Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3858573 A
Publication typeGrant
Publication dateJan 7, 1975
Filing dateJul 9, 1973
Priority dateJul 9, 1973
Publication numberUS 3858573 A, US 3858573A, US-A-3858573, US3858573 A, US3858573A
InventorsRyan Donald F, Williams Allan N
Original AssigneeSaid Ryan By Said Williams
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Alveolar gas trap and method of use
US 3858573 A
Abstract
An alveolar gas trap includes a small tubular reservoir having check valves at opposite ends and a mouthpiece so that when a person exhales through the mouthpiece, the exhalation gasses pass through the reservoir to the ambient with the last or alveolar gas being collected in the reservoir.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Ryan et al.

1 1 Jan.7, 1975 1 1 ALVEOLAR GAS TRAP AND METHOD OF USE {75] Inventors: Donald F. Ryan, 530 N. Lalonde,

Lombard, 111. 60148; Allan N. Williams, Griffith, Ind.

[73] Assignee: said Ryan, by said Williams [22] Filed: July 9, 1973 [21] Appl. No; 377,758

[52] US. Cl. 128/2 C, 128/207, 73/4215 R [51] Int. Cl. A6lb 10/00, GOln 1/22 [58] Field of Search 128/2 R, 2 C, 2.07, 2.08;

[56] References Cited UNITED STATES PATENTS 9/1928 Regelsberger 128/207 2,795,223 6/1957 Stampe 128/2 C 3,306,283 2/1967 Arp 128/207 3,343,529 9/1967 Mlller et a1. 128/208 FORElGN PATENTS OR APPLICATIONS 1,038,235 9/1958 Germany 128/207 Primary Examiner-Richard A. Gaudet Assistant E.raminerLee S. Cohen Attorney, Agent, or FirmEdmond T. Patnaude [57] ABSTRACT An alveolar gas trap includes a small tubular reservoir having check valves at opposite ends and a mouthpiece so that when a person exhales through the mouthpiece, the exhalation gasses pass through the reservoir to the ambient with the last or alveolar gas being collected in the reservoir.

5 Claims, 2 Drawing Figures ALVEOLAR GAS TRAP AND METHOD OF USE The present invention relates in general to an apparatus and method of collecting alveolar gas samples from human beings and to the normal use of such samples for making cardiopulmonary analyses.

Prior to the present invention, it had been both difficult and costly to collect a sample of alveolar air, and the samples actually collected did not result in accurate measurements. One such attempt to obtain an alveolar air sample employed a Douglas bag in which the expired gas over a number of breaths was collected. However, anatomical variances between individuals make it impossible to determine the actual alveolar gas concentration from the mean expired sample so collected. Another method which has been used in the prior art employs a servo-electric valve which operates on a fixed time basis to select the alveolar gas from the total expired gas in a single breath. Not only is such equipment costly, but since any change in the ratio of inspiratory to expiratory time changes the sample, the sample is easily taken at the wrong point in the breathing cycle with resulting erroneous readings.

We have recognized, however, that if a true alveolar air sample could be derived from the gas exhaled by the patient, cardiopulmonary analyses could be greatly expedited with minimum body invasion, and could provide accurate cardiopulmonary measurements not heretofor obtained except over long periods of time with substantial patient duress. At the present time, such measurements, as for example, cardiac output, oxygen consumption, carbon dioxide production and respirartory quotient can only be determined with the use of expensive, complicated and sophisticated equipment.

OBJECTS OF THE INVENTION and improved method for determining the overall efficiency of a patients cardiopulmonary system.

SUMMARY OF THE INVENTION Briefly, there is provided in accordance with one aspect of the present invention, a device through which a patient exhales and which automatically separates and traps a sample of the alveolar gas from the total respiratory gasses. The device incorporates a relatively small gas reservoir on opposite sides of which low pressure, positive sealing check valves are located. As the patient exhales through the device, the respiratory gasses pass directly through the device to the ambient, with the final small amount of the expired gas being trapped in the reservoir compartment. Since the alveolar air is the last to leave the lungs during normal exhalation, the gas which is trapped in the reservoir is an accurate sample of alveolar air from which the oxygen and carbon dioxide pressures can be readily determined in a conventional blood-gas analyzer. As is explained in greater detail hereinafter, these partial pressures in combination with samples of arterial and venous blood taken substantially simultaneously with the alveolar gas sample permit the rapid calculation in a normal manner of oxygen consumption and carbon dioxide production as well as what we term the Index number of cardiopulmonary disability." In addition, calculations of shunt ratio, cardiac output, physiological dead space, respiratory quotient, ventilation perfusion ratio, mitral valve flow, alveolor ventilation and total blood volume can be readily performed using the alveolar air sample. Using the method and apparatus of the present invention, all of these measurements can be completed within about fifteen minutes, as compared to the previous minimum of about two to three days if the physiological condition of the patient would actually permit it.

