Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3859995 A
Publication typeGrant
Publication dateJan 14, 1975
Filing dateJul 2, 1973
Priority dateJul 2, 1973
Also published asCA990611A1, DE2430096A1
Publication numberUS 3859995 A, US 3859995A, US-A-3859995, US3859995 A, US3859995A
InventorsJohn R Colston
Original AssigneeWestinghouse Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Breathing assist apparatus
US 3859995 A
Abstract
A breathing assist device for deep sea divers and the like including a reversible jet pump powered from a breathing gas supply and controlled by a diaphragm actuated two position poppet valve which operates in response to the pressure differential occurring across the jet pump during a ventilation cycle.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 [111 3,859,995

Colston Jan. 14, 1975 [5 BREATHING ASSIST APPARATUS 2,547,458 4/1951 Goodner 128/203 [75] Inventor: John R. Colston, Annapolis, Md.

[73] Assignee: Westinghouse Electric Corp., ry Ex minerRichard A. Gaudet Pittsburgh, Pa. Assistant Examiner-Henry J. Recla A F D. Filed: J y 1973 ztorney Agent or zrm Schron [2l] Appl. No.: 376,003

[57] ABSTRACT [52] US. Cl. 128/l45.8

It. A breathing assist device for deep sea divers and the Fleld of Search 1 like including a reversible jet pump powered from a 128/ 14596, breathing gas supply and controlled by a diaphragm 63 R actuated two position poppet valve which operates in response to the pressure differential occurring across [56] Refe e ces Clted the jet pump during a ventilation cycle.

UNITED STATES PATENTS 2,483,698 10/1949 Goodner 128/ 145.8 13 Claims, 6 Drawing Figures PATENTEU 3,859,995

PUMPING PRESSURE (cm H 0) AT l2 I I0"- 74 i 0 TIME l 2 3 (sec) -5- I 76 INHALE I EXHALE INSTANTANEO US BREATHING FLOW (LPM) l I I50- 72 i 00- l i 0 1 ME 2 (sec) -50 -|00- 78 BREATHING ASSIST APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to ventilation, i.e., breathing apparatus, and more particularly to breathing assist apparatus for supplying breathable gas to a persons lungs, for example a diver working at great depths wherein the high flow resistance pressure drops resulting from the high density of the breathing gas must be overcome in order to receive sufficient quantities of gas in order to function efficiently.

2. Description of the Prior Art A diver working at relatively great depths encounters increased difficulty in breathing as a function of depth due to the relatively high density of the breathing gas compared to standard air which must be used and the resulting flow restriction pressure drops which occur in the divers air passages (mouth to lung alveoli).

Various systems are known for providing intermittent positive pressure breathing. For example, patients who are able to breathe spontaneously at a self-controlled rate but whose pulmonary function is deficient, make use of many types of ventilating machines. Hospitals and the like employ various types of systems for supplying air, gas or air-gas mixtures to a patient undergoing surgery. An example of the first is disclosed in US. Pat. No. 3,586,021 entitled Fluidic Breathing Assistor" issued to James P. McGuinness, while an example of the second is disclosed in US. Pat. No. 3,621,842, entitled Ventilating Machine issued to R. E. W. Manley. Additionally, the prior art also discloses emergency breathing gas supply apparatus for use at high altitudes. Such apparatus is disclosed in US. Pat. No. 2,929,377 entitled Emergency Differential Pressure Gas Applying Apparatus, issued to R. D. Cummings. The latter two patents were mentioned because they both disclose venturi type injectors. Finally, US. Pat. No. 3,577,988, entitled Dual Cannister Recirculator," issued to Richard F. Jones is cited because it discloses life support apparatus for an undersea diver having a recirculating type system also including a venturi type injector for enhancing gas flow.

