Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3858476 A
Publication typeGrant
Publication dateJan 7, 1975
Filing dateJul 12, 1973
Priority dateAug 31, 1971
Publication numberUS 3858476 A, US 3858476A, US-A-3858476, US3858476 A, US3858476A
InventorsJohn Deligt
Original AssigneeWestvaco Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Accordion, folding and cutting apparatus
US 3858476 A
Apparatus for forming accordion folds in a longitudinally traveling web of substantially uniform width and indefinite length including web cutting means disposed upstream or downstream of said folding apparatus.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Umted States Patent 1191 1111 3,858,476 DeLigt Jan. 7, 1975 ACCORDION, FOLDING AND CUTTING 2,957,379 10/1960 Sidebotham, Sr 83/512 x APPARATUS 3,138,985 6/1964 Mills 83/510 X 0 3,199,392 8/1965 Larsson 83/512 [75] Inventor: John DeLlgt, l gto a- 3,456,540 7/1969 Manini 83/512 x Assigneez westvaco Corporation, New York 3,744,360 7/1973 Currle 83/510 X [22] Filed; Ju|y 2 7 Primary Examiner-J. M. Meister Attorney, Agent, 0r.Firm--W..A. Marcontell; R. L. [21] Appl. No.: 378,601 Schmalz Related US. Application Data [62] Division of Ser. No. 176,487, Augf3l, 1971, Pat, No.

3,784,188. [57] ABSTRACT [52] [1.8. Cl 83/512, 83/519, 83/563 Apparatus for forming accordion folds in a longitudi- [51] Int. Cl 826d 1/02, B23d 35/00 nally traveling web of substantially uniform width and [58] Field of Search 83/508-5l2, indefinite length including web cutting means disposed 83/519, 563 upstream or downstream of said folding apparatus. References Cited 5 Claims, 13 Drawing Figures UNITED STATES PATENTS 2,776,610 1/l957 Roselius 83/510 X Patented Jan. 7, 1975 3,858,476

5 Sheets-Sheet 1 Patented Jan. 7, 1975 5 Sheets-Sheet 2 Patented Jan. 7, 1975 5 Sheets-Sheet 3 Patented Jan. 7, 1975 3,858,476

5 Sheets-Sheet 4 Patented Jan. 7, 1975 3,858,476

5 Sheets-Sheet 5 ACCORDION, FOLDING AND CUTTING APPARATUS CROSS REFERENCE TO RELATED APPLICATION The present application is a division of my earlier Application Ser. No. 176,487 filed Aug. 31, 1971 and now issued as US. Pat. No. 3,784,188.

BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of paper converting and comprises apparatus for accordion folding and cutting of a continuous paper web supply.

2. Description of the Prior Art The continuous, mechanized, accordion folding of a paper web of indefinite length has long been a valuable technique in the process of converting large, roll quantities of paper into smaller, more convenient units suitable for individual consumer handling. Through the years, many devices to perform this function have evolved as the demand for greater web speed has increased.

Among such prior art devices have been the inventions of Meisel, US. Pat. No. 568,307, and Teall, US. Pat. No. 1,290,800. Both of these inventions, like that of the present, utilize identical link chain carriers on opposite sides of an oncoming web having a multiplicity of projections secured with uniform spacing around the periphery of each chain set which operatively cooperate to displace the web first to one side of a center plane and then to the other, forming a small radius crease at the position of direction reversal. However, both of said earlier inventions require substantial'dynamic mass as related to the fold length: an intolerable characteristic for high speed machinery.

Moreover, due to the large turning radius of such prior art machines, similarly large clearances from the point of crease formation to other cooperating machinery such as web cutters are required. An undesirable incident of such large clearances is the long, uncontrolled paper tail following a prefold web out which must be caught and drawn intothe accordion fold machinery to a point of positive control.

The present invention discloses a continuous web, accordion folding apparatus suitable for construction with small, light weight elements commensurate with high speed operation. 1

Another object of the present invention is to provide accordion folding apparatus requiring small operational clearance to decrease the proximity between a pre-creasing web cutter and the first point of positive control within the folding apparatus.

Other objects of the present invention include the disclosure of a post-creasing web cutting apparatus for severing a continuous web in the bight of a crease after the formation of same.

