Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3857996 A
Publication typeGrant
Publication dateDec 31, 1974
Filing dateJun 18, 1973
Priority dateJun 18, 1973
Publication numberUS 3857996 A, US 3857996A, US-A-3857996, US3857996 A, US3857996A
InventorsHansen T, Wilson F
Original AssigneeAnaconda Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flexible power cable
US 3857996 A
Abstract
Power cable such as pendant cable is found to have improved flex life when it combines propylene-ethylene copolymer insulation on the individual conductors with a polyurethane thermoplastic overall jacket.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Hansen et al.

[ Dec. 31, 1974 1 FLEXIBLE POWER CABLE [75] Inventors: Theodore E. Hansen; Floyd A.

Wilson, both of Marion, 1nd.

[731 Assignee: vThe Anaconda Company, New

' York, NY.

22 Filed: June 18, 1973 21 Appl. No; 371,320

2] US. Cl. 174/113 R, 174/116, 174/120 SR 1] Int. Cl. HOlb 7/02 8] Field of Search 174/116, 113 R, 120 AR,

174/120 SR, 110 R, 1 PM [56] References Cited UNITED STATES PATENTS 1/1950 Rapp 174/116X 1/1973 Hoeg ..174/120 AR OTHER PUBLICATIONS Avisun Corporation Bulletin, Gade TD-321D Gen- PROPYLENE-ETHYLENE COPOLYMER eral Purpose Electrical Insulating Polymer, 5-1966. Aamodt et al.. Propylene-Based Copolymers in Wire and Cable Application, 12th Annual Wire and Cabl Synposium, 12/63. 29 pages Rosato Electrican Wire and Cable Plastics What Ahead, in Wire & Wire Products, 3/70, pp. 49 and 56.

Jones, An Oil Extended Ethylene-Propylene Rubber for Cable lnsulations and jackets, in Wire 1l/66, pp. 1822-1826.

Prima1y'ExaminerE. A. Goldberg Attorney, Agent, or Firm-Victor F.'Volk ABSTRACT Power cable such as pendant cable is found to have improved flex life when it combines propyleneethylene copolymer insulation on the individual con ductors with a polyurethane thermoplastic overall jacket. 1

4 Claims, 1 Drawing Figure POLYURETHANE THERMOPLASTIC PAIENTEDHEB31|9?4 3.857. 996

POLYURETHA PROPYLENE- ETH THERMOPLAS COPOLYIVIE FLEXIBLE POWER CABLE BACKGROUND OF THE INVENTION Flexible electric cables, and particularly cables for use suspended in pendants where they are subjected to repeated folding and unfolding and where interruptions in service due to cable failure are costly and the failures themselves may be dangerous, are the objects of continuing research for means of improving their flex life. Cables in general use today greatly outlive the cables of a decade ago by reason of a number of cable improvements, each of which was the survivor of a number' of proposed improvements which did not test out. In one form of flex life test, or fatigue test, these cables are loaded with weights pulled back and forth over sheaves until conductors in the cable break or are short circuited. Clearly, the flex life performance of a proposed cable is unpredictable since, if it were not, such expensive, time-consuming, test programs would not be necessary. The elements of a cable interact in such a complex manner that no adequatetheory has ever been developed for the prediction of cable performance and each proposed new cable construction must be extensively tested in the laboratory and in field trials.

SUMMARY- We have invented an improved flexible cable which, as shall be shown, outlasts presently known constructions due to a synergism of the cable elements as now, for the first time, combined. Our novel, improved flexible power cable comprises, in combination, a plurality of copper conductors, each stranded from a plurality of wires. a heavy wall of propylene-ethylene copolymer insulation covering each of the conductors and a polyurethane thermoplastic jacket'surrounding the conduc- 4,100 pounds per square inch when tested according to ASTM test method D-638-6 IT, a 100 percent modulus of 1,170 pounds per square inch when tested according to ASTM test method D4 1 2, and a dilatometer melting point of 165C when tested according to ASTM test method D-785-60T. These values should, in any event, exceed 950 pounds per square inch for the 100 percent modulus, 3,700 pounds per square inch for the yield strength, and 155C for the dilatometer melting point.

Each of the conductors 11-14 covered with a layer 16 comprises a strand 17, 18, 19, 20 and the four strands are cabled together with about a three-inch right hand lay. Over the bunched conductors 11-14 and under the walls 16, we have applied a one-half mil longitudinal polyester tape 21. These are applied at the extrusion machine and prevent the extruded composition from penetrating the wire strands. It is known to stabilize the copolymer compositions against a poisoning effect of copper by incorporation of inhibitors such as oxanalide and the composition of walls 16 is so stabilized, but the tapes 21 add further protection against copper migration into the insulation. During the cabling operation, the cable core is rounded out conventionally by the inclusion of paper wrapped rayon fillers tors with their. walls of insulation. In a preferred embodiment of our invention, the insulated conductors are helically cabled together to form a flexible core. The polyurethane thermoplastic used for the jacket may advantageously be based on polytetramethylene ether.

BRIEF DESCRIPTION OF THE DRAWING The FIGURE shows a section of a cable of our invention. 1

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT -32 l. The copolymer we have found suitable for insulations in our cable is distinguished from monomeric polypropylene in having a much lower brittle point when tested in accordance with ASTM D-74,6-57T.