SUMMARY Briefly, the subject invention is directed to breathing assist apparatus for both the inhalation and exhalation phases of a ventilation cycle and which is particularly useful but not restricted to the life support apparatusworn by undersea divers. The breathing assist apparatus according to the subject invention comprises a reversible jet pump located between a device inserted in the divers mouth and an input valve and an output check valve, the input valve couples a source of breathing to the jet pump. The output valve acts to conduct the exhaled gas away from the pump. The reversible jet pump includes a unitary converging-diverging throat section with upper and lower supply nozzles respectively located at each end of the throat section. The supply nozzles are alternately supplied from a gas power source during exhalation and inhalation causing a gas pumping action first in one direction and then the other. Control of the nozzles is effected by valving means driven by a diaphragm operable in response to the differential pressure in the region of the supply nozzles. The pressure drop across the jet pump is sensed by the diaphragm which when the pressure drop across the jet pump exceeds a preset value, indicating a decrease in inhalation flow for example, the diaphragm causes the valving means to switch to the opposite position causing the other supply nozzle to become activated,

resulting in exhalation flow pumping. This type of breathing device senses the divers attempt to inhale and exhale and assists his normal breathing and thereby overcome the increase pressure drops due to the relatively high density of the breathing gas at increased depths. If for some reason the diver ceases to breathe on his own power, the present invention will also effect an automatic ventilation of the diver's lungs. Additionally, when desirable, anotherjet pump may be included between the gas power source which may comprise a replenish supply in a closed or semi-closed system and the valving means as well as a breathing assist pressure adjustment means. The additional jet pump results in quieter operation while the pressure adjustment is advantageous when a divers work becomes harder and his breathing flow demand increases.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross sectional view illustrative of the preferred embodiment of the subject invention;

FIG. 2 is a set of performance curves illustrative of the operation of the subject invention;

FIG. 3 is a side elevational view of the subject invention incorporated in an open circuit or Scuba type of underwater life support apparatus;

FIG. 4 is a side elevational view of the subject invention incorporated in a closed circuit life support apparatus;

FIG. 5 is a side elevational view of the subject invention incorporated in a semi-closed life support apparatus fed from an umbilical tube coupled back to an underwater habitat, not shown; and

FIG. 6 is illustrative of the subject invention incorporated in a diving helmet fed a helium-oxygen mixture from a habitat, not shown.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and more particularly to FIG. I, the breathing assist apparatus of the subject invention is shown comprising, inter alia, a reversible jet pump designated generally by reference numeral 10 coupled between a respirator such as a mouthpiece l2 and a pair of valves 14 and 16. The valve 14 is operable to feed a breathing gas such as air, pure oxygen or helium-oxygen mixture to the mouthpiece 12 for inhalation while the valve 16 is adapted to feed the exhaled gases away from the apparatus either to the outside atmosphere or a breathing bag, not shown. Furthermore, the valve 14 which may be referred to as the input valve is located in an input conduit 18 while the valve 16 which may be referred to as the output check valve is located in an output conduit 20. The input and output conduits l8 and 20 join together in a region 22 which is common to one diverging end of a unitary converging-diverging throat section 24, i.e., one having a common constriction or narrow portion between two flared or diverging end portions. A first aspirator type supply nozzle 26 is located in one end portion 27 which also is common to the region 22 and is directed towards the common constriction portion 28. The supply nozzle 26 and the throat portions 27 and 28 act as the first section of a relength of conduit 30 which terminates in a bend at a region 32 which is common to the other diverging end of portion 33 of the converging-diverging throat section 24. A second aspirator type supply nozzle 34 is located in the end portion 33 and is directed toward the common constriction portion 28 and is adapted to pump the exhaled gas to the conduit 20 from the mouthpiece l2 and the conduit 30. Thus the supply nozzles 26 and 34 in combination with the respective end portions 27 and 33 and the common constriction portion-28 provides a double acting jet pump for pumping breathing gas in a first direction and then pumping the exhaled gas in the opposite direction through the throat configuration 24.