SUMMARY OF THE INVENTION The folding apparatus of the present invention comprises two identical pairs of link-chain circuits, each pair being disposed on opposite face sides of an oncoming web of paper or other thin sheet material of indefinite length. Chain circuits respective to each pair are disposed for running in parallelplanes around respective sprocket sets. Each chain in a pair has secured thereto the respectively opposite ends of several tucker and gripper bars extending between and across the two chains of a pair. Said tucker and gripper bars are posidistributed alternately at uniform intervals around the circuit periphery.

Each gripper bar comprises two, channel shaped structural members, each having one leg thereof secured to one of two longitudinally contiguous chain links. The bight openings of said channels are disposed in facing opposition and filled with a soft, compliant substance such as elastomer.

Each tucker bar comprises a structural T element having the crossmember thereof secured to respective chain links and the T leg projecting perpendicularly therefrom.

Operationally, the two chain pairs are synchronized whereby the tucker bar on one chain pair coincides with the gripper bar nip opening of the other chain pair. As the two, longitudinally contiguous links retaining the gripper bar are turned over a small diameter sprocket, the consequent angular divergence between the gripper faces causes a nip to open therebetween. Said nip opening receives the tucker bar leg as it rolls a projection of the web into meshing contact with the nip opening. Separation from the sprocket returns the two contiguous gripper bar carrier links to a straight line geometry thereby closing the gripper faces on the web held therebetween.

Since the straight-run sections of chain circuit departing from the meshing sprockets are aligned for slight relative divergence, the tucker leg is withdrawn from the gripper nip at very slight planar misalignment. As soon, however, as the tucker leg is withdrawn from the gripper, the chain angle of divergence is increased greatly by turning around an idler sprocket having a chain engagement profile such as to retain a straight line geometry between the two contiguous gripper bar carrier links. This geometry prevents the gripper from opening and prematurely releasing the crease.

This increased divergence angle rapidly advances the web crease to the desired release position where at the chain circuit is directed around another, small diameter, conventional profile, sprocket for the purpose of opening the gripper to release the web.

If the web is to be out following folding, a reciprocating blade engages the web along the crease bight. Simultaneously, a set of chain driven, cylindrical rollers are positioned against the web on the side opposite from the blade edge for loaded rolling contact there along to cut the web. to grasp,

As an alternative embodiment of the invention, an interleaved series of short sheets may be accordion folded into a rectangular dispensing stack by prefold cutting the webs of two, independent supply streams into sheet length increments, merging the two supply streams into one, double layer stream with the transverse edges of one stream indexed to coincide with the midpoint between sheet edges of the other stream and orienting the double layer stream with the present folding apparatus to graps, within the nip of a single gripper, two, serially adjacent, transverse sheet edges within the linking bight of a laterally adjacent sheet crease.

BRIEF DESCRIPTION OF THE DRAWINGS Relative to the drawings wherein like reference characters designate like or corresponding parts throughout the several views;

FIG. 1 is a line schematic of the accordion folding apparatus of the present invention integrated with a postfold cutting apparatus;

FIG. 2 is a partial elevational view of the folding apparatus of FIG. 1 as seen at out II-II;

FIG. 3 is a detail of the chain carried tucker and gripper elements of the folding apparatus;

FIG. 4 is a schematic illustrating the mechanics operative in placing a transversely creased portion of web within the open nip of a gripper element;

FIG. 5 is a geometric detail of the cam element for turning the folding apparatus chain direction without prematurely opening the grippers;

FIG. 6 is a plan detail of the rolling cutter apparatus for cutting a web after the accordion fold is formed;

FIG. 7 is an isometric schematic showing the power transmission train to the rolling cutter apparatus;

FIG. 8 is a plan view of an alternative scheme for selectively retracting the rolling cutters from the reciprocating blade table plane;

FIG. 9 is a sectional elevation of FIG. 8 as seen across cut IX-IX;

FIG. 10 is a second alternate to the rolling-cutterapparatus of the invention;

FIG. 11 is an exaggerated schematic of folded prod: not from the apparatus illustrated in FIG. 12;

FIG. 12 is a folding apparatus of the present invention integrated with a prefold-cutting apparatus for producing the interleaved sheet product of FIG. 11.

