Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3860217 A
Publication typeGrant
Publication dateJan 14, 1975
Filing dateApr 26, 1973
Priority dateApr 26, 1973
Also published asCA989386A, CA989386A1, DE2419696A1
Publication numberUS 3860217 A, US 3860217A, US-A-3860217, US3860217 A, US3860217A
InventorsGrout Kenneth M
Original AssigneeKenics Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Shear mixer
US 3860217 A
Abstract
A shear mixer for mixing components of a flowing fluid in which the mixing action is produced primarily, but not solely, by high internally generated shear forces. The basic element of the mixer is formed with a plurality of elongated channels, each preferably having an elliptic transverse cross section. The channels are disposed about each other in a helical arrangement and communicate with each other through one or more elongated helical slots formed in adjacent sides of two or more contiguous channels. The sides of each slot are cusp-shaped and the end faces of each mixing element are preferably concave at the ends of said channels with cusps in the end faces joining the cusps at the slot edges. A mixer may consist of a single element or of a plurality of such elements arranged with alternating right and left-handed helix groups, (a group consisting of one or more of such elements). The element or elements in one helix group has the transverse axis of each pair of its channels angularly disposed with respect to such axis of an adjacent group. Methods of making such mixers are also disclosed.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 on 3,360,217

Grout Jan. 14,1975

[ SHEAR MIXER fluid in which the mixing action is produced primarily,

. but not solely, by high internally generated shear [75] Inventor' Kenneth Grout Topsfield forces. The basic element of the mixer is formed with Assigneei Kenics Corporafion, Dam/firs, MaSS- a plurality of elongated channels, each preferably hav- 22 d: 7 ing an elliptic transverse cross section. The channels 1 lle Apr l9 3 V are disposed about each other in a helical arrange- [21] Appl. No.: 354,688 ment and communicate with each other through one or more elongated helical slots formed in adjacent 52 U.S. l. sides of two or more contiguous channels The Sides of j j Int l each slot are cusp-shaped and the end faces of each [58] Field or's't 'ruiiiiiii311111115 1"'i"19 36 37 mixing element preferably at the ends of 259/99 .114. 138/38 said channels with cusps in the end faces joining the cusps at the slot edges. A mixer may consist of a single [56] References Cited element or of a plurality of such elements arranged UNITED STATES PATENTS with alternating right and left-handed helixgroups, (a

group consisting of one or more of such elements);

3,286,992 11/1966 Armeniades 259/4 Th l t or lements in one helix group has the 3,664,638 5/1972 GiOLlt i. 259/4 transverse axis of each pair of its channels angularly disposed with respect to such axis of an adjacent f' Exam" 'er Harvey Hornsby group. Methods of making such mixers are also dis- Asszstant Exammer--Robert Pous 1 dosei [57] ABSTRACT A shear mixer for mixing components of a flowing 10 Claims, 15 Drawing Figures PATENTEB JAN I 4 I975 sum 10F 3 PATENTEI] JAN I 41975 sum 3 or 3 FIG. :5

FIG.

FIG. 14

SHEAR MIXER BACKGROUND OF THE INVENTION 1. Field of the Invention Mixers having stationary elements for mixing or otherwise contacting components of a flowing fluid or fluid-like stream in order to produce such effects as homogenization of miscible fluids, mass transfer to reactive components, establishing a uniform temperature throughout the stream and producing dispersions of immiscible substances.

2. Nature of the Prior Art The field of motionless mixers relates to that type of mixing device designed to mix components of a flowing fluid by causing a stream of such fluid to pass through a conduit containing within it stationary structural elements which physically react with said stream to produce the desired mixing action. An example of this type of mixer is shown in the US Pat. No. 3,286,992 to Armeniades et al. Such devices are used for a wide variety of purposes including the homogenization of miscible fluids, mass transfer of reactive components, the establishment of a uniform temperature throughout a flowing fluid mass, and the dispersion of immiscible substances including generating such fine dispersions as to produce stable emulsions. While such devices are generally satisfactory for many purposes, completely satisfactory operation has not yet been achieved for a variety of objectives.

