is hidden. The associated optical carriers, eg. the carrier 16 with the locking screw 15, can be placed on either of the rails I, II, at any position along the rail, even directly over the coupling part 11 at the junction of the optical rails I. II.

The basic arrangement claimed in this invention, illustrated in FIG. 6, can be expanded in any desired way by using a number'of optical rails of the type I, II and a corresponding number of coupling parts 11. The right angle between the rails I, II in FIG. 6 is only an example; in fact, the rails can be set atany arbitrary angle by the proper choice of the angle between the grooves l2, 13 in the coupling part 11. The specific configuration of the grooves 12, 13 is best shown in other figures. For example, as shown in FIG. 8 each groove has a flat bottom wall 22 complementary to a bearing surface, a flat side wall 23 complementary to a locating surface and an upstanding wall 24 carrying the fastening screw 14. The end of the fastening screw bears against one cating surface and when it is screwed inwardly the wall 22 tightly engages a bearing surface, the wall 23 tightly engages a locating surface and the coupling part is clamped to the rail. As is evident all the coupling parts and carriers have the same groove configuration to clamp to the rails, although as seen by a comparison of FIGS. 8 and 10 in some cases a coupling-or carrier may have a pair of parallel grooves to clamp onto two pairs of locating surfaces or a single groove bearing only on the outer locating surfaces.

In the execution of the optical rail shown in FIG. 2, the bearing surfaces 9a and 10a and their corresponding locating surfaces la, 2a, and 3a, 40, respectively,

are separated by a beam 17 running'perpe'ndicularly to the bearing surfaces. In this example, the thickness of the beam 17 is chosen equal to the width of the bearing surfaces 9a, 10a, so that the rail can be machined out of a single piece.

The optical rail shown inFIG. 3 is a double rail having the form of two rails 18, I9 of the type shown in FIG. 1, set side by side. Two opposing inner locating surfaces of the rails 18, 19 are rigidly joined to each other, thus forming a single piece, by the beam 20, which runs parallel to the bearing surfaces 9b, 9b, 10b, 10b. The grooves of the coupling parts and optical carriers used with these rails may have either the width which corresponds to the total width of the rail illus trated in FIG. 3 or the width of one of the bearing surfaces 9b, 9b, 10b, 10b. In addition, broad coupling parts and carriers may be used, which extend over two bearing surfaces in a single plane (e.g., 9b and 9b, or 10b and 10b), but which have at least one dovetail groove by which the part attaches to only a single rail (e.g., lb and 2b, or lb and 2b). The optical carrier 16a, which is already well known, can be used for this purpose, as shown in FIG. 8. The optical carrier and coupling parts can also be shaped, with respect to their grooves, like the coupling part 21 illustrated in FIG. 8. Such coupling parts can also be used for the rigid, parallel coupling to two optical rails of the type shown in FIG. 1, as illustrated in FIG. 8. Similarly, optical rails of the type shown in FIG. 2 can be rigidly coupled parallel to each other by this coupling part.

The optical rail shown in FIG. 4 is a double rail, built as a parallel combination of two rails of the type shown in FIG. 2. Two vertically separated cross beams 20c, 20c lying parallel to the bearing surfaces 90, 10c, 10c, connect into a single piece the two lower, inner locating surfaces, and the two beams 17c, 17c oriented perpendicular to the bearing surfaces, respectively, thereby forming an optical bench of sufficiently large profile cross section to support heavy loads. The cross beam 206' connecting the beams 17:, in the example illustrated is attached closely adjacent to the opposing inner locating surfaces 10, 10, whereas the corresponding lower locating surfaces are removed by the cross beam 200. I

The optical rail of FIG. 5 is a modification of the rail shown in FIG. 4, in which the two vertical beams (17c, 17c in FIG. 4) are combined into a single vertical beam 17d, which is symmetrically located with respect to the six locating surfaces 1d, 2d, 1d, 2d, 4d, 4d. This invention includes all of the many stable arrangements which can be built up with any or all of the types of optical rails shown in FIGS. l-5 and the corresponding coupling pants and optical carriers, with wide or narrow mounting grooves, of which it was possible to illustrate only a few examples in this description.

For example, it is possible, as shown in FIG. 7, to adapt the arrangement shown in FIG. 6 so that, by using an L-shaped coupling part '21 with mounting grooves and a tightening screw 14 as on the coupling part 11, an additional rail III of the type shown in FIG. 1 may be mounted upon rail II, so that an optical carrier 16 may be attached to rail III at any vertical position.