Further objects and advantages and a better understanding of the invention may be had from the following detailed description taken in connection with the accompanying drawings, wherein:

FIG. 1 is an elevational view of the alveolar gas trap of the invention in use; and

FIG. 2 is a longitudinal section of the alveolar gas trap shown in FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawing, and particularly to FIG. 1 thereof, an alveolar gas trap 10 is there shown with the mouthpiece portion 11 in the mouth of a patient 12. The trap is both small in size and light in weight so as not to be uncomfortable to the patient who simply breathes'in the normal manner, inhaling through the nostrils and exhaling through the mouth and thus through the alveolar gas trap 10.

As best shown in FIG. 2, the gas trap 10 includes the tubular mouthpiece II in which a check valve 13 is mounted. The valve 13 is a light, flexible disc 14, suitably formed of rubber and overlying an annular valve seat 15 mounted to the mouthpiece tube 11. The disc 14 has a centrally disposed post 16 which is secured in a mounting ring 17 connected to the main body of the seat member 15 by a spider made up of a plurality of spaced apart radial arms 18.

The mouthpiece tube 11 sealably extends into one end of a transparent plastic tube 19 and an exhaust tube 22 sealably extends into the other end of the tube 19. A check valve 23 is mounted in the tube 22 and is identical in construction to the inlet check valve 13 and includes a flexible valve disc 24 overlying an annular valve seat 25. The valves 13 and 23 should operate at low pressure differentials of less than one centimeter of water pressure and must provide a good hermetic seal at a substantial zero pressure differential. We have found that a light silicone spray applied to the valving surfaces of the rubber discs 14 and 24 provides satisfactory results.

The space within the tube 19 between the valves 13 and 23 thus constitutes a reservoir in which the alveolar gas is trapped. While the size of the reservoir is not critical, it must have a substantially smaller volume than that of a normal exhalation tidal volume. In a normal adult person, there is between and 200 cc of alveolar air in the lungs upon inhalation. We have successfully used a reservoir size of thirty-one cubic centimeters. Since the normal tidal volume for an adult is in the range of about 400 cc to 800 cc, the gas trapped in the reservoir is less than the last ten percent of the expired gas, and less than one-third of the alvoelar air. Since the gas passing through the tube 19 makes a substantially clean sweep, there is only a negligible amount of turbulence and mixing of the earlier expired gas from the anotomical dead spaces with the alveolar gas.

A sampling valve assembly 28 is mounted to the tube 19 and is used for extracting a gas sample from the reservoir in the tube 19. The assembly 28 includes a tubular body 29 having a necked down end portion 30 which extends a short distance into the tube 19 through a hole 31 in the wall thereof. The end portion 30 is suitably sealed to the tube 19 to prevent escape or contamination of the gas trapped in the reservoir. A valve member 33 is rotatably mounted in the body 29 and has a flat 34 provided on one side for opening an outlet port 35 in the side of the body 29. A flexible tube is connected to the outlet port 35 for coupling it to a bloodgas analyzer. A knob 38 is provided at the distal end of the valve member 33 for rotating it between the open position shown in FIG. 2 wherein the flat 34 is Opposite the port 35 and a closed position wherein the member 33 sealably engages the wall portion of the body 29 surrounding the port 35 to close it. The position of the valve member 33 is indicated by an elongated, pointed flange 39 which is aligned with the flat 34. A pair of spring fingers 40 depend from the flange and fit under an annular flange at the top of the body 29 to hold the valve member in place therein.

OPERATION OF GAS TRAP In use, the patient is asked to breath normally by inhaling through the nose and exhaling through the mouth. With the valve 28 closed, the mouthpiece ll of the trap is then placed in the patients mouth as shown in FIG. I and breathing continued with the patients lips sealingly engaging the mouthpiece so that the en tire respiratory breath passes into the trap. The exhaust gas pressure is sufficient to open both the inlet and exhaust check valves until exhalation ceases, at which time both valves close 'to trap the last or alveolar portion of the exhaust gasses from the lungs. Because of the construction of the trap 10, there is little turbulence in the reservoir which could cause mixing of the alveolar gas and the previously exhaled gasses from the anotomical dead space and other areas of the lungs. Moreover, since the capacity of the reservoir is but a small fraction Of the tidal volume, i.e. quantity of gas exhaled in each breath, the gas thus trapped in the reservoir is, for all practical purposes, only alveolar gas.

A small portion of say one-half a cubic centimeter of the trapped sample is pumped from the reservoir through the valve 28 at a pressure less than the biasing forces on the inlet and outlet valves and is supplied to any suitable device, such for example, as a blood gas analyzer to measure the partial pressures of the oxygen and carbon dioxide in the alveolar gas sample.