The bi-directional jet pump 10 is contained in a body 38 which additionally includes a chamber 40 located adjacent the converging-diverging throat section 24 in which is located a diaphragm 42 which separates the chamber into two parts. One part of the chamber 40 is coupled to the region 22 by means of a channel 44 while the other part of the chamber 40 is coupled to the region 32 at the opposite end of the nozzle 34 by means of the channel 46. Thus the pressure on one side of the diaphragm 42 is at the pressure in the vicinity of the region 22 while the pressure on the other side of the diaphragm is at the pressure in the vicinity of the region 32. The reason for this configuration will become evident when a description of the operation of the subject invention is set forth below.

The diaphragm 42 is connected to a double acting poppet valve 48 by means of a stem 50. The valve 48 is located in a valve chamber 52, having an input orifice in one side thereof. In a first position of the valve 48, the chamber 52 is coupled to the supply nozzle 26 by means of a fluid passage 54 while in the second position of the valve 48, the chamber 52 is coupled to the supply nozzle 34 by means of the fluid passage 56. The valve chamber 52 isfed a breathable gas for powering the jet pump 10 from a conduit 57 coupled to a suitable source, not shown, which may be for example a replen- .ish supply in a closed or semi-closed system. The gas applied to the conduit 57 is adapted to supply the pumping power alternately to the supply nozzles 26 and 34 during inhalation and exhalation respectively, and is fed to the valve chamber 52 by means of a first stage uni-directional jet pump 58 including a supply nozzle 60 and a throat portion 62. The incoming gas supplied by means of conduit 57 is adapted to provide a pumping action of gas coupled thereto from the region 32 by means of the passage 64. At the output of the first stage jet pump 58 is a by-pass air passage 66 which couples back to the air passage 64. The amount of by-pass or bleed flow is controlled by means of a manually operated screw 68 mounted in the outer wall of the body portion 38.

The breathing assist apparatus shown in FIG. 1 constitutes a bi-stable device which senses the attempt to inhale and exhale by reason of the pressure differentials between the regions 22 and 32 to trigger the necessary pumping action to assist normal breathing. The apparatus shown in FIG. 1 operates in the following manner. Assume for purposes of illustration that exhalation has ceased and inhalation starts. At that moment the pressure in the region 32 begins to drop with respect to the pressure in region 22. The pressure differential in the passages 46 and 44 causes the diaphragm 42 to move to the position shown inFIG. 1, shutting off passage 56 from the chamber 52 while opening passage 54. The incoming gas applied to the first stage jet pump 58 by means of the conduit 57 is coupled to the passage 54 and to the supply nozzle 26, causing a pumping action from the check valve 14 and the conduit 18 by means of the venturi effect. A positive feedback action occurs via the gas flow in passage 64 causing still further pumping action due to the venturi effect and pumping action of the first stage jet pump 58. Toward the end of the inhalation stage wherein the lungs become fully charged with the breathing gas, the pressure in region 32 increases, due to the back pressure provided by the gas in the lungs. This phase of a ventilation cycle is shown for example by reference to curve 70 shown in FIG. 2 which depicts the pumping pressure existing at the mouthpiece 12 shown in FIG. 1. When the pressure in region 32 becomes greater than the pressure in region 22, the diaphragm 42 will move to the left, forcing the valve 48 to shut off passage 54 and open passage 7 tween passages 56 and54. Whereas breathing flow increased very rapidly at the beginning of the inhalation stage as shown by curve 72 shown in FIG. 2, at the end of the breath, the flow drops to zero and the pressure at the mouthpiece immediately drops as evidenced by the portion of the curve shown by reference numeral 74. The flow of the input gas to the first jet pump 58 now flows through the passage 56 and out of the supply nozzle 34, causing a low pressure high reverse flow from the mouthpiece l2 initiating and/or aiding exhalation of the gases from the lungs toward the output conduit 20 and check valve 16. The pressure at the mouthpiece 12 now exhibits a characteristic as shown by the curve 76 in FIG. 2 while the flow out of the lungs appears as shown by the curve 78 shown in FIG: 2, until, where for example at the end of the three second period exhalation flow ceases and the inhalation action again is triggered.

