Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3859644 A
Publication typeGrant
Publication dateJan 7, 1975
Filing dateApr 24, 1973
Priority dateApr 24, 1973
Also published asCA1039827A1
Publication numberUS 3859644 A, US 3859644A, US-A-3859644, US3859644 A, US3859644A
InventorsMain Duane C
Original AssigneeBurger Chef Systems Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Temperature responsive cooking timer
US 3859644 A
Abstract
A digital cooking timer responsive to the temperature of a cooking medium and incorporating minimum and maximum time decoders to insure that the cooking period is within a predetermined range is described. An interval timer sets up a counting period upon immersion of the product in the cooking medium but is inhibited from starting its counting function by the minimum time decoder until elapse of a fixed time period. After elapse of the fixed time period, the interval timer is enabled when and if the cooking medium reaches a predetermined temperature. The maximum time decoder provides an override control that energizes the control device after a fixed period in the absence of an energizing signal for the control device from the interval timer.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Main Jan. 7, 1975 [54] TEMPERATURE RESPONSIVE COOKING 3,751,632 8/1973 Kauranen 219/413 x TIMER 3,778,798 12/1973 Heit 340/228 R [75] Inventor: Duane C. Main, Woodridge, Ill. Primary Examiner Jhn W Caldwell [73] Assignee: Burger Chef Systems Inc., Assistant Examiner-William M. Wannisky Indianapolis, Ind. Attorney, Agent, or FirmCamer0n, Kerkam, Sutton, 22 Filed: Apr. 24, 1973 Stowe" Smwe [21] App]. No.: 354,148 57 ABSTRACT A digital cooking timer responsive to the temperature U-S. R, of a ooking medium and incorporating minimum and 324/65 R, 73/339 R, 340/309-3 maximum time decoders to insure that the cooking pe- Int. Cl. riod is within a predetermined range is described An Field 340/227 309-1, interval timer sets up a counting period upon immer- 340/309.3; 426/88; 2l9/412, 413, sion of the product in the cooking medium but is in- 323/75 R, 75 H; 3/ 343 R, 343 B, hibited from starting its counting function by the mini- 338/28, 126/19 4/65 R mum time decoder until elapse of a fixed time period. After elapse of the fixed time period, the interval References Cited timer is enabled when and if the cooking medium UNITED STATES PATENTS reaches a predetermined temperature. The maximum 3,290,486 12/1966 Mordwinkin 219/499 time decoder Provides an Override control that ener- 3,413,446 11/1968 Rogers 219/499 x gizes the control device after a fixed period in the 3,611,336 /1971 340/233 sence of an energizing signal for the control device 3,632,986 1/1972 Neer 219/499 X from the interval timer. 3,688,295 8/1972 Tsoras et al 340/228 R x 3,745,308 7/1973 Lefferts 219/499 10 Clams, 3 Drawmg Flgures TEMPRATURE TEMPRATURE 5O SECOND SENSOR COMPARATOR COUNTER MINIMUM TIME DECODER i 3 2 (70) F CLOCK PULSE TOTAL TIME MAXIMUM TIME GENERATOR COUNTER DECODER 7 l I l I l I I I I l l I I I p v 1 2w %m g w E Patented Jan. 7, 1975 3 Sheets-Sheet 2 Mum R E [a 5 Sheets-Swap 5 Patented Jan. 7, 1975 mm mm a L E a E NR I 8 mm v v k w 8 r m. mm

TEMPERATURE RESPONSIVE COOKING TIMER This invention relates in general to an apparatus for controlling cooking time as a function of temperature. It is particularly adaptable to the field of deep fat frying foods and food products to a predetermined level of doneness irrespective of the initial temperature of the food when first placed in the cooking liquid. The invention may also be employed in numerous other environments and cooking processes.

BACKGROUND OF THE INVENTION At the time of this invention, the usage of large batch cookers employing semi-automated techniques for controlling temperature and cooking duration was known. Food products could be cooked to an approximate level of doneness by controlling the temperature of the cooking environment and either signaling an operator to remove the foods after a predetermined period of time or automatically removing the foods from the environment.