Nature of Present Invention The present invention takes a basically new approach to the solution of the fluid mixing problem by placing a major emphasis upon increasing the shear forces which interact between different parts of the fluid stream. While high shear is important in many mixing processes, it is particularly important where it is desired to produce a stable emulsion of immiscible fluids. As the viscosity ratio between the two fluids increases, a higher and higher degree of shear is required to improve the degree of subdivision of the fluid particles to the point where astable emulsion is reached. Even in those cases where such an emulsion is not required, the higher shear forces produced by the present invention are very useful.

BRIEF DESCRIPTION OF THE DRAWINGS In the annexed drawings:

FIG. 1 is a perspective view of one of the novel mixer elements;

FIG. 2 is a side view of a simple mixer using one of the mixer elements of FIG. 1;

FIG. 3 is an enlarged cross-sectional diagram taken along line 33 of FIG. 2, illustrating the nature of its operation;

FIG. 4 is a view similar to FIG. 1 but with the sense of the helical passages reversed with respect to the sense of FIG. 1;

FIG. 5 is a side view of a mixer using multiple mixer elements;

FIG. 6 is a representation of a step in the assembly of two mixer elements in an arrangement as in FIG. 5;

FIG. 7 is a view as in FIG. 3 showing the effect of the reversal of the sense of the helical passages in the mixer unit;

FIG. 8 is a partial view, similar to FIG. 4, showing a mixer with spaced units;

FIG. 9 is a view similar to FIG. 3 but illustrating the effect of using more than two helical passages in a single mixer unit;

FIG. 10 is a view similar to FIG. 1 showing a form of mixer element with concave ends;

FIG. 11 is a side view of an arrangement with two elements of the type of FIG. 8 assembled in end-to-end relationship;

FIG. 12 is an enlarged end view of the upper element taken along line l212 of FIG. 11 with the orientation of the lower element shown in dotted lines;

FIG. 13 is a perspective view, partly in section, illustrating one method of making a mixer element;

FIG. 14 is a perspective view of a metal blank illustrating a step in another method of making a mixer element; and

FIG. 15 is a cross-sectional view of a mixer element made by the process illustrated in FIG. 14.

The basic component of the mixer of this invention, as illustrated by way of example in FIG. 1, consists of a body 1 in which is formed a plurality of elongated channels 2 and 3 each having an elliptic cross section and each having its longitudinal axis disposed along a helical path. These channels are interwound with each other and their cross-sections intersect adjacent the longitudinal axis of the body 1 so as to produce an elongated helical opening 4 through which each channel communicates with its adjacent channel. If we pass along each channel 2 and 3 in FIG. 1 from the top to the bottom, it will be seen that the helices formed by these channels are left-handed helices. As shown in FIG. 1, a preferred embodiment of the basic component is one in which each channel 2 and 3 consists of turning in each such unit will be matter of choice in the design of such mixers. While 'thelongitudinal axis of the body 1, referred to above, lies along a straight line, it is to be understood that the term longitudinal axis," as it applies to body 1, includes any line, whether ornot straight, about which the channels progress with either right-handed or left-handedturnings. In addition, .although the opening 4 is shown as a continuous slot extending from the top to the bottom of body 1, parts of the contiguous sides of channels 2 and 3 could be left solid so as to provide a plurality of such slots extending longitudinally of the body 1.

A simple or elementary form of a left hand helix mixer using such a basic element is shown diagramatically in FIG. 2 in which a fluid extruder 5 is connected to the input end of a unit 1 and a discharge nozzle 6 is I connected to its output end. The resulting reaction within the unit 1 is illustrated in FIG. 3. As the fluid is caused to flow from the extruder 5, it follows a helical path through each channel 2 and 3. Frictional forces will be set up between the walls of these channels and the fluid to produce a counter rotation in each channel at right angles to the direction of longitudinal flow of the fluid. The direction of such counter rotation is shown by the arrows in FIG. 3 as a clockwise rotation of the fluid in each of the channels 2 and 3. This assumes a counterclockwise progression of the channels into the plane of the paper and a flow of the fluid into such plane. Therefore, at each opening or slot 4 between the channels, the fluids flowing in the channels will be rotating oppositely'to each other producing a very high degree of internal fluid shear. Such high internal shear will produce a strong mixing action for the various purposes for which such a device is intended. Where the opening 4 is not continuous from the top to the bottom of body 1, it is merely required that a sufficient total length of the common openings between channels 1 and 2 be produced to result in a substantial volume in which the above-described shear forces may be developed.