FIG. 13 is a schematic of an alternative blade shape and associate web cutting pattern available from the roller-cutter apparatus of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT l. OPERATION FLOW SEQUENCE Starting with the FIG. 1 schematic, a paper web W of indefinite length is shown as delivered to the accordion folding apparatus at a controlled rate by pulling rolls 20. Right and left roller chain circuits 3a and 3b functionally cooperate in the proximal region A to alternately engage the web W at regularly spaced distances along the web length.'The engagement forms a straight crease or pinch line extending perpendicularly transverse to the web length axis with the bight openings of successive creases facing in alternatively opposite directions, i.e., away from the chain supporting that particular crease.

Each crease is carried by its respective supportive chain to the lower, release proximity B where the web panel W is substantially horizontal and will gravity drop to a flat position without wrinkling.

Although this disclosure of the preferred embodiment describes the endless carrier elements 3a and 3b as roller chains, it should be appreciated that numerous alternatives, generically characterized as endless traction means, may be equally suitable for particular applications. Among such alternative may be included other types of chain drives, belts, ropes'or cables. Relative rotational timing between the two circuits 3a and 3b is critical since rigid elements structurally secured to each circuit must physically cooperate by meshing. However, it is entirely possible to design a belt carrier system in which the inherent slippage between the traction carriers and the associate sheaves (sprockets) is not so great as to be within meshing tolerance from one meshing half cycle to the next. Coincident therewith,

each incident of meshing would physically correct any misalignment of relative index'occurring within the preceding half cycle of operation.

To cut the infinite length web W into uniform lengths terminating precisely along a crease bight centerline, a post-fold cutting mechanism 4 is disposed between the folding apparatus and product receiving hopper 9. If provision for cutting web creases falling on either side of web flow centerline C is desired, cutting mechanism 4 may comprise two blade tables 41a and 41b and two roller-cutting units 42a and 42b. Blade table 41a and roller unit 42a functionally cooperate as a set to sever crease lines on the right side of centerline C whereas table 41 b and roller unit 42b cooperate for left side cuts, exclusively.

An alternative embodiment is illustrated by FIG. 12 where prefold cutting is performed on two web sources 10 and 11 for the purpose of interleaving one panel section of a folded sheet between integral panels of a second, folded sheet.

2. FOLDING MECHANISM Each chain circuit 3a'and 3b in FIG. 1 comprises a pair of roller chains 30 encompassing sprockets 31, 32, 33 and cam 34. There being two, parallel, chain running planes, R and L (FIG. 2), having rigid transverse structural ties (tucker 35 and gripper 36), in each chain circuit 3a and 3b, a total four chain closures, L30 a, R30a, L30b, and R30b, are described herein. It should be understood, however, that the number of running planes, e.g., R and L, may be increased for the purpose of folding wider paper. To do so, would increase the number of chain closures by two for each running plane added.

Both chain circuits 3a and 3b being of identical construction, further description will be focused on circuit 3a.

Relative fo FIGS. 2 and 3, it may be seen that each gripper bar 36 comprises two, longitudinal structural channel elements 61 filled with elastomer 62. The interface between the two elastomer portions 62 is separable to form respective gripper jaws 66. The two elements 61 of each gripper bar 36 are respectively carried by the two, relatively articulatable, contiguous, link pairs 630 and 63i forming link set 64. Tabs 65, integral with the links 63, may be used as attachment platforms for the channels 61 to the links 63.

' Tucker bar 35 is shown to be a unitary, extruded T or L element comprising cross-bar 51 and leg projection 52. Like the gripper 36, tucker bar 35 may be secured to link pair 53 by means of an attachment platform 55. I

The number of tuckers 35 and grippers 36 allowed on each chain circuit is arbitrary above the permissible minimum of 2 tuckers and 2 grippers. For purposes of timing, coordination, etc., there should be a whole number ratio between the sum of grippers and tuckers and the length of the circuit in pitches.