Known systems for large batch cookers are not entirely satisfactory in situations where the mass and temperature of the food batches are variables. For instance, consider a food cooking process wherein the items to be cooked are placed in a cooking liquid heated to a predetermined temperature. In this instance, when the food is placed in the cooking liquid, the temperature of the liquid is reduced as a function of the mass and temperature of the food placed therein and a variable period of time is required to bring the temperature of the cooking liquid up to the required cooking temperature. This temperature recovery time period directly effects the level of doneness of the food batch which is being cooked for a predetermined period of time calculated to achieve a desired level of doneness. Hence, it is obvious that in such systems it is desirable that the foods be cooked to a desired level with degree of consistency, otherwise, the quality of the product will be a function of approximations as to cooking time arrived at by the operator.

Recent developments in the art of food cooking have attempted to overcome the various problems associated with time dependent cooking methods and apparatus as described above. These developments incorporate the concept of determining the level of doneness of the food batch as a function of the temperature of the cooking medium. The temperature of the cooking medium is monitored and when it has recovered from the temperature change induced by adding the food batch, the food batch is considered cooked. Typical methods and apparatus are described in U.S. Pat. Nos. 3,213,778; 3,28l,813 and 3,326,692. Such known methods and apparatus have not proved entirely satisfactory in that they do not produce repeatable results and the quality of the food suffers due to overcooking. Excessive dehydration of the food in the cooking process may be encountered if the food is held at a temperature greater than the boiling point of water for excessive periods of time while the automatic system is waiting for the temperature of the cooking medium to reach a preset level.

Accordingly, it is a major purpose of this invention to provide an improvement in the state of cooking art which will overcome the aforesaid problems and produce an end product which is consistent and of excellent quality.

More particularly, it is a purpose of this invention to provide an improved system that will automatically compensate for temperature and mass variations of a food batch and prevent dehydration of the product caused by over-cooking at a below normal temperature.

It is a further and important purpose of this invention that the above purposes be achieved with a system that is simple, inexpensive, and reliable so that its use will be acceptable to mass producers of precooked food products and also quick service restaurants.

It is a further related purpose of this invention to provide such an improved system that acceptable repeatable results will be achieved irrespective of the capabilities of the operator.

Further objects and attendent advantages of the present invention will become more apparent as the specification is considered in connection with the appended drawings.

BRIEF DESCRIPTION OF THE INVENTION In brief, this invention accomplishes the stated objectives through the unique combination of timing circuits and a temperature comparator.

The system incorporates a temperature comparator responsive to the output of a temperature transducer which is responsive to the temperature of the cooking medium. The temperature comparator provides a signal to atiming circuit when the temperature of the cooking medium reaches a predetermined level. This signal enables the timing circuit so as to start a count which after a predetermined period of time, generates an output signal that activates a completed cooking alarm.

Two additional timers are provided, their responsive counting periods being started at the begining of the cooking cycle. The first of these additional timers provides an inhibit function to the temperature responsive timer to insure that at least a minimum amount of time has elapsed before that timer starts. The second additional timer provides a signal that activates the completed cooking alarm and turns off the apparatus to prevent over-cooking.

BRIEF DESCRIPTION OF THE DRAWINGS DESCRIPTION OF THE PREFERRED EMBODIMENT The block diagram. presented in FlG. 1 illustrates a temperature sensor 10 which generates an output signal that is a function of the temperature of the cooking medium. This output signal is applied to a temperature comparator 20 which incorporates an adjustable voltage divider to enable adjustment of the temperature comparator such that it will provide an output signal when the temperature of the cooking media reaches a predetermined level. This signal activates a 30-second counter 30. When the 30-second counter 30 times out, it provides an output signal to a control device 40 which upon energization notifies an operator that a cooking cycle has been completed.