With the before-mentioned special coupling part 21, as shown in FIG. 8, two optical rails of thetype shown in FIG. 1 can be set parallel to each other in the same plane and rigidly coupled together.

As shown in FIG. 9, two optical rails of the type shown in FIG. 1 can be combined, using special coupling parts, to form complicated arrangements of optical rails. In the example of FIG. 9, for example, five traveling optical carriers 16a, 16b, 16c, 16d, 162 are arranged to run parallel to each other.

The arrangement of FIG. 9 has the special advantage, claimed as part of this invention, that the optical carriers can be attached onto two opposing sides of each rail in this example, the topand bottom sides. In the optical rail shown in FIG. 5, it can be seen that the bearing surfaces 4d, 4a" may be set into the mounting groove of a coupling part or-of an optical carrier. When this possibility is extended to the example of FIG. 9, it is clear that it is possible to realize a very complicated three-dimensional array of optical rails running parallel or at angles to each other.

FIG. 10 shows a'further arrangement, claimed as part of this invention, in which an optical rail of the type shown in FIG. 3 is rigidly attached at right angles with an optical rail of the type shown in FIG. 5, using a coupling part lla with a broad mounting groove and a fastening screw 14. An optical carrier 16" with a broad mounting groove covers both upper bearing surfaces 9b, 9b of the upper rail, which is of the type shown in FIG. 3 The coupling part 11a is provided with similar broad mounting grooves 12a and 13a, which couple with the bearing and locating surfaces of the lower part of the rail of the type shown in FIG. 3 and with the upper part of the rail of the type shown in FIG. 5, respectively.

The invention is by no means limited to the illustrated examples of optical rail arrangements; indeed, by using at least two rails, which are not necessarily alike and which may be combined according to the examples of FIGS. l-5, in combination with a large number of coupling parts and optical carriers, a practically unlimited number of arrangements is possible.

That which is claimed is:

l. A rail system comprising, in combination: a plurality of associated optical rails, each said rail having a uniform cross-sectional shape throughout its length, a first longitudinally extending flat bearing surface, a second longitudinally extending flat bearing surface parallel to said first surface and four flat locating surfaces on the sides of the rail, each locating surface extending towards a central plane of the rail perpendicular to the bearing surfaces from a line contiguous to the edge of a said bearing surface at an angle of about sixty degrees to the first bearing surface for cooperation with corresponding surfaces in grooves of couplings and optical carriers, said grooves also having surfaces for cooperating with the bearing surfaces, said rail cross section having a portion in a plane parallel to the bearing surfaces at a point adjacent to where the end of a locating surface is closest to the central plane with a width in the range of one third to one fourth of the width of a said first bearing surface, and wherein the combination further includes a coupling part joining two of said rails so that they are positioned in parallel planes at angles to each other, said coupling part having an first groove and a second groove identical in shape each receiving a rail portion, each groove having a bottom contacting a bearing surface and each groove having a side surface complemental to and contacting a said locating surface and a set screw urged against a locating surface and cooperating with each groove to 13 secure a said rail to said groove and an optical carrier having a groove identical in shape to the grooves of the coupling part receiving a portion of a rail and a set screw cooperating with said groove to secure said rail to said carrier for carrying an optical instrument.

2. In a combination as claimed in claim 1, further including an L-shaped coupling part for coupling another of said optical rails to one of said angularly related rails and in the same plane, said L-shaped coupling having grooves identical in shape to the grooves of said first mentioned coupling part and a set screw cooperating with each of said grooves, and said optical carrier being coupled to said other rail.

3. A combination asdefined in claim 1, wherein said locating surfaces each extend to a line contiguous to a central plane parallel to the bearing surfaces and each of said bearing surfaces has the same width.

4. A combination as defined in claim I, wherein each of said bearing surfaces has the same width, and at least one of said rails narrow to a width in the range of one third to one fourth of the width of its said bearing surfaces at two locations spaced from a central plane parallel to its said bearing surfaces and a web extends between said locations which has a thickness about equal to the width of its said bearing surfaces.