The apparatus as shown in FIG. 1 is particularly adapted to overcome the pressure drop increase with depth experienced with relatively high density breathing gases (helium-oxygen) utilized in underwater life support apparatus. The configuration as disclosed in FIG. 1 is operable to sense a divers attempt to inhale and exhale and assist his normal breathing of these relatively high density breathing gases. If for some reason the diver ceases to breathe on his own power, the present invention will cause automatic ventilation of the divers lungs. In this sense it also becomes a life sensing device.

The first stage jet pump 58 shown in FIG. 1 acts to convert high pressure low flow gas in the conduit 57 into a medium pressure medium flow output into the valve chamber 52 and the by-pass or bleed passage 66. The first stage jet pump results in a quieter operating device. Adjustment of the screw 68 adjusts the pressure occurring at the output of the supply nozzles 26 and 34, which is advantageous, for example, when a diver increases his work output requiring a greater breath flow demand.

Since jet pumps are momentum conserving devices,

much of the energy in the gas energy applied to the first stage jet pump 58 from the conduit 57 is dissipated in the form of turbulence and noise. A second reason for the desirability of the first stage jet pump 58 is to reduce the length of the converging-diverging nozzle 24 of the reversible jet pump 10. The first stage jet pump results in larger areas and lower velocities in the supply nozzles 26 and 34. This in turn results in a shorter dis tance for the velocity to become reasonably uniform in the throat section 24 of the reversible jet pump 10.

It has been pointed out above that the apparatus shown in FIG. 1 has particular utility for diving life support systems. FIGS. 3 through 6, inclusively, disclose various combinations of life support systems which the subject invention can be used in conjunction therewith. FIG. 3, for example, is illustrative of an open circuit system which might, for example, comprise a Scuba diving rig wherein a tank 80 containing oxygen or air is coupled to an input demand valve 14 by means of a flexible hose 82 and to the conduit 57 by means of another hose 84 branching off of the hose 82. The gas supplied through the hose 84 acts simply as a power source for operating the apparatus. On inhalation, gas is drawn from the bottle 80 through the demand valve 14' and out of the mouthpiece 12. During the exhalation phase, the exhaled gases including carbon dioxide CO is fed back through the mouthpiece 12 where it is pumped out of the output check valve 16 to the surrounding water environment.

FIG. 4, on the other hand, discloses a closed circuit breathing apparatus whereupon the oxygen bottle 80 is coupled by means of a flow regulating valve 81 to the conduit 57 by means of a flexible tube 86 to act as a make up or replenish source and power the supply nozzles 26 and 34. In this instance the exhaled gases are fed from the output check valve 16 into a first breathing bag 88 which feeds into a canister 90, which removes the carbon dioxide from the exhaled air. The output of the canister 90 comprises CO -free breathing gas which is fed to a second breathing bag 92 where it can then be fed back to the input valve 14 so that the breathing gas is recirculated. Oxygen consumed by breathing is replenished by gas from the oxygen bottle 80.

The configuration shown in FIG. 5 constitutes a semiclosed system which is adapted to replenish and power the breathing assist mechanism shown in FIG. 1 and is particularly useful in connection with deep diving apparatus where a helium-oxygen mixture is coupled to the apparatus shown in FIG. I from a habitat not shown, by means of an umbilical line 94. Such a system using a He-O mixture normally requires a relief valve such as shown by reference numeral 96 at the input to the exhalation breathing bag 88. Such a relief valve feeds to the surrounding atmosphere and acts to relieve the pressure build up in the exhalation breathing bag 88.

FIG. 6 is intended to illustrate, for example, the apparatus as depicted in FIG. 1, incorporated in a diving helmet shown in phantom section by reference numeral 98. Also instead ofa single umbilical line 94 feeding the breathing assist apparatus, a second umbilical line 100 6 is utilized to feed the exhaust gases, including helium, oxygen and carbon dioxide back to an underwater habitat, not shown.