A clock pulse generator 50 is activated at the beginning of a cooking cycle and provides output pulses at the rate of approximately one pulse-per-second to the total time counter 60. Outputs from the total time counter 60 are applied to the minimum time decoder 70 and the maximum time decoder 80. The minimum time decoder 70 provides an inhibit function to the 30- second counter 30, which prevents that counter from being activated by the temperature comparator until at least a minimum duration of time has elapsed. The maximum time decoder 80 provides a signal that overrides the timing function of timer 30 and activates the alarm 40 in the event that the temperature of the cooking medium has failed to reach a value great enough to cause the temperature comparator to activate the 30- second counter. The maximum time decoder 80 provides asafety function which prevents over-cooking in that it will-energize the alarm regardless of the output of the temperature comparator or 30-second counter.

This is desirable because cooking generally is taking place in the hot bath even though the temperature of the bath has not risen sufficiently after initial placement ofthe product in the bath to initiate operation of the 30-second counter.

FIG. 2 schematically presents the details ofthe power supply, temperature comparator 20, and clock pulse generator 50. l

The power supply incorporates a step-down transformer 1 and a full wave rectifier comprised of diodes 2, 3, 4, and Sand resistor 7, which cooperate to produce a positive five volts DC and unrectified half wave signal. The primary of the step-down transformer l is connected to a suitable source of AC power by an onoff switch 8, fuse 9, and receptacle 1]. A power on indicator lamp 12 is connected in parallel with the primary of the step-down transformer l.

The temperature comparator consists of a differential amplifier 21 incorporating an amplifier 22, resistor 23, capacitors 24 and 25 and two voltage divider networks. A comparison poten'tialor voltage standard is developed across one voltage divider network comprised of resistors 26 and 27, and feedback resistor 28. This voltage standard is applied to one input of amplifier 22. A second input of amplifier 22is connected to a voltage divider network incorporating resistor 29 and a resistance selectable by the temperature selection switch 31. The selectable portion of the voltage divider network may be a temperature responsive transducer connected to the circuit via jacks 32 and r the test circuit comprised of resistances 34 and 35, and switch 36.

The temperature selection switch 31 incorporates a test position 61 with suitable jumpers which connect either the voltage divider network comprised of resistors 29, 34, and 35 or the voltage divider network'comprised of resistors 26 and 27 across the B-lbus and return line to the transformer center tap. A switch 36 is provided in parallel with resistor 35 to cause a voltage level different than the voltage standard to be applied to amplifier 22. However, when the test switch 36 is closed, resistor 35 is bypassed and voltage developed by the network is equal to the voltage-standard.

The temperature comparator may be made responsive to different temperatures by providing a resistance network such as resistors 37 and 38 in series with the temperature responsive transducer via the action temperature selection switch 31.

The transistor 39 is connected to the output-of amplifier 22 via resistor 41. This transistor is biased by resistor 42 such that indicator lamp 43 is illuminated in response to the output of the differential amplifier.

The timing function of the system is initiated when switch 8 is closed. This action causes a positive halfwave signal to be applied to the input of Schmidt trigger 44 via resistor 7. The Schmidt trigger, formed by NAND gates 45 and 46 connected in series with feedback resistor 47, provides a positive 60 Hertz square wave at the output of NAND gate 45. This pulse train is applied to the input of divider 48.

Divider 48 is comprised of four flip-flops 51, 52, 53, and 54, and a reset NAND gate 55 which functions to convert the 60 Hertz pulse train to a 3.75 Hertz pulse train that is applied to divider 56.

Divider 56 is comprised of two flip-flops 57 and 58. It provides a clock pulse of 0.9375 Hertz to the 30- second counter and the total time counter.

The total time counter, illustrated in FIG. 3, incorporates a counter 71 which is comprised of four flip-flops, 72 through 75 and a reset NAND gate 76, This counter produces a pulse every fifteen seconds which is applied to counter 77.

Counter 77 incorporates a reset NAND gate 78 and four flip-flops, 81 through 84 and provides output pulses every 30, 60, 120, and 240 seconds on conductor 62, 63, 64, and 65 respectively.