The distance D between a gripper 36 and the adjacent tuckers 35 on the same chain is related to, but not the same as, a panel length S. Therefore, the linear quantity of web W pushed by the rolls 20 between chain circuits 3a and 3b in the interim between points of tucker-gripper engagement is greater than the distance D as represented by the sag in FIG. 1 web sections W and W The opening and closing operations of grippers 36 are functions of relative geometry as the chains are drawn over the periphery of sprockets 31 and 32 The distance P(FIGS. 3 and 5) between chain rollers 37 is held constant by the interconnecting rigid links 63. Accordingly, the sprocket pitch P may be defined as a chord subtending an a degree are on the pitch circle M of radius of N (FIG. 4). Gripper faces 66 are placed at a distance K (FIG. 3) above the plane including the axes of two adjacent rollers 37 and disposed to abut, or nearly so, between sprockets when the roller center beneath the gripper face 66 falls into a plane common to the centers of those rollers adjacent both sides. Since the geometry of a link pair 63 between adjacent rollers 37 is rigid, when a gripper bar unit 36, having cooperative jaw elements on two adjacent link pairs 63i and 630 of a link set 64, is drawn over the periphery of a sprocket, the jaws 66 are separated by a mean distance substantially equal to 2(K) (Sin As the chain departs fromcontact with a sprocket, the roller centers return to the straight line relationship thereby closing the jaws 66.

Rotational timing of the chain circuits 3a and 3b is as shown by FIGS. 1 and 4 whereby the tucker leg 52 of one chain circuit rolls between the opened jaws 66 of gripper 36 on the opposite chain circuit. Since the meshing of cooperative tuckers and grippers is from opposite sides of the web W, a portion thereof is pressed between the open gripper jaws 66 as shown in FIG. 4. As the chain rolls off the sprocket 31b, jaws 66 are pulled together to close on tucker leg 52, clamping the web W therebetween.

In order to withdraw the tucker leg 52 fromthe nip of jaws 66 without disrupting or damaging the web therebetween, the chains course half angle of departure p from sprockets 31a and 31b must be held to shallow maximums. The exact angle may be analytically derived by those of ordinary skill in the art but for purposes of example, half angle p may be in the order of At this point in the operation, gripper 36 has established a crease in the web and leg 52 of tucker 35 has been withdrawn therefrom. Moreover, the crease held by chain circuit 3b is slightly to the left (FIG. 1) of center plane C. The next succeeding crease will be held by chain circuit 3a and will be drawn to the right of center plane C thereby establishing an accordion geometry bias. However, no reliably repetitive fall pattern may be acquired or positive control exercisedif the web is released. Wrinkles and irregular stacking patterns will result if the web is released from the positions W or W, Therefore, the generally vertical disposition of the accordion must be reoriented to a generally horizontal disposition as represented by web sections W and W To accomplish this result, the creased end of web section W held by chain circuit 3b must be advanced laterally (to the left) from the center plane C at a greater rate than the circuit 3a held crease of the same section W Simultaneously, the vertical displacement between the two ends of section W must be reduced.

An obvious technique of such reorientation is to increase the rate of circuit divergence by the half angle quantity of B, for example, as by bending around an intermediate cam 34. But if the idler includes a conventional profile, gripper jaws 66 will open and release the web prematurely as the gripper bar 36 passes thereover.

To avoid this result, cam 34 of the present invention are provided with notches 38 which are rotationally timed to receive the center roller of the three roller groups supporting a gripper bar link set 64. As represented by FIG. 5 the centers of thethree link set 64 supportive rollers 37 are allowed to sustain a straight line relationship at the point of chain tangency to the idler 34. The depth and profile of the notch 38 may be determined analytically by those of ordinary skill in the art from-chain pitch P, chain roller radius r, the initial departure angle a and the final departure angle [3. Since link pairs 631' and 630 are precluded from relative angular displacement as the set 64 turns about idler 34, jaws 66 are held tightly closed on the crease of web W.

The next critical design point of the present invention is the vertical placement of release sprocket 32 below idler 34. The controlling criterion is the length of a moderately tensioned web section W so that gripper bar 36 on chain circuit 3b will open as the gripper 36 on chain circuit 3a moves into position to pull the 3b circuit crease from between jaws 66.

If only continuous and rapid accordion folding of web W is desired, the aforedescribed apparatus will flawlessly deliver'a rectangular column continuum of accordion folded web to a receiving station such as chute or hopper 9.

However, if finite lengths of folded web, in whole number increments-of web sections between creases, are desired, the aforedescribed folding apparatus may have integrated therewith the post-fold cutting mechanism 4.

3. POST-FOLD CUTTING MECHANISM The perferred embodiment of the post-fold cutter t comprises two blade tables 41a and 41b disposed in the same plane below release sprockets 32.

The two tables 41a and 41b function alternately withone, 41a of FIG. 1, penetrating the material flow column between web sections W and W from the left of center plane C and the other, 41b, penetrating between Both tables 41a and 41b are provided with knife edges 43a and 43b for positionment within the bight of a crease.