It may be that, for some purposes, the elementary form of mixer shown in FIG. 2, would not be the preferred one. Therefore, a mixer might comprise a plurality of units 1 in which the helical turns of channels 2 and 3 would be reversed in each alternate unit. For this purpose, it is desired to add to the left-hand helical passage member I, as shown in FIG. 1, a right-hand helical passage member 1a as shown in FIG. 4.

FIG. 4 illustrates an element la with right-hand helical passages 2a and 3a providing a passage 4a between them.

A preferred embodiment of the invention is that illustrated in FIG. 5 in which the mixer would consist of a plurality of basic elements lb and 1c, 1d and 1e assembled end to end in a series within a casing7. Each basic element 1b and 1d is as illustrated in FIG. 1, while each element and 1e is as illustrated in FIG. 4. Thus, the direction of the helical passages in each alternate element is of the opposite sense to the direction of the helical passages in the adjacent elements.

In addition to the reversal of direction of the helices in alternate elements, each alternate element also preferably has the transverse axis joining the centers of the passages angularly disposed with respect to such axis in each adjacent unit. Thus, FIG. 6 shows a step in the assembly of two adjacent units wherein the upper unit 1 is the same as that shown in FIG. 1 while the lower unit la is the same as that shown in FIG. 4 but with the above described transverse axis rotated through 90 so that thetransverse axes of 1 and 1a are disposed 90 with respect to each other. This angular relationship is not critical and may be of any substantial size.

The effect of reversing the direction of the helices is illustrated in FIG. 7. The clockwise rotation of the fluid for the right-hand helices of the unit of FIG. 3 becomes a counterclockwise rotation as shown by the curved arrows of FIG. 7. The same high degree of internal fluid shear, as in FIG. 3, is also generated at the opening 4a in FIG. 7. Therefore, in FIG. 5, when the fluid issues from the first unit lb and encounters the second unit 10, the rotation imparted by unit lb will be reversed by the action of the unit 1c, thus increasing the mixing effectiveness of the combined device. Furthermore, the angular displacement of the transverse axes of the helices between adjacent elements introduces additional subdivisions of the fluid stream and increased internal shearing forces which further enhance the mixing action.

Instead of reversing the direction of the helices in every alternate mixer element, a plurality of such elements with these helical elements all in the same sense may be followed by a plurality of such elements with their helices all in the opposite sense. Therefore, such elements may be considered broadly as being arranged in alternating right-handed and left-handed helix groups, it being understood that a group may consist of one or more elements.

Also, as illustrated in FIG. 8, instead of the adjacent ends of successive elements 1b and 1c being in contact with each other, such ends may be spaced from each other where it is desired to provide a plenum 8 between successive elements.

The principles of the present invention may be incorporated in structures in which more than two helical channels are present. For example, in FIG. 9, three helical channels 9, l0, and 11, similar to channels 2 and 3 of FIG. 1, are provided in a body 12. These channels are formed respectively with longitudinal openings 13, 14 and 15, similar to' opening 4 of FIG. 1. These openings 13, 14 and 15 merge into a central opening 16 extending the length of the body 12. As described in connection with FIG. 3, when fluid is caused to flow along each channel 9, l0 and 11, frictional forces between the walls of the channels and the flowing fluid produce a rotation of the fluid as indicated by the arrows in FIG. 9. The direction of such rotation about the opening 16 produces a cumulative circumferential force around the opening 16 and drives the fluid in such opening circularly in a direction opposite to the direction of rotation of the fluid in channels 9, l0 and 11. As shown, the rotation of the fluid in opening 16 is in a counterclockwise direction. The resultant of the forces causing'the flow of fluid along the length of the body 12 and the above rotation forces will cause each particle in the opening 16 to flow in a helical path along the length of the opening 16 substantially in synchronism with the helical flow in each of the channels 9, l0 and 11. Not only will there exist a very effective mixing action, but also the residence times in the mixer for all particles in the fluid flow will tend to be equal resulting in a highly uniform product. I

