Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3859164 A
Publication typeGrant
Publication dateJan 7, 1975
Filing dateMay 20, 1971
Priority dateMay 21, 1970
Also published asDE2124442A1
Publication numberUS 3859164 A, US 3859164A, US-A-3859164, US3859164 A, US3859164A
InventorsKarl Nowak
Original AssigneeNowak Karl Ing
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and device for obtaining controlled nuclear fusion by means of artificial plasma
US 3859164 A
Abstract
For obtaining controlled nuclear fusion, two plasma beams of high density will be formed by blending of previously and separately accelerated atomic ion beams and electrons via deflection magnets, directed against each other with short impulses and combined to a fusion plasma within a reaction space surrounded by a contraction coil. With the axially aligned particle beams a high plasma density of 122 - 124 ions/ccm can be obtained and thus a good efficiency of fusion.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 MEANS OF ARTIFICIAL PLASMA [76] lnventor: Karl Nowak, Mollardgasse 8, A10

Vienna 6, Austria [22] Filed: May 20, 1971 21] Appl. No.: 142,708

[30] Foreign Application Priority Data May 21, 1970 Austria 4534/70 52 us. c1 176/2, 176/5, 176/9 [51] Int. Cl. .Q. G2lb 1/02 [58] Field of Search 176/1, 2, 9, 5

[56] References Cited FOREIGN PATENTS OR APPLICATIONS 993,174 5/1965 Great Britain 176/2 983,753 2/1965 Great Britain 176/1 1,012,751 12/1965 Great Britain 176/2 Primary Examiner-l-larvey E. Behrend Nowak 1 Jan. 7, 1975 [54] METHOD AND DEVICE FOR OBTAINING CONTROLLED NUCLEAR FUSION BY 57 ABSTRACT For obtaining controlled nuclear fusion, two plasma beams Of high density will be formed by blending of previously and separately accelerated atomic ion beams and electrons via deflection magnets, directed against each other with short impulses and combined to a fusion plasma within a reaction space surrounded by a contraction coil. With the axially aligned particle beams 21 high plasma density of 1 1 ions/ccm can be obtained and thus a good efficiency of fusion.

ln the drawing, 6, and 6a presents the atomic ion sources and 7, and 7a the atomic accelerators. The atomic ion beams are deflected through magnets 2, 2a and by means of the weaker deflection magnets 5, 5a the electronic beams coming from the electronic accelerators 8, 8a are admixed. The thus formed plasma beams are directed against each other in short periods with limited quantities of particles. A magnetic contraction coil 3 produce the desired high density of the atomic ions. The suction lines 11, 11a maintain a high vacuum in the reaction space.

13 Claims, 7 Drawing Figures Q 8 .Q tesetstoti.

Pmmemm' H915 saw 2 OF 2 INVENTOR METHOD AND DEVICE FOR OBTAINING CONTROLLED NUCLEAR FUSION BY MEANS OF ARTIFICIAL PLASMA essary for the practical application of said method. Ac cording to the invention beams of atomic ions and elec- I trons are combined via different deflection magnets, the beams of atomic ions passing through both magnets, the electron beam, on the other hand, passing only through one weaker magnetic field. Prior to the collision the plasma beams thus produced are contracted to ion densities of the orders to 10 or more ions/ccm by means of magnetic fields of increasing electric field strength due to the avoidance of radial velocity components of the ion flux movement and are thus led together in limited packets (i.e., short pulses of electric current).

In order, to obtain controlled nuclear fusion it is necessary to provide theatomic ions with velocities sufficing for overcoming the Coulomb barrier. As far as deuterium ions (deuterons) are concernedthis is the case in an ordinary plasmaof 100 million K. According to the equation e-V K-T this corresponds to ion velocities of 10 keV (1 eV corresponds to a temperature velocity of about 7,730 K). So far fusion temperature has been attempted to be reached mainly by means of pulsating discharges of current, plasma shocks, etc. Considering Maxwells distribution of temperature velocity, however, the fusion plasma also has to be kept in a stable position for a certain period of time (cca 1 second), i.e., it has to be enclosed by an arrangement, so that'the fastest of the atomic ions of thete-mperature movement on all sides may collide in accordance with the mean value. However, considerable problems have to be facedin achieving fusion temperature and in maintaining the fusion plasma over a sufficient length of time with a sufficiently high plasma density and yield.

Apparently two factors are chiefly responsible for the instability of heavily contracted plasma columns, namely, side effects of the hot plasma on the colder gaseous atmosphere surrounding it, and the tendency of the plasma to reduce its density on account of the movement of temperature on all sides, which is manifested in an enormous expansion pressure.