Since, in order to maintain a steady state within the respiratory system, oxygen consumption must be equal to oxygen uptake and carbon dioxide production must be equal to carbondioxide release, these values may be calculated by taking arterial and venous blood samples substantially simultaneously with the taking of the alveolar gas sample. We have determined that the blood samples should be taken at as nearly the same time as the alveolar gas sample is obtained, but at least within one minute thereafter. Ordinarily, there is substantial pain associated with the taking of the arterial blood sample, and since a persons reaction to pain affects the alveolar gas, it is important that the gas sample not be taken after the arterial blood sample is taken, or the data will be erroneous. Other well-known and easily measured factors, such as tidal volume. respiratory rate, approximate anatomical dead space and barometric pressure are also used in these calculations. The various cardiopulmonary measurements or indices, referred to above may be readily calculated from the equations given below wherein the following wellknown terms are used: Q cardiac output (ml/min) Q, pulmonary physiological shunt (ml/min) P 0 expired alveolar oxygen tension (mm Hg) P C0 expired alveolor carbon dioxide tension (mm P 0 arterial blood oxygen tension (mm Hg) P C0 arterial blood carbon dioxide tension (mm Hg) P,,0 mixed venous blood oxygen tension (mm Hg) P,,C0 mixed venous blood carbon dioxide tension (mm Hg) P,-0 inspired air oxygen tension (mm Hg) P,-C0 inspired air carbon dioxide tension (mm Hg) C 0 alveolar oxygen content per ml C 0 mixed venous oxygen content per 100 ml C 0 arterial oxygen content per 100 ml S 0 alveolar oxygen saturation S 0 arterial oxygen saturation 8,0 mixed venous oxygen saturation V0 oxygen consumption (ml/min) ADS anatomical dead space TV average tidal volume F respiratory rate P barometric pressure V O CO production R respiratory quotient V,, alveolar ventilation (l/min) F CO concentration of CO1|inalveolar gas Q blood flow through pulmonary capilaries CvCO CO concentration in venous blood CgCO CO concentration in alveolar air C 0 0 concentration in arterial blood MVF mitral valve flow The following equations are used to calculate the various measurements or indices used in making a cardi- Opulminary diognosis. SHUNT EQUATION QS/QI 2 C.,0,/C'c0 Q02 0 CONSUMPTION V0 P,-O PA0,/P,, 47 x (TV ADS) x F CARDIAC OUTPUT I00 V02/C,,02 C.0

PHYSIOLOGICAL DEADsPACE V, V, P,,c0 P,,c0,/P,,c0,)

CO PRODUCTION C0 1 ,00 P,-C0 /P,, 47 (TV ADS) (F) RESPIRATORY QUOTIENT R VC0,/V0

ALvEOLAR VENTILATION V, VC02/FACO2 APPROXIMATE EFFECTIVE BLOOD VOLUME EV V0 /(C 0 C,,0 X 100 VENTILATION/PERFUSTION RATIO A/Qc R1 0-863 4 2 1102) IPACOZ MITRAL VALVE FLOW MVF cardiac output (cc)/Rate (Min) X average duration of diastole (sec) In order to provide a repeatable measurement of the cardiopulminary disability of a patient, we have found that the Index Number of cardiopulminary disability" is quickly and easily determined from the true alveolar gas sample. The following equation may be used to calculate this number:

I C CO C' CO Extensive testing of patients having healthy and impaired cardiopulminary systems indicated that an Index Number of about two or less indicates a normal cardiopulminary function with the degree of impairment increasing in proportion to the value of the index number over two. For example, an index number of 13 or more shows extremely poor cardiopuliminary function with a consequent life expectancy of a few months or less.

While the present invention has been described in connection with a particular embodiment thereof, it will be understood that those skilled in the art may make many changes and modifications without departing from the true spirit and scope thereof. Accordingly, the appended claims are intended to cover all such changes and modifications as fall within the true spirit and scope of the present invention.

What is claimed is: 1. An alveolar gas trap for obtaining a sample of alveolar gas from a person, comprising means defining a gas reservoir having a volume equal to no greater than one hundred cubic centimeters, a mouthpiece for disposition in said persons mouth, a first one-way check valve mounted in proximity to 6 said mouthpiece and connected between said mouthpiece and said reservoir, 1

said means defining a gas reservoir being mounted directly to said mouthpiece with said check valve opening directly into said reservoir so that all of the gas passing through said check valve enters said reservoir,

a second one-'way check valve connected between said reservoir and the ambient for passing gas from said reservoir to the ambient,

said valves being self biased into a closed position with a sufficiently low force so as to be opened by the normal exhalation pressure of said person,

a sampling port opening into said reservoir between said check valves, and

a valve connected to said port for controlling the removal of gas from said reservoir.