It is to be understood that, although the cross section of each channel has been illustrated as a circle, such cross section may be elliptic, a circle being one form. By the term elliptic" is meant any closed planar curve along which there is no reversal of curvature, but along which there may be changes in the radius of curvature. Such definition is not to be interpreted as excluding gaps such as those due to openings 4, 13, 14 and 15.

While channels with elliptic cross sections may be preferred, such channels may have any type of cross section. As long as such cross section defines a closed figure (except for a gap due to the opening in its side) and the channel progresses along a helical path, as described above, a counter rotation of the fluid in adjacent channels will be produced and the effects of the present invention will be generated.

However, the elliptic form of mixer element eliminates all corners which could create dead areas in which parts of the fluid might remain for substantially longer periods than the rest of the flowing fluid. The existence of such corners in prior art devices are responsible for the fact that it has been virtually impossible to obtain anything approaching completely uniform residence time for fluids flowing through such'mixers. The present invention makes possible a much closer approximation of such uniform residence time than has been possible heretofore.

In order further to enhance the uniformity of residence time and to increase the mixing action of this invention, the embodiment of FIGS. 10 and l l have been devised. In FIG. 10, the unit 18 is substantially like the unit 1 of FIG. 1 and is formed with channels 19 and 20 corresponding to channels 2 and 3 of FIG. 1. However, in FIG. 10, the end of each unit is dished with concave surfaces 21 and 22 at the ends of the channels 19 and 20. Such concave surfaces meet along substantially horizontal cusp edges 23 which terminate along a circular border 24 which defines the outer limits of the concave surfaces 21 and 22. This form of the end of each unit may be more readily seen in FIG. 12. The dotted lines show the orientation of the end face of an adjacent unit assembled as will be described below for FIG. 11.

As shown in FIG. 1 l, a plurality of such units 18a and 18b are assembled in end to end relation with the direction of the helical turning of the passages in each unit being reversed with respect to the direction such turning in an adjacent unit, as described in connection with FIG. 5. Further, as described in connection with FIG. 5, the transverse axes are angularly disposed. Thus the edges 2311 on the lower face of 18a will be angularly displaced with respect to the edges 23b on the upper face of 18b. Therefore, any fluid which passes from the channels of 18a to the channels of 18b will encounter the sharp edges 23b which will exert additional shear forces to further enhance the operation of the device.

Each of the units of the type described may be made of any suitable material and may be manufactured by any suitable process. For example, the unit may be made of a plastic or metal cast in a lost-wax type of mold, as shown in FIG. 13. Two cylindrical lengths of casting wax 25 and 26 are pressed together along their lengths to form the central portion 27 which is to define the central opening 4 of the resulting unit. The members 25 and 26 are then twisted with the desired degree of turning of the channels 2 and 3. The members 25 and 26 are then placed in a cylindrical mold 28 having a bottom 29 and a cylindrical side wall member 30, shown cut away in FIG. 13. The mold is then filled with the desired plastic material and caused to set into a solid form by any well known process. Thereupon, the plastic body is removed from the mold 28 and the casting wax core 25-26 is dissolved or melted out to leave the unit substantially as shown and described in FIG. 1. Of course, the unit of FIG. 4 may be made in the same way with the members 25 and 26 twisted in a direction opposite to that in FIG. 13. Where desired, the concave surfaces 21 and 22, as described in FIGS. 10, 11 and 12 may be machined out by any well known machining method.