The present invention, avoids these difficulties. Artificial plasma is produced in a vacuum, thus eliminating theside effects. Byavoiding a movement of temperature on all sides and applying an exclusive axial ion velocity in two plasma beams travelling in opposite directions, a primary radial velocity component being avoided, high. and highest plasma densities may be obtained by means of relatively weak electromagnetic fieldstrengths. Owing to the fact that all atomic ions of the beams virtually possess the same velocity, which is produced by one accelerator in each case, also the reaction time necessary in the case of ordinary plasma with a general temperature movement, i.e., Maxwells distribution of temperature velocity, is no longer required, that is to say, the necessity of enclosing the plasma. Atomic ions and electrons are accelerated separately to an appropriate extent each and form plasmas each. Only the collision of these two contracted artificial plasmas triggers of the fusions.

The accompanying drawings will provide a more detailled explanation of the present invention.

FIG. 1 illustrates the principle of the method invented;

FIG. 2 schematically shows an example of the practical application of the present invention;

FIG. 3 serves to explain the fusion process invented;

FIGS. 4 and 5 show details of an appropriate device for obtaining the energy produced;

FIG. 6 offers a schematic explanation of another variety of the device invented;

' FIG. 7 schematically shows an example of the reaction chamber of the device invented.

According to FIG. 1 the beams of atomic ions 1, 1a, stemming from ion sources (canal ray tubes) and subsequent accelerators, which are not shown here, are directed against each other after having been deflected by magnetic fields from magnetic poles 2, 2a and meet within the contraction field of a magnetic coil 3. Prior to the combination of theion beams the electron beams 4, 4a are added, which also come from accelerators not shown here, via the deflection magnets 5, 5a, which leads to the formation of artificial plasma beams. The combined beams of atomic ions and electrons are preferably of the same or of similar cross sections and parti- I cle densities (electron energy might be somewhat higher) so that in the nascent plasma the space charge is either compensated (quasi neutrality) or negative and the mutual Coulomb repulsion of atomic ions in the beams is offset. Thus the nascent plasma contracts itself (self pinch) and is subsequently further contracted by the fields of the magnetic coil 3 enclosing the area of reaction. The deflection fields of magnetic poles 2, 4 (and 2a, 4a, respectively) for beams of atomic ions and electrons are of the same direction each so that the antipole particles are added from opposite sides in each case; in case of different directions they might be added from the same side. Beamsof atomic ions and electrons possess approximately the same velocity, i.e., electronic energy may be substantiall below the atomic energy. Electron velocity may preferably also be somewhat greater than the ion velocity. The beams of atomic ions 1 and la also pass through the deflection fields for the electrons 4 and 4a respecively, a fact which in calculating-the paths of the ion beams l and la and the field strenghts of the deflection magnets 2 and 2a should be taken into consideration; the fields of the electron deflection magnets (poles 5, 50), however, which may be much weaker, do not have a decisive effect upon the ion beams, which are deflected only to a small extent since they possess a far greater amount of energy when moving at the same speed. Within the area enclosed by coil 3 the fusion reactions take place. For this purpose the beams of atomic ions and plasma respectively have to penetrate each other to a certain degree which depends on the'ion density obtained through contraction as well as on the degree of ion acceleration. It is to be suggested to use atomic ion energies ranging from a few keV to a maximum of about keV, the field strength of the field of contraction (coil 3) amounting to 10 to 10 Gauss. Considering an effective collision cross section of 0.03 barn (i.e., 0.03. 10 cm*) at 100 keV and an ion density ranging from 10 to 10 ions or more/ccm the reaction path may be less than 1 m (e.g., m in the case of ions/ccm if all energy is made use of).

The accelerated plasma beams are preferably directed against each other by impulses, i.e., abruptly. The high vacuum vessel enclosing the arrangement is not shown in FIG. 1 for reasons of simplicity.

FIG. 2 offers a further explanation of the apparatus used. It shows schematically the cases of the ion sources 6 and 6a with the subsequent accelerators 7, 7a and the electron source and accelerator units 8, 8a, which resemble Braun tubes. Here, the contraction magnet 3 enclosing reaction tube 9is made to supply field strength through an increasing electromagnetic field strength which at the outset slowly increases towards the field of reaction. The connections 10, 10a located before or after the accelerators may have a diameter of e.g., 10 to cm or more, the same holds true for part 9 in the reaction zone, however, it may also be a little less there. Within the area of reaction the plasma contracts itself to form a slim tube, i.e., it is of small cross cut with high particle density. On the side of the area of reaction there is a tube 11 and preferably also a symmetrical tube 11a in addition for the evacuation of the system. Pumps for achieving a maximum vacuum should be in constant operation, the bring about the operating vacuum and remove remaining reaction products.