2. An alveolar gas trap, according to claim 1, wherein said means defining said reservoir comprises a tube, and

said check valves are positioned at respectively opposite ends of said tube, whereby air flow is through said tube from one end to the other during exhalation.

3. An alveolar gas trap, according to claim 2, wherein said check valves open at a pressure differential of less than one centimeter of water.

4. An alveolar gas trap according to calim 1 wherein said reservoir has a volume no greater than about 50 cubic centimeters.

5. An alveolar gas trap according to claim 1, wherein said means defining said reservoir is a straight, transparent tube,

said mouthpiece is a tubular member aligned with said transparent tube and to which said transparent tube is mounted,

said check valves being positioned at opposite ends of said tube, and

said valve being mounted directly on said tube.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1685557 *Sep 9, 1926Sep 25, 1928Hermann RegelsbergerApparatus for analyzing the alveolar air from the lungs
US2795223 *Aug 21, 1953Jun 11, 1957Drager Otto HApparatus for sampling the human breath
US3306283 *Feb 27, 1964Feb 28, 1967Univ Iowa State Res Found IncOxygen utilization analyzer
US3343529 *Mar 31, 1965Sep 26, 1967Miller Ronald ASpirometer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4456014 *Jan 3, 1983Jun 26, 1984Thoratec Laboratories CorporationFlow restrictor
US4900514 *May 1, 1987Feb 13, 1990Guardian Technologies, Inc.Breath analyzer mouthpiece system
US4947861 *May 1, 1989Aug 14, 1990Hamilton Lyle HDecomposition of urea producing ammonium
US5065781 *Mar 22, 1990Nov 19, 1991Cox Ernest JStorage tank cleanout apparatus
US5081871 *Feb 25, 1991Jan 21, 1992The United States Of America As Represented By The Secretary Of The Department Of Health And Human ServicesBreath sampler
US5211181 *May 17, 1991May 18, 1993Martek CorporationApparatus and method for collecting human breath samples
US5361772 *Jul 7, 1993Nov 8, 1994Diagnostics & Devices, Inc.Breath collection devices
US5368021 *Apr 9, 1992Nov 29, 1994Criticare Systems, Inc.System for handling and monitoring respiratory waste streams
US5432094 *Jul 22, 1994Jul 11, 1995Martek Biosciences CorporationApparatus and method for collecting, detecting and indicating true alveolar breath collections
US5465728 *Jan 11, 1994Nov 14, 1995Phillips; MichaelBreath collection
US6464941 *Mar 24, 2000Oct 15, 2002DRäGER SICHERHEITSTECHNIK GMBHBreath alcohol measuring apparatus having a sample intake channel and a temperature sensor mounted therein
US6582376Sep 13, 2001Jun 24, 2003Pranalytica, Inc.Alveolar breath collection device and method
US7055401 *Mar 15, 2004Jun 6, 2006Haemonetics CorporationClosed method and system for the sampling and testing of fluid
US7364553Dec 22, 2003Apr 29, 2008Amidex, Inc.Breath aerosol management and collection system
US7597014 *Aug 15, 2006Oct 6, 2009The United States Of America As Represented By The Secretary Of CommerceSystem and method for providing vertical profile measurements of atmospheric gases
US8021308Jun 19, 2003Sep 20, 2011Capnia, Inc.Breath end-tidal gas monitor
US8821409 *Dec 21, 2009Sep 2, 2014The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And PreventionLung aerosol collection device
US20120004571 *Dec 21, 2009Jan 5, 2012Ku David NLung aerosol collection device
EP0650051A2 *Oct 24, 1994Apr 26, 1995Kyoto Dai-ichi Kagaku Co., Ltd.Expiration collecting method and automatic expiration collector
EP1172065A1Jul 16, 2001Jan 16, 2002Natus Medical, Inc.Detecting pathological conditions relating to pregnancy using breath carbon monoxide concentration measurements
WO1990009572A1 *Feb 2, 1990Aug 23, 1990Us HealthBreath sampler
WO1992020278A1 *May 13, 1992Nov 18, 1992Martek CorpApparatus and method for collecting human breath samples
WO1995018566A1 *Jan 6, 1995Jul 13, 1995Michael PhillipsBreath collection
WO2005089326A2 *Mar 14, 2005Sep 29, 2005Haemonetics CorpClosed system and method for the sampling and testing of fluid
Classifications
U.S. Classification600/543, 73/863.71, 73/863.86, 128/205.12
International ClassificationA61B5/097, G01N33/497, G01N33/483, A61B5/08
Cooperative ClassificationG01N33/497, A61B5/097
European ClassificationA61B5/097, G01N33/497