The minimum time decoder 70 is comprised of a three-input NAND gate 91 and two-input NAND gates 92 and 93. The three-input NAND gate 91 is trued by coincidence of a 15-second pulse from counter 71, a 30-second pulse from flip-flop 81, and a 60-second pulse from flip-flop 82. The output of NAND gate 91 triggers NAND gate 92 which provides a l-minute pulse to the 30-second counter 30 and NAND gate 93. NAND gate 93 is trued by the output of NAND gate 92 and provides an input to NAND gate 92 which functions to hold NAND gate. 92 trued. 3

The maximum time decoder is comprised of a twoinput NAND gate 94 which is trued by the l20-second pulseproduced by flip-flop 83 in coincidence with the 240-second pulse produced by flip-flop84. The output of this gate is'applied 'to one inputof a two-input NAND gate 95(When trued by the input from NAND gate 94, NAND gate 95 causes flip-flop 96 to change state and energize relay 97 When relay 97 is energized, its contacts complete anAC circuit through warning buzzer 98 and warning lamp 99. If desired, relay contacts may be provided and connected in circuit for terminating the heat input to the cooker.

The 30-second counter 30 incorporates a three-input NAND gate 101 which is responsive to coincident outputs of the temperature comparator differential amplifier 22, NAND gate 92 of the minimum time decoder 70, and a feedback loop from flip-flop 102. The output of NAND gate 101 is supplied to flip-flop 102, which is also responsive to the 0.9375 Hertz output of divider 56. These two pulses cause flip-flop 102 to be set and reset such that it produces an output pulse every 1.875 seconds.

The output of flip-flop 102 is applied to a four-stage counter 103 which is comprised of flip-flops 104 through 107 and reset NAND gate 108. Counter 103 produces three outputs; one every 7.5 seconds, a secgate 109 which provides a 30-second signal to NAND gate 95. This signal will change the state of NAND gate 95 in the same fashion as the signal provided by NAND gate 94 and cause flip-flop 96 to change. state and energize relay 97 as previously described.

NAND gate 110 is responsive to the voltage developed across resistor 111 and provides a reset signal to NAND gate 55, 76, 78, and 108 when power is initially applied to the apparatus via the closing of switch 8. The positive potential which is applied to NAND gate 110 is also applied to flip-flops 57, 58 and 96 and NAND gate 93 to effect the resetting of these stages.

Capacitors 112, 113,and 114 areprovided to eliminate undesirable high frequencyharmonics.

The operation of the apparatus is as follows:

When a food batch isinitially immersed in a preheated medium, power on switch 8 is closed and the dividers and counters are reset. The total time counter 60 begins to count in response output pulses from the clock pulse generator 50 and differential amplifier 22 r is in its quiescent state. When the differential amplifier changes state in response to the voltage developed across the temperature responsive voltagedivider network and the minimum time countertimes-out, NAND gate 101 changes state and starts the 30-second counter 30. When the 30-second counter times out, it

triggers NAND gate 95,- which in turn' causesflip-flop 96 to change state and energize relay 97.

The total time counter continues to count'concurrently with the previously described sequence and when it reaches 240 seconds, it trues NAND gate 94 i which causes NAND gate 95 to change state and trigger flip-flop 96, thus precluding the possibility of the timer producing a time signal in excess of 4 minutes.

It is to be understood that this invention is not to be limited to the exact constructions shown and described but that various changes and modifications may be made without departing from the spirit and scopeof the invention as defined in the appended claims.

y it should be apparent that 30-second counteris inhibited for a period of about 60 seconds so as to preclude the initiation of its count even though, the temperature of the cooking medium mayhave reached the predetermined cooking level. On the other hand, after-expira tion of the 60 second inhibit period counter 30 will not begin counting until the proper temperatureis realized. Should the temperature of the cooking medium fail to rise to the predetermined level, the 4 minute'maximum time decoder exercises its override function to energize the alarm means to indicate the readiness of the cooked product.