Rotating into position against the knife edges 43a and 43b but from opposite sides of the web W, are respective roller mechanisms 42a and 42b. As best illustrated by FIG. 6 relatively wide, flat tread wheels 44 cut the web W by pressing same against the knife edge 32a with rolling contact. Resiliently loaded backing bar 45 maintains a relatively constant contact pressure between wheels 44 and the web W to assure complete cutting across the full web width as the edge and tread surfaces wear. The treads of wheels 44 should be flat," i.e., relatively long surface elements of a regular cylinder, to provide broad accommodation for the degree of functional misalignment as eventually, if not initially, occurs in high speed, cyclically reversing machinery.

Rollers 44 are mounted on carrier links 47 of a sprocket driven roller chain 46. Spacing between rollers 44 along the chain 46 may be as desired, one factor of consideration being the length of allowable cutting interim within an operational cycle: a smaller separation distance between rollers yields a shorter cutting time for a given chain speed.

It should be appreciated that a cutting operation performed by the aforedescribed apparatus of this invention is not only rapid due to simultaneous cutting of web sections W and w, from the right of center plane several small increments across the web width but is also neat, there being no opportunity for shredding due to blade misalignment. The present invention allows only one cut line, that allowed by the continuous line of knife edge 43a or 43b, regardless of the variance the edge line may follow from true (within the limits of the wheel 44 tread width). Therefore, a single, continuous cut line may be achieved with the rapidity of multiple cutters.

Although any number of mechanisms may be devised for selectively engaging the knife edges 43 with rollers 44, the schematic shown in isometric by FIG. 7 is of a particularly successful example. Knife tables 41a and 41b are mounted on guide bars 70 and reciprocably driven by four-bar crank mechanisms 71a and 71b. Since the web cutting operation is cyclical over an interrupted period, greatest flexibility for programing the cycle period is afforded by linking the input power line shaft 72 with the lateral, power transfer shafts 75a and 75b carrying lateral spur gears 73a and 73b through electrically latched, single revolution clutches 74a and 74b such as a Type 6 as specified by the Hilliard Corporation of Elmira, NY.

Condition sensory means such as a limit switch or photo sensory switch, not shown, for actuating either of clutches 73a or 73b by the emission of a suitable electrical signal, maybe responsive to select portions of the folding mechanism or drive therefor such as the notched cam 34..

With each operational cycle of the blade tables 41a and 41b, so too,'are positioned roller-cutter units 42a and 42b by means of carriage 48, parallel swing arms 49 and eccentric 77 driven connecting rod 76.

With clutch 74a engaged, for example, power is transferred from shaft 72 to shaft 75a via spur gear 73a.

Shaft 75a transfers power to the four-bar linkage 71a via chain transmission 78a (thereby sliding blade table 41a between web panels W and W (FIG. I). Simultaneously, chain transmission 79a draws power from shaft 75a to rotate eccentric 77a for raising the rollercutter unit 42a into operative engagement with knife edge 43a mounted on blade table 41a.

Roller chain 46 carrying cutting wheels 44 is driven continuously by direct power take-off 800 from main input power shaft 72 thereby further minimizing the cutting delay time.

As of the aforedescribed point of operation, the cutting cycle for the crease joined web panels W and W is only half complete although the web is completely severed. However, since the ratio between the power shaft 72 gear is 2:1 for a complete cycle, the one revolution clutch 74a must be actuated a second time to withdraw blade table 41a from the web flow column. This second actuation may be keyed to such an event as the completion of a dump cycle for hopper 9 to remove the material collected therein and severed from the web W by the rolling-cutter apparatus.

After the cutting plane between guide bars 70 has been cleared by the retraction of roller-cutter 42a and blade table 41a therefrom, the circuit for actuating cutting apparatus 41b and 42b is prepared for completion by a second panel counting circuit. In this manner, web creases on sequentially opposite sides of the material flow axis C are cut with a predetermined number of integrally connected panels therebetween.

It should be understood that the scale and disposition of elements in FIG. 7 is distorted to further the ends of clarity and disclosure. Although the gear and sprocket ratios of the FIG. 7 mechanism are critical, they are so for a very limited product range. These are matters within the competence of ordinarily skilled practitioners of the art and need no further elaboration.