5. A combination as defined in claim I, wherein for at least one of said rails there are two spaced-apart top bearing surfaces, each of its said surfaces being equal in width and the overall widths of the top and bottom of the rail are equal, a fifth and a sixth flat locating surface each extends inwardly and towards an outer side of the rail from a line contiguous to an inner edge of a top bearing surface at an angle of about to the horizontal, said at least one rail narrows to a width in the range of one third to one fourth of the width of a top bearing surface at two locations spaced from a central plane perpendicular to its said bearing surfaces and a horizontal web extends between said locations.

6. A combination as defined in claim 5, wherein said horizontal web includes spaced bottom flat bearing surfaces and the top of said web is in a horizontal plane contiguous to the middle of said rail.

7. A combination as defined in claim 6, further including a groove of said coupling and of said optical carrier is configured to straddle the entire width of said

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1149762 *Aug 10, 1915Frank Frederick HendricksonSupporting member.
US1285628 *Nov 17, 1917Nov 26, 1918Clarence C CraleyMetal-working machine.
US1615668 *Jun 5, 1924Jan 25, 1927Anderson Iver A PLaying-out fixture and drilling jig
US1831798 *Sep 27, 1926Nov 17, 1931Delta Star Electric CoAdjustable i-beam base
US1849305 *Sep 27, 1929Mar 15, 1932Central Scientific CoOptical bench
US1952945 *Aug 29, 1927Mar 27, 1934Sawada KinnosukeSolar ray therapeutic apparatus
US2124006 *Oct 18, 1934Jul 19, 1938Brown & Sharpe MfgDial test indicator
US2363405 *Sep 9, 1943Nov 21, 1944Eichelberger James KBuilding construction
US2936530 *Oct 17, 1958May 17, 1960Bowen Hardy JIndustrial building model
US3380205 *May 7, 1965Apr 30, 1968Ratchford Tool CorpFoundations for trailer type homes
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4277101 *Jan 17, 1980Jul 7, 1981Ignaz VogelVehicle seat support
US4826113 *Nov 23, 1984May 2, 1989The Dow Chemical CompanyPipe support assembly
US4869378 *Aug 29, 1988Sep 26, 1989Hospital Systems, Inc.Mounting rail for hospital appliances and bracket
US4936655 *Jul 7, 1988Jun 26, 1990Grumman Aerospace CorporationAlignment fixture for an optical instrument
US4993809 *Oct 7, 1988Feb 19, 1991Grumman Aerospace CorporationMounting fixture for an optical instrument
US5604631 *Nov 15, 1994Feb 18, 1997Bnox, Inc.Sliding binocular body
US5694243 *Oct 16, 1996Dec 2, 1997Bnox, Inc.Sliding binocular body
US6032381 *Dec 2, 1996Mar 7, 2000Miller; Walter RDovetail accessory for a dial test indicator
US6467743 *Jul 11, 2001Oct 22, 2002Sembi Studio Company LimitedTool for displaying commodities
US7507242 *Nov 15, 2004Mar 24, 2009Facet SolutionsSurgical measurement and resection framework
US7815648Sep 29, 2008Oct 19, 2010Facet Solutions, IncSurgical measurement systems and methods
US7914560Sep 29, 2008Mar 29, 2011Gmedelaware 2 LlcSpinal facet implant with spherical implant apposition surface and bone bed and methods of use
US7998177Sep 29, 2008Aug 16, 2011Gmedelaware 2 LlcLinked bilateral spinal facet implants and methods of use
US7998178Sep 29, 2008Aug 16, 2011Gmedelaware 2 LlcLinked bilateral spinal facet implants and methods of use
US8206418Aug 29, 2008Jun 26, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement with detachable coupler
US8211147Aug 29, 2008Jul 3, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement
US8252027Aug 29, 2008Aug 28, 2012Gmedelaware 2 LlcSystem and method for facet joint replacement
US8702759Aug 29, 2008Apr 22, 2014Gmedelaware 2 LlcSystem and method for bone anchorage
US8777994Sep 29, 2008Jul 15, 2014Gmedelaware 2 LlcSystem and method for multiple level facet joint arthroplasty and fusion
US8906063Sep 29, 2008Dec 9, 2014Gmedelaware 2 LlcSpinal facet joint implant
Classifications
U.S. Classification403/63, 359/503, 359/823, 248/228.6, 403/391
International ClassificationG01M11/04
Cooperative ClassificationG01M11/04
European ClassificationG01M11/04