I claim:

1. A temperature responsive cooking timer for controlling the cooking time of a cooker comprising:-

means for sensing the cooking temperature ofthe cooker and providing an output signal which is a function of the temperature of the cooking medium; a comparator responsive to said output sig-- nal for developing a control signal when the temperature of the cooking medium reaches a predetermined value, pulse generator means for producing a continuous train of pulses equally spaced at a predetermined interval;

a pulse counter for totalling the individual pulses generated by saidpulse generator;

a maximum time counterresponsive to a predetermined count of said pulse counter;

a minimum time counter responsive to a predetermined count of said pulse counter for providing an inhibit signal corresponding to a predetermined count;

5 an interval pulse counter responsive to said control signal and said inhibit signal for totalling the individual pulses generated by said pulse generator, and

a control means responsive to an output of said maximum time counter or said interval pulse counter corresponding to a predetermined count.

2. A timer as-defined in claim 1 wherein, said comparator includes:

a first voltage divider network for providing a reference voltage potential;

a second voltage divider network including a temperature responsive transducer for providing a monitor voltage potential; and

means for comparing said reference voltage potential and said monitor voltage potential and for providing an output signal in response thereto.

3.The apparatus defined in claim 2 wherein, said second' voltage divider network includes:

25 a first switch means;

a plurality of resistive elements selectively connectable-in series with said transducer and said comparing means by said first switch means;

a second resistive network selectively connectable to said comparing means by said first switch means;

and a second switch means for altering the resistance value of said second resistive network. 4.'A timer as defined in claim 1 further including 5 means for producing a half wave signal, said pulse generator including:

a square wave generator responsive to said half wave signal and adapted to provide pulses at a repetition rate equal to the frequency of said half wave signal;

a plurality of flip-flops connected in series and sequentially responsive to the output Ofsaidsquare wave generator;

said plurality of flip-flops being adapted to provide a single output pulse in response to 60 output pulses of said square wave generator; and means to reset said plurality of flip-flops in response to initial energization of said power supply.

5. "A timer as defined in claim 1, wherein said pulse counter includes:

a plurality of flip-flops connected in series and sequentially responsive to the output of said pulse generator, and adapted to provide first, second; third, fourth, and fifth independent outputs, said independent outputs being adapted to have a sequential progressive relationship to said pulse generator output pulses; and a plurality of logic gates responsive to initial power application to said power supply for resetting said plurality of flipflops.

6. A timer'as defined in claim 5 wherein, said maximum time counter includes:

a two-input NAND gate responsive to said fourth and fifth outputs of said pulse counter.

65 7. A timer as defined in claim 5 wherein, said minimum time counter includes:

a three-signal NAND gate responsive to said first, second, and third outputs of said pulse counter,

a first two-input NAND gate responsive to the output of said three-input NAND gate; and

a second two-input NAND gate responsive to the output of said first two-input NAND gate for'providing a self holding signal to said first two-input NAND gate.

8. A timer as defined in claim 1 wherein, said interval pulse counter includes:

a first three-input NAND gate responsive to the control signal output of said comparator and inhibit signal output from said minimum time counter;

a first flip-flop responsive to the output of said first three input NAND gate,

said first flip-flop including a feedback loop to the third input of said first three-input NAND gate;

a plurality of series connected flip-flops sequentially responsive to the output of said first flip-flop for providing independent first, second, and third sequentially progressive outputs;

a second three-input NAND gate responsive to said first, second, and third sequentially progressive I outputs for providing a signal to said alarm means;

and a two-input NAND gate responsive to initial energization of said power supply for resetting said plurality of flip-flops.

9. A timer as defined in claim 1 wherein, said control means includes:

a two-input NAND gate connected to receive the output of said interval pulse counter and the output of said maximum time counter;

a flip-flop responsive to the .output of said two-gate and adapted to be switched between a first and a second state,

a normally de-energized relay connected to said flipflop and adopted to be energized when said flipflop is switched from said first to said second state.