It should be noted, however, that depending on associated machine geometry and the nature of power available, the rolling-cutter mechanisms disclosed by FIGS. 8, 9 and 10 maybe more suitable.

The FIG. 8 and 9 embodiment, for example provides an alternative to physically displacing a driven sprocket under load as required the FIG. 7 mechanism. In FIGS. 8 and 9 the rolling contact surfaces are frustums of regular cones 8l carried on an expansible chain circuit 82 loaded tensionally by reciprocable load shoes 83a and 83b. Linking piston rods 84 fitted through cylinder block 85 rigidly unitize shoes 83a and 83b whereby fluid pressure resiliently biased against an annular collar piston surface (not shown) within the cylinder block 85 engages the rolling contact surface 81 with the knife edge 43a. When the cut is complete, fluid pressure bias on the piston collar is reversed to retract all'chains and roller elements from the blade table reciprocation plane.

The rolling cutter mechanism of FIG. 10 is highly simplified and represents the basic elements of an application where the most convenient power application is a single or double stroke linear displacement of a machine element from point Y to point Z. The elements of FIG. 10 include the arcuate segment of a cylinder having a radius E. The cylindrical surface '86 is rolled into contact with the knife edge 43a by driving a rod or roller element 87 along arcuate slot 88 from point Y to point Z. As surface 86 rolls about the axis F, the axis position translates to point F.

FIG. 13 further illustrates the design flexibility available to the present invention by allowing complex cutting patterns such as the undulating or scalloped edge of panel W without sacrifice of cutting speed or precision. Since the thread width of rollers 37 exceeds the amplitude of knife edge 43c undulations, the cut line for web W will follow exactly that of the knife edge notwithstanding the fact that several rollers 37, rapidly transversing short increments of the web width, serve as separate anvils over respective increments.

Many variations of the scalloped edge scheme of FIG. 13 may be comprehended within the teaching of the invention, such as Greek scroll or sawtooth, the primary criterion being that the web W is pressed against all transverse elements of the edge 43c by loaded, rolling, contact pressure.

4. PREFOLD CUTTING MECHANISM Due to the relatively short radial clearance required by the sweep of tucker 35 and gripper 36 devices of the present invention, it is also possible to integrate the present accordion folding apparatus with prefold cutting apparatus to deliver a continuum of interleaved, single folded sheets as schematically represented by FIG. 1 1. Distinctive characteristics of the FIG. 11 product include sheets 23, folded so as to open to the left of the center line, and sheets 24, folded so as to open to the right of the center line. The upper panels 23u of sheets 23 are disposed to overlie the lower panels 24L of sheets 24. Conversely, panels 24u overlie panels 23L. An integral pair of panels, 23a and 23L for example, are joined by the bight of a crease 23b.

Relating now to the FIG. 12 apparatus for producing the product of FIG. 11, there are shown two web supply streams l3 and 14 pulled from reels and 11 by pulling rolls 15 and 16. Rotary knives 17 and 18 cut the respective webs into a continuum of sheets 23 and 24, respectively.

Subsequent to cutting, the two supply streams are merged into a single plane of supply 21 by the converging nip 22 between belt conveyors 25 and 26. Rotation of the knife 17 is timed for 180 angular phase displacement from the rotation of knife 18 so that upon emergence from the nip 22, the transversely cut edges of serially adjacent sheets 23 from supply stream 13 align with the approximate midpoint between transverse edges of laterally adjacent sheets 24. From the nip 22, the single supply stream 21 is delivered to the pickup area A between sprockets 31a and 31b where the junction between serially adjacent edges of sheets 23 and the midpoint of sheets 24 is pressed into the nip of grippers 36.

As the foregoing cycle is reversed and repeated, panels from respective webs are interleaved in the manner represented by FIG. 11.