The curves shown in FIG. 2 and the values associated therewith are based on calculations provided in an analysis for a diver at the depth of 1,000 feet of sea water, breathing 4% O -96%He gas mixture with the breathing assist pressure adjusted to a maximum value of 15cm H O for no flow. The peak instantaneous breathing flow is assumed to be 2.5 meters per second. The value of 15cm H O is shown as the maximum pumping pressure because values greater than this could result in air being forced into a diver's stomach.

Thus what has been shown is an improved means of overcoming the pressure drop increase as a function of depth utilizing a reversible jet pump operated in a bistable mode in response to differential pressure changes occurring during a breathing cycle. Such apparatus acts to overcome the restrictive pressure drops of relatively high density breathing gases encountered at depths wherein unassisted breathing becomes increasingly difficult.

I-Iaving shown and described what is at present considered to be the preferred embodiment of the subject invention,

I claim:

1. Breathing assist apparatus in a system having a breathing input/output device coupling the respiratory system to a source of breathing gas, comprising in combination:

a reversible jet pump, having a pair of opposed aspirators each including a supply nozzle, said supply nozzles being directed toward one another and respectively located at either end of a convergingdiverging throat section including a common relatively narrow intermediate portion, and flared end portions;

means coupling one end portion of said jet pump to said input/output device;

input means coupling said source of breathing gas to the other end portion of said jet pump;

output means also coupled to said other end portion of said jet pump for removing exhaled gases therefrom;

a gas power source;

valve means having bi-stable operating states being operable to alternately couple each of said supply nozzles to said gas power source whereby in a first operating state the supply nozzle located at said other end of said jet pump operates to pump breathing gas toward said input/output device through said thraot section and in a second operating state said supply nozzle located at said one end of said jet pump operates to pump exhaled gas to said output means through said throat section;

means responsive to the pressure differential between each end portion of said jet pump in the region of said supply nozzles for actuating said valve means and comprising a pressure chamber including a diaphragm, in parallel relationship to said reversible jet pump, dividing said pressure chamber into two parts and additionally including a first channel coupling the region at said one end of said jet pump to one part of said chamber and a second channel coupling the region of the other end of said jet pump to said second part of said chamber; and

means coupling said diaphragm to said valve means.

2. The apparatus as defined by claim 1 and additionally including another jet pump coupling said gas power source to said valve means.

3. The apparatus as defined by claim 2 wherein said another jet pump comprises a uni-directional device including a nozzle and a throat section, and

additionally including a gas conduit coupling said one end portion of said reversible jet pump to the region of said another jet pump including the nozzle.

4. The apparatus as defined by claim 3 and additionally including an adjustable variable flow conduit between the last recited conduit and the output of the throat section of said another jet pump for controlling the output pressure from said supply nozzles.

5. The apparatus as defined by claim 1 wherein said source of breathing gas and said gas power source comprise a single breathable gas supply including first and second coupling means respectively coupling said supply tosaid input means and said valve means.

6. The invention as defined by claim 5 and additionally including a jet pump coupled between said second coupling means and said valve means.

7. The apparatus as defined by claim 1 wherein said system additionally includes a first breathing bag coupled to said output means for receiving exhaled gases, exhaled gas reconditioning means coupled to said first breathing bag, and a second breathing bag coupled between said gas reconditioning means and said input means, and

wherein said gas power source comprises a replenish breathing gas supply coupled to said valve means.

8. The apparatus as defined by claim 7 and additionally including a uni-directional jet pump coupled between said replenish gas supply and said valve means.

9. The apparatus as defined by claim 7 and additionally including pressure relief valve means coupled to said first breathing bag, and

wherein said gas power source is comprised of a remote supply and additionally including an umbilical line coupling said remote supply to said valve means.