The brittle point ofa selected insulation l,6 is l6C and a copolymer having a brittle point of at most -IOC should be used. The copolymer is essentially distinguished from monomeric polyethylene in having higher tensile strength, modulus and melt temperature. The copolymer of the walls 16 exhibits a yield strength of A thirty mil thick jacket 23 of polyurethane thermoplastic has been extruded over the cable strands l7-20. A suitable composition for the jacket 23 is commercially available from Uniroyal, Inc. under their trademark Roylar, designation XE-87- 101 which is based on polytetramethylene ether. This composition has the following unaged typical properties:

ASTM TEST METHOD Shore A hardness Tensile Modulus, psi

Ultimate Tensile Strength, psi 7c Elon ation 20071 ongation Set, Elon ation Set at Break 71 Bell rittle Point, F S cific Gravity elt Temperature award of Letters Patent as defined in the following claims.

We claim: l. A flexible power cable comprising, in combination.

A. a plurality of copper conductors, each being stranded of a plurality of wires, B. a heavy wall of propylene-ethylene copolymer insulation having a yield strength of at least 3,700 pounds per square inch and a dilatometer melting 3 I 4 point of at least 155C covering each of said congether to form a flexible core. ductors, and 3. The cable of claim 1, wherein said polyurethane is C. a polyurethane thermoplastic jacket surrounding based on polytetramethylene ether.

said conductors having said walls of insulation. 4. The cable of claim 2, wherein said polyurethane is 2. The cable of claim 1, wherein said conductors 5 based on polytetramethylene ether. being covered by said walls, are helically cabled to-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2732422 *Sep 17, 1952Jan 24, 1956Belden Manufacturing CompanyElectric cable
US3710009 *Dec 16, 1971Jan 9, 1973Borg WarnerElectrical cable
Non-Patent Citations
Reference
1 *Aamodt et al., Propylene Based Copolymers in Wire and Cable Application, 12th Annual Wire and Cable Synposium, 12/63, 29 pages
2 *Avisun Corporation Bulletin, Gade TD-321D General Purpose Electrical Insulating Polymer, 5 1966.
3 *Jones, An Oil Extended Ethylene Propylene Rubber for Cable Insulations and jackets, in Wire 11/66, pp. 1822 1826.
4 *Rosato Electrican Wire and Cable Plastics What Ahead, in Wire & Wire Products, 3/70, pp. 49 and 56.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3980807 *Mar 17, 1975Sep 14, 1976Northern Electric Company LimitedPolyurethane jacketing of metal sheathed cable
US4449012 *Dec 15, 1981May 15, 1984Kupferdraht-Isolierwerk Ag WildeggOverhead cable with tension-bearing means
US4486623 *Sep 30, 1982Dec 4, 1984H. Stoll Gmbh And CompanyHigh-flex insulated electrical cable
US4677256 *Aug 19, 1985Jun 30, 1987Siemens AktiengesellschaftFlexible electrical control cable
US4707569 *May 23, 1986Nov 17, 1987Japan Styrene Paper CorporationMulti-conductor cable
US4924037 *Dec 20, 1988May 8, 1990W. L. Gore & Associates, Inc.Electrical cable
US4959266 *Aug 18, 1986Sep 25, 1990Sumitomo Electric Industries, Ltd.Urethane-resin coated electrical wire having an intermediate layer
US4978813 *Aug 29, 1989Dec 18, 1990W. L. Gore & Associates, Inc.Electrical cable
US5515848 *Jun 7, 1995May 14, 1996Pi Medical CorporationImplantable microelectrode
US5524338 *Dec 22, 1994Jun 11, 1996Pi Medical CorporationMethod of making implantable microelectrode
US5767441 *Jan 4, 1996Jun 16, 1998General Cable IndustriesPaired electrical cable having improved transmission properties and method for making same
US5777273 *Jul 26, 1996Jul 7, 1998Delco Electronics Corp.High frequency power and communications cable
US6254924Jan 8, 1998Jul 3, 2001General Cable Technologies CorporationPaired electrical cable having improved transmission properties and method for making same
US6286294Nov 2, 1999Sep 11, 2001Kinrei Machinery Co., Ltd.Wire stranding machine
US6318062Nov 13, 1998Nov 20, 2001Watson Machinery International, Inc.Random lay wire twisting machine
US6469251 *May 15, 2000Oct 22, 2002Tyco Electronics CorporationVapor proof high speed communications cable and method of manufacturing the same
US7390217 *Mar 16, 2005Jun 24, 2008Pgs Americas, Inc.Solid construction electrical connector adapted for use with seismic data acquisition systems
Classifications
U.S. Classification174/113.00R, 174/116, 174/120.0SR
International ClassificationH01B7/18, H01B7/02
Cooperative ClassificationH01B7/02, H01B7/187
European ClassificationH01B7/02, H01B7/18N
Legal Events
DateCodeEventDescription
Feb 25, 1985ASAssignment
Owner name: ANACONDA ACQUISITION CO., 17 SQUADRON BOULEVARD, N
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ERICSSON, INC., A CORP OF DE;REEL/FRAME:004364/0732
Effective date: 19850215
Feb 9, 1981ASAssignment
Owner name: ANACONDA-ERICSSON INC., A CORP. OF DE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANACONDA COMPANY, THE A CORP. OF DE;REEL/FRAME:003846/0822
Effective date: 19800728
Owner name: ANACONDA-ERICSSON INC., A CORP. OF,DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANACONDA COMPANY, THE A CORP. OF DE;REEL/FRAME:3846/822
Owner name: ANACONDA-ERICSSON INC., A CORP. OF, DELAWARE
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANACONDA COMPANY, THE A CORP. OF DE;REEL/FRAME:003846/0822