Having disclosed a specific, preferred embodiment, I claim as my invention:

1. An apparatus for cutting a web material having a substantially constant width and an indefinite length, said web material being accordion folded at transversely extending creases having sequentially opposite bight openings to divide said web longitudinally into panels of substantially uniform length, said apparatus comprising:

first and second movable cutting edges secured to respective means for alternately translating said cutting edges in substantially the same plane onopposite sides of said web between a web disengagement position to a crease bight engagement position;

first and second roller carriages secured to respective means for alternately translating said carriages from a web disengagement position to a crease bight engagement position;

said first cutting edge and said first roller carriage simultaneously engaging said web on oposite sides thereof, said first cuttingedge passing between a first adjacent pair of panels to engage said web in the bight opening therebetween;

said second cutting edge and said second roller carriage simultaneously engaging said web on opposite sides thereof, said second cutting edge passing between a second adjacent pair of panels to engage said web in the bight opening therebetween;

each of said roller carriages comprising a plurality of flat tread rollers having axes thereof secured to endless belt means;

driving means for driving said endless belt means about a closed periphery lying in a plane substantially parallel to said respective cutting edges to cut said web when the tread of said rollers compresses said web against a respective cutting edge; and

sequence control means tocoordinate the alternate engagement of said first cutting edge and roller carriage with crease bights opening to a first direction and the engagement of said second cutting edge and roller carriage with crease bights opening to a second direction, said control means permitting a first time interim for web engagement between a cutting edge and respective roller carriage sufficient to sever said web and a second time interim sufficient to permit the passage of a predetermined number of adjacent panels between said first and second adjacent pair of panels. 2. Apparatus as described by claim 1 wherein said flat tread rollers are spaced around the periphery of said endless belt means by a distance less than the width of said web.

3. Apparatus as described by claim 1 wherein said endless belt means .is a link chain, the axes of said rollers being secured to respective links in said chain.

4. Apparatus as described by claim 1 wherein said flat tread rollers are regular cylinders.

5. Apparatus as described by claim 1 wherein said flat tread rollers are regular frustums of a cone.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2776610 *Sep 8, 1954Jan 8, 1957S & S Corrugated Paper MachCutting and creasing press
US2957379 *Feb 7, 1956Oct 25, 1960Joseph Dixon Crucible CoStrip cutting mechanism
US3138985 *Jul 5, 1960Jun 30, 1964Mills Emmett RMeans for perforating plastic films
US3199392 *Jan 23, 1963Aug 10, 1965Arenco AbDevice for cutting a cigar wrapper
US3456540 *Sep 29, 1964Jul 22, 1969Benito ManiniTransverse interrupted slitting apparatus for continuously moving plastic film
US3744360 *Feb 22, 1971Jul 10, 1973Cellu Prod CoMethod and apparatus for dispensing cellular web material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4708332 *Jul 2, 1986Nov 24, 1987E.C.H. Will (Gmbh & Co.)Method and apparatus for zig-zag folding webs of paper and the like
US4718654 *Apr 22, 1986Jan 12, 1988Paper Converting Machine CompanyApparatus and method for separation and delivery of continuous forms
US4778165 *Apr 27, 1987Oct 18, 1988Bielomatik Leuze Gmbh & Co.Apparatus for folding and cutting web stacks
US5087023 *Aug 23, 1990Feb 11, 1992The Standard Register CompanyApparatus and method for folding separated forms in a stack
US5090678 *May 17, 1991Feb 25, 1992G. Fordyce Co.Method and apparatus of forming a separated stack of zigzag folded sheets from a main stack
US5123890 *Mar 29, 1990Jun 23, 1992G. Fordyce CompanyApparatus and method for separating forms in a stack
US5360213 *Sep 10, 1992Nov 1, 1994Roll Systems, Inc.Apparatus for separating folded web
US5558318 *Mar 29, 1994Sep 24, 1996Roll Systems, Inc.Separator for forming discrete stacks of folded web
US6684746 *Dec 2, 1999Feb 3, 2004Heidelberger Druckmaschinen AgVariable-length cut-off folder and method
EP0236815A2 *Feb 19, 1987Sep 16, 1987Paper Converting Machine CompanyApparatus and method for separation and delivery of continuous forms
EP0236815A3 *Feb 19, 1987Sep 21, 1988Paper Converting Machine CompanyApparatus and method for separation and delivery of continuous forms
U.S. Classification83/512, 83/563, 83/519, 493/357
International ClassificationB65H45/101, B65H45/20, B26D1/02
Cooperative ClassificationB65H45/20, B65H2701/1824, B26D1/025, B65H45/101
European ClassificationB26D1/02B, B65H45/101, B65H45/20
Legal Events
Apr 20, 1984AS02Assignment of assignor's interest
Effective date: 19840323
Apr 20, 1984ASAssignment
Effective date: 19840323