According to FIG. 3 two plasma columns D e and D 6 which have been heavily contracted by magnetic action and which have been produced according to the method explained in FIG. 1 in an apparatus as is shown in FIG. 2, collide frontally, so that the atomic ions, owing to the high plasma density, may encounter fusion pulses after having travelled a short distance and little scattering occurs. The electrons added to the atomic ions are preferably a little faster or are put in a little earlier, which leads to the formation of an electron cloud at the point of collision of the ion packets emitted, which may further support the fusion of atomic ions. Also additional electrons enclosed at the side of the magnetic field of coil 3 and rotating within the area of reaction may favor fusion, however, the electrons present in the plasmas may suffice to support the fusion. As long as atomic ions and electrons move at high speeds (which either equal or exceed the thermic speeds at thermic dissociation) they can hardly combine to form atoms, i.e., the cannot recombine; this is possible only after slowing the down. Owing to the high plasma density and the discontinuous emission little scattering of atomic ions occurs, the high plasma density also favors a so-called tunnel effect, i.e., the reduction of atomic energy necessary to overcome the Coulomb barrier. According to theory particle energy has to suffice to achieve an approach up to a distance of 10' cm, at which point the Coulomb repulsion ceases to exist and the great nuclear force becomes effective, i.e., apparently a change in the structure of the atomic ions takes place in the course of which a nucleus is formed out of the two nuclei.

FIGS. 4 and 5 schematically show an appropriate arrangement for the purpose of obtaining energy. A layer 12, e.g., a graphite layer (graphite cylinder tube) is attached to the inner wall of the reaction tube which absorbs radiation energies of all kinds and which also becomes positively charged by protons if protons are produced in the course of the reaction, thus supplying electric current via a leakage 13. It may also become charged through scattered atomic ions. In order to hold back scattered electrons a grid-like electrode with a positive potential may be placed before this wall electrode 12, which consists e.g., of cylindrically arranged graphite rods 14 with a lead 15.

Protons result from the fusion of deuterium ions and tritium and anenergy release of 4.08 MeV. As known. protons and tritium trigger off further reactions in the course of which also He and He emerge as well as neutrons (P+ D He+ 5.5 MeV. T+ D "He N 17.6 MeV, etc.). The deuterium fusion may also directly supply H0 (D D He N 3.27 MeV Therefore a direct fusion of deuterium ions into stable helium (He) should be sought to be achieved, with no production of protons or neutrons and with an energy release of 23.8 MeV.

An expansion inducing a Maxwell temperature movement, which is due to come about in the reaction chamber after the collision of the plasma columns unless only short electric impulses (plasma packets) are applied, is prevented by the discontinuous emittance. The emittance of particle packets is known through modern impulse method.

In FIGS. 4 and 5, reaction tube 9 is lined in addition by a layer 16 ofa high density material, e.g., lead, platinum, tungsten, or an appropriate alloy, designed to complete the radiation absorption by graphite layer 12.

A further. application of the present invention is shown in FIG. 6. In order to prevent the loss of energy stemming from accelerated particles which perhaps have escaped collision and are not scattered, and to prevent these accelerated particles from uncontrollably hitting the vessel wall in an undesired manner special electrodes have been designed according to FIG. 6 to capture these particles. The remaining primary electric energy may be obtained from these electrodes by means of circuits, e.g., between these electrodes and the point of departure of the particles. According to FIG. 6 the remaining fast atomic ions reach the abovementioned electrode 17 via polar field 2 and, together with the ion source, can form a circuit (6a in FIG. 2), whereas surplus fast electrons are lead to electrode 18 via polar field 5 and may form a circuit e.g., with the electron source (8a in FIG. 2). If necessary, it might also be possible to establish a circuit between electrodes l7 and 18.

FIG. 7 schematically shows a detail of the device invented, namely an example of the reaction chamber. In this case the reaction tube 9 with the inner layer 12 and the outer layer 16 has two cooling jackets. The inner cooling jacket with feed pipe 19 and outlet 20 may be used to make use of the thermal reaction energy for the purpose of power production, the outer jacket with feed pipe and outlet 21, 22 is designed above all to cool the magnetic coil 3 and to protect it against damage. Layer 12 preferably consists of graphite, layer 16 of a high density and appropriately heat resisting alloy.

In its practical application the present invention is not limited to the examples shown here. Magnetic fields, e.g., may be replaced by other devices capable of combining and concentrating atomic ions and electrons into high density plasma beams.