10. A timer as defined in claim 1, wherein said comparing means includes:

a differential amplifier and further including a transistor including a bias network for holding said transistor normally nonconducting;

means for connecting said transistor to the output of said differential amplifier for rendering said transistor conductive in response to an output thereof; and

means responsive to the state of said transistor for providing an indication corresponding to the presence of an output signal from said differential amplifier.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3290486 *Apr 9, 1964Dec 6, 1966Sensor CorpTemperature sensing and control system
US3413446 *Apr 25, 1967Nov 26, 1968Automatic Elect LabProportional and integrating temperature controller
US3611336 *May 8, 1970Oct 5, 1971Technomation Controls CorpElectronic oven temperature monitoring system
US3632986 *May 18, 1970Jan 4, 1972Phillips Petroleum CoTemperature control system
US3688295 *Oct 21, 1969Aug 29, 1972Bickel David PElectronic temperature monitoring system
US3745308 *Jul 1, 1971Jul 10, 1973Heinemann Electric CoTemperature control circuits
US3751632 *Oct 18, 1971Aug 7, 1973Kelvinator IncOven and control circuit therefor
US3778798 *May 1, 1972Dec 11, 1973Gen ElectricFood preparation electric thermometer alarm circuit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3997837 *Feb 20, 1975Dec 14, 1976Fried. Krupp Gesellschaft Mit Beschrankter HaftungGas analysis device
US4035787 *Oct 21, 1975Jul 12, 1977General Electric CompanyFood temperature responsive control apparatus
US4036995 *Dec 29, 1975Jul 19, 1977Food Automation Service Techniques, Inc.Oven cooking monitor for uniformly cooking a plurality of food items requiring different cooking times
US4220840 *May 19, 1978Sep 2, 1980Robertshaw Controls CompanyPulsing probe for microwave oven
US4255639 *Apr 29, 1977Mar 10, 1981Sharp Kabushiki KaishaMicrowave oven with a programmable digital control circuit
US4682012 *Feb 14, 1986Jul 21, 1987Kurt Wolf & Co. KgApparatus for controlling and adjusting heat output during the heating phase of a cooking vessel
US4700052 *Feb 14, 1986Oct 13, 1987Kurt Wolf & Co. KgApparatus for controlling and adjusting heat output during the heating phase of a steam pressure cooking vessel
US4867994 *Jan 9, 1987Sep 19, 1989Perrine Paul MPartially cooking, adding sauce at higher temperature, equilibration to complete cooking
US4919950 *Jul 27, 1988Apr 24, 1990Larry B. HarveyPlurality of containers advancing by way of conveyor; dispensing and heating of food
US6580662 *May 22, 2001Jun 17, 2003Deeco LtdCooking timer device
US6854883 *Feb 27, 2003Feb 15, 2005F.O.B. Instruments, Ltd.Food safety thermometer
US8220722Oct 12, 2006Jul 17, 2012Bruce ShafferThermal sensor shower monitor
US8322922 *Oct 23, 2009Dec 4, 2012Samsung Electronics Co., Ltd.Method of outputting temperature data in semiconductor device and temperature data output circuit therefor
US20100109753 *Oct 23, 2009May 6, 2010Yun-Young LeeMethod of outputting temperature data in semiconductor device and temperature data output circuit therefor
US20100303972 *Apr 10, 2008Dec 2, 2010Siddhartha SrivastavaMethod and System for Food Preparation
DE2949890A1 *Dec 12, 1979Jun 19, 1981Diehl Gmbh & CoVerfahren zur ueberwachung des garens von speisen in einem dampfdruckkochkopf und vorrichtung zur durchfuehrung des verfahrens
DE3003419A1 *Jan 31, 1980Aug 6, 1981Ego RegeltechVerfahren und vorrichtung zur heissanzeige
DE3045252A1 *Dec 1, 1980Jul 1, 1982Volz Abc ElektrogeraeteAutomatischer kochtopf, insbesondere einkochautomat
DE3505232C1 *Feb 15, 1985Sep 4, 1986Wolf & Co Kg KurtAnordnung zum Steuern und Regeln der Heizleistung in der Aufheizphase eines Dampfdruckkochgefaesses
DE3505233C1 *Feb 15, 1985Aug 21, 1986Wolf & Co Kg KurtAnordnung zum Steuern und Regeln der Heizleistung in der Aufheizphase eines Kochgefaesses
Classifications
U.S. Classification99/344, 340/588, 219/499, 426/233, 426/88, 340/309.3, 374/102
International ClassificationG05D23/19, A23L1/01, A47J27/00
Cooperative ClassificationG05D23/1951
European ClassificationG05D23/19T