10. The apparatus as defined by claim 9 wherein said remote gas supply is adapted to supply a helium-oxygen mixture to said breathing assist apparatus.

11. The apparatus as defined by claim 10 and additionally including a second jet pump coupled between said umbilical line and said valve means.

12. The apparatus as defined by claim 1 wherein said source of breathing gas and said gas power source comprise a common breathing gas supply situated at a remote location and additionally including a first umbilical line means coupling said common supply to said input means and said valve means, and a second umbilical line coupling said output means to said remote location for returning exhaled gases.

13. The apparatus as defined by claim 12 wherein said remote location comprises a habitat.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2483698 *Oct 24, 1947Oct 4, 1949Stephenson CorpResuscitator
US2547458 *Jun 25, 1947Apr 3, 1951Stephenson CorpResuscitator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4289126 *May 2, 1979Sep 15, 1981Wisconsin Alumni Research FoundationPressure regulator for breathing apparatus
US4417573 *Jul 2, 1981Nov 29, 1983Bear Medical Systems, Inc.Patient adaptor for medical ventilator
US4612929 *Jan 18, 1985Sep 23, 1986Dragerwerk AgAttachment for the supply of breathing gas for high-frequency artificial respiration
US5036847 *Mar 29, 1990Aug 6, 1991Georges BoussignacBreathing aid
US5452715 *Dec 29, 1993Sep 26, 1995Boussignac; GeorgesTube for assisting breathing
US5538002 *Oct 20, 1994Jul 23, 1996Boussignac; GeorgesDevice for respiratory assistance
US6119723 *Feb 13, 1998Sep 19, 2000Resmed Limited,Apparatus for varying the flow area of a conduit
US6253764May 7, 1997Jul 3, 2001Resmed, Ltd.Control of delivery pressure in CPAP treatment or assisted respiration
US6260550 *Sep 20, 1999Jul 17, 2001DRäGER MEDIZINTECHNIK GMBHDevice and process for controlling a respirator
US6532957Sep 23, 1997Mar 18, 2003Resmed LimitedAssisted ventilation to match patient respiratory need
US6688307Mar 12, 2002Feb 10, 2004Resmed LimitedMethods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support
US6810876Jul 3, 2002Nov 2, 2004Resmed Ltd.Assisted ventilation to match patient respiratory need
US7066175Nov 29, 2001Jun 27, 2006Emergent Respiratory Products, Inc.Portable gas powered positive pressure breathing apparatus and method
US7137389Mar 15, 2004Nov 21, 2006Resmed LimitedMethod and apparatus for determining instantaneous inspired volume of a subject during ventilatory assistance
US7302950Mar 12, 2003Dec 4, 2007Resmed LimitedPatient interface for respiratory apparatus
US7387123Nov 30, 2001Jun 17, 2008Viasys Manufacturing, Inc.Gas identification system and volumetrically correct gas delivery system
US7644713Mar 8, 2006Jan 12, 2010Resmed LimitedMethod and apparatus for determining instantaneous leak during ventilatory assistance
US7721735Jun 27, 2006May 25, 2010Emergent Respiratory Products, Inc.Portable gas powered positive pressure breathing apparatus and method
US7931023Jan 29, 2007Apr 26, 2011Resmed LimitedPatient interface assembly for CPAP respiratory apparatus
US8051853Nov 19, 2009Nov 8, 2011Resmed LimitedMethod and apparatus for providing ventilatory assistance
US8365728Apr 13, 2010Feb 5, 2013Emergent Respiratory LlcPortable gas powered positive pressure breathing apparatus and method
US8733351Sep 21, 2011May 27, 2014Resmed LimitedMethod and apparatus for providing ventilatory assistance
WO2002089873A2 *May 6, 2002Nov 14, 2002Life Support Technology IncPressure regulating valve and positive pressure ventilation system
Classifications
U.S. Classification128/204.25
International ClassificationA62B7/04, B63C11/22
Cooperative ClassificationB63C11/24
European ClassificationB63C11/24