I claim:

1. A method for obtaining controlled nuclear fusion by means of artifical plasma, formed by leading together atomic ions and electrons, characterized by the fact that atomic ion beams (1, 1a) after they have been previously accelerated via deflection magnets (5, 5a) are admixed with previously and separately accelerated electronic beams (4, 4a), and thus formed plasma beams of high density are are directed against each other within a magnetic contraction (3).

2. A method according to claim 1, wherein the beams of atomic ions (1, 1a) are deflected by a magnetic deflection field (2, 2a) and are made to pass through another, weaker field (5, 50) designed to deflect and add the electron beam (4, 4a).

3. A method according to claim 1, wherein ion densities ranging from to 10 or more ions/ccm are applied by means of magnetic contraction, space charge being compensated and radial velocity components of the ion movement being avoided.

4. A method according to claim 1, wherein the axial velocity of the plasma electrons is greater than the velocity of the atomic ions.

5. A method according to claim 1, wherein the electron beams are emitted earlier than the beams of atomic ions.

6. A method according to claim 1, wherein the electric current of the electrons exceeds the current of the ions, which results in a negative space charge.

7. A method according to claim 1, wherein the plasma beams produced pass through a magnetic field with a field strength of increasing contracting property until the zone of fusion is reached.

8. A method according to claim 1, wherein the beams of atomic ions, which combined with electrons form plasmas, are directed against each other in short current impulses.

9. A device for obtaining controlled nuclear fusion,

wherein the sources of atomic ions (6, 6a) with accelerators (7, 7a) and electron sources with accelerators (8, 8a) are symmetrically arranged so as to form a reaction chamber, the reaction chamber being enclosed by a magnetic coil (3) and mixing magnets (5, 5a) for the purpose of mixing the beams of atomic ions and electrons into plasma beams.

10. A device according to claim 9, wherein a layer (12) is attached the vessel wall (9) for the purpose of obtaining energy which is capable of absorbing both radiation energy and charges and which is provided with a junction in order to conduct positive charges for the supply of electric current (13).

11. A device according to claim 10, wherein grid-like electrode arrangements in front of the layer (12) which possess a positive potential for the absorption of scattered electrons.

12. A device according to claim 9, wherein additional electrodes (l7, 18) are provided for capturing charged particles that have evaded collision, for the purpose of retrieving unused electric energy of charged particles.

13. A device according to claim 9, wherein the reaction chamber with the energy absorption arrangement (9, l2, 16) is enclosed by two systems of vessels serving the purpose of letting off heat, the inner system (19, 20) designed to take over thermal energy and the outer one (21, 22) to protect the contraction coil (3).

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
GB983753A * Title not available
GB993174A * Title not available
GB1012751A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4172008 *Aug 23, 1977Oct 23, 1979Dubble Whammy, Inc.Nuclear fusion reactor
US4361761 *Jul 10, 1980Nov 30, 1982General Dynamics Convair DivisionMerged ion-electron particle beam for space applications
US4390495 *Jan 19, 1981Jun 28, 1983Energy Profiles, Inc.Control of colliding ion beams
US4395631 *Oct 16, 1979Jul 26, 1983Occidental Research CorporationHigh density ion source
US4397809 *Oct 28, 1980Aug 9, 1983Energy Profiles, Inc.Charged particle machine
US4397810 *Oct 28, 1980Aug 9, 1983Energy Profiles, Inc.Compressed beam directed particle nuclear energy generator
US4401618 *Mar 27, 1979Aug 30, 1983Occidental Research CorporationParticle-induced thermonuclear fusion
US4416845 *Aug 2, 1979Nov 22, 1983Energy Profiles, Inc.Control for orbiting charged particles
US4650630 *Dec 13, 1984Mar 17, 1987Boyer John LProcess and apparatus for producing nuclear fusion energy
US6628740Feb 14, 2002Sep 30, 2003The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US6664740Jan 31, 2002Dec 16, 2003The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6852942Apr 2, 2003Feb 8, 2005The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US6888907Sep 9, 2003May 3, 2005The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US6891911Dec 23, 2002May 10, 2005The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6894446Sep 9, 2003May 17, 2005The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US6995515Mar 11, 2004Feb 7, 2006The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US7002148Apr 2, 2003Feb 21, 2006The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US7015646Dec 23, 2002Mar 21, 2006Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US7026763Dec 23, 2002Apr 11, 2006The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US7119491May 19, 2005Oct 10, 2006The Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US7126284Dec 17, 2004Oct 24, 2006The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US7129656Jul 1, 2005Oct 31, 2006The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US7180242May 19, 2005Feb 20, 2007The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US7232985May 16, 2005Jun 19, 2007Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US7391160Nov 4, 2004Jun 24, 2008Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US7439678Aug 2, 2006Oct 21, 2008The Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US7459654Nov 1, 2004Dec 2, 2008The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US7477718Mar 7, 2005Jan 13, 2009The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US7569995Aug 1, 2006Aug 4, 2009The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US7613271Feb 16, 2007Nov 3, 2009The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US7719199Mar 17, 2008May 18, 2010The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US8031824Mar 7, 2006Oct 4, 2011Regents Of The University Of CaliforniaInductive plasma source for plasma electric generation system
US8461762Jul 29, 2009Jun 11, 2013The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US9123512Mar 7, 2006Sep 1, 2015The Regents Of The Unviersity Of CaliforniaRF current drive for plasma electric generation system
US9265137May 13, 2009Feb 16, 2016The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US9370086Nov 2, 2009Jun 14, 2016The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US9386676Jun 11, 2013Jul 5, 2016The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US20030214262 *Apr 2, 2003Nov 20, 2003Monkhorst Hendrik J.Controlled fusion in a field reversed configuration and direct energy conversion
US20030214263 *Apr 2, 2003Nov 20, 2003Monkhorst Hendrik J.Controlled fusion in a field reversed configuration and direct energy conversion
US20030221622 *Dec 23, 2002Dec 4, 2003The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20030230240 *Dec 23, 2002Dec 18, 2003The Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US20030230241 *Dec 23, 2002Dec 18, 2003The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US20040130277 *Sep 9, 2003Jul 8, 2004Monkhorst Hendrik J.Controlled fusion in a field reversed configuration and direct energy conversion
US20040218707 *Sep 9, 2003Nov 4, 2004Monkhorst Hendrik J.Controlled fusion in a field reversed configuration and direct energy conversion
US20050179394 *Mar 11, 2004Aug 18, 2005Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20050220245 *Mar 7, 2005Oct 6, 2005The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20060039519 *May 19, 2005Feb 23, 2006The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20060076897 *May 19, 2005Apr 13, 2006The Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US20060186838 *Jul 1, 2005Aug 24, 2006The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US20060199459 *Dec 17, 2004Sep 7, 2006The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20060254520 *Mar 7, 2006Nov 16, 2006The Regents Of The University Of CaliforniaRF current drive for plasma electric generation system
US20060267503 *Mar 7, 2006Nov 30, 2006Vitaly BystriskiiInductive plasma source for plasma electric generation system
US20060267504 *Mar 7, 2006Nov 30, 2006Vandrie AlanVacuum chamber for plasma electric generation system
US20060267505 *Aug 2, 2006Nov 30, 2006The Regents Of The University Of CaliforniaMagnetic and electrostatic confinement of plasma with tuning of electrostatic field
US20070158534 *Feb 23, 2007Jul 12, 2007The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US20080063133 *Feb 9, 2007Mar 13, 2008The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20080169764 *Mar 17, 2008Jul 17, 2008The Regents Of The University Of CaliforniaControlled fusion in a field reversed configuration and direct energy conversion
US20090168945 *Aug 1, 2006Jul 2, 2009The Regents Of The University Of CaliforniaApparatus for magnetic and electrostatic confinement of plasma
US20090220039 *May 13, 2009Sep 3, 2009The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20100002823 *Feb 20, 2009Jan 7, 2010Monkhorst Hendrik JControlled fusion in a field reversed configuration and direct energy conversion
US20100046687 *Nov 2, 2009Feb 25, 2010The Regents Of The University Of CaliforniaFormation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US20100181915 *Jul 29, 2009Jul 22, 2010The Regents Of The University Of Californiaapparatus for magnetic and electrostatic confinement of plasma
US20130058446 *Feb 22, 2012Mar 7, 2013Xian-Jun ZhengContinuous fusion due to energy concentration through focusing of converging fuel particle beams
CN103608868A *Jun 11, 2012Feb 26, 2014曾宪俊Continuous fusion due to energy concentration through focusing of converging fuel particle beams
WO2006025063A2 *Sep 1, 2005Mar 9, 2006Netanya Plasmatec Ltd.Apparatus and method for carrying out a controlled high energy plasma reaction
WO2014204531A3 *Mar 11, 2014Mar 12, 2015Wong Alfred YRotating high density fusion reactor for aneutronic and neutronic fusion
Classifications
U.S. Classification376/107, 376/146, 376/147, 376/121
International ClassificationH05H1/22, H05H1/02
Cooperative ClassificationH05H1/22
European ClassificationH05H1/22