Other methods of making the units may be used. For example, as shown in FIG. 14, a sheet of metal 32 may be formed with two longitudinal channels 33 and 34. Thereupon the sheet 32 may have its ends twisted in opposite directions so that one end wall occupies the position as shown in the dotted lines at 35 with respect to the other end shown in full line at 36. Of course, the metal would have to be sufficiently malleable to accommodate such twisting. Two members 37 and 38 so formed may then be assembled with abutting longitudinal edges 3a as shown in FIG. 15. The shapes shown in FIGS. 1 and 4 might be made by extruding plastic or malleable metal through an appropriate die while twisitng the extruded material with respect to such die. Various other methods of fabricating these units will suggest themselves to those skilled in the art.-

I claim:

1. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other; said opening comprising an elongated slot extending throughout the length of said channels.

2. A mixer element according to claim 1 in which at least one end face of said body is concave at the end of each of said channels. v

3. A mixer element according to claim 1 in which the number of said channels is at least three.

4. A mixer comprising a plurality of mixer elements 7 according to claim 2 mounted in end to end relationship with their longitudinal axes in line with each other.

5. A mixer according to claim 4 in which said mixer elements are arranged in alternating right and lefthanded helix groups.

6. A mixer according to claim 4 in which adjacent mixer elements are mounted with these ends abutting each other.

7. A mixer according to claim 4 in which adjacent mixer elements are mounted with their ends spaced from each other.

8. A mixer according toclaim 4 in which the transverse axis through the centers of said channels of each of said units is angularly displaced with respect to such transverse axis of each unit adjacent thereto.

9. A mixer according to claim 1 in which each of said channels has an elliptic cross section.

10. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other, at least one end face of said body being concave at the end of each of said channels, said concave face having pointed cusps transverse to the line joining the centers of said channels at said end face, each of said cusps extending from an edge of said slot to a point on said end face removed from said edge.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3286992 *Nov 29, 1965Nov 22, 1966Little Inc AMixing device
US3664638 *Feb 24, 1970May 23, 1972Kenics CorpMixing device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4112520 *Mar 25, 1976Sep 5, 1978Oscar Patton GilmoreStatic mixer
US4222671 *Sep 5, 1978Sep 16, 1980Gilmore Oscar PatrickStatic mixer
US4259021 *Apr 19, 1978Mar 31, 1981Paul R. Goudy, Jr.Fluid mixing apparatus and method
US4363552 *Mar 18, 1981Dec 14, 1982E. I. Du Pont De Nemours And CompanyStatic mixer
US4374542 *Oct 17, 1977Feb 22, 1983Bradley Joel CUndulating prismoid modules
US4404173 *Sep 24, 1980Sep 13, 1983Unc Recovery CorporationApparatus for contacting substantially immiscible liquids
US4439405 *Sep 27, 1982Mar 27, 1984Unc Recovery CorporationMethod for varying the mixing time and proportions in the contacting of substantially immiscible liquids
US4611615 *Nov 2, 1983Sep 16, 1986Petrovic Ljubisa MFluid treatment apparatus and method
US4614440 *Mar 21, 1985Sep 30, 1986Komax Systems, Inc.Stacked motionless mixer
US4884894 *Feb 14, 1989Dec 5, 1989Yuugenkaisha OhnobankinkougyoushoFluid mixing element
US5053202 *Aug 2, 1990Oct 1, 1991Olin CorporationStatic mixer configuration
US5564827 *Sep 30, 1994Oct 15, 1996Sulzer Chemtech AgDevice for the homogenization of high-viscosity fluids
US6286597Apr 12, 1999Sep 11, 2001Baker Hughes IncorporatedShoe track saver and method of use
US8349273Aug 4, 2008Jan 8, 2013Fuji Xerox Co., Ltd.Microreactor device
US8360630 *Jan 31, 2007Jan 29, 2013Stamixco Technology AgMixing element for a static mixer and process for producing such a mixing element
US8418719Apr 9, 2007Apr 16, 2013Fuji Xerox Co., Ltd.Microchannel device
US8585278Oct 7, 2009Nov 19, 2013Fuji Xerox Co., Ltd.Micro fluidic device and fluid control method
US8679336Apr 13, 2009Mar 25, 2014Fuji Xerox Co., Ltd.Microchannel device, separation apparatus, and separation method
US8721992Oct 5, 2007May 13, 2014Fuji Xerox Co., LtdMicro fluidic device
US8876365 *Jan 20, 2011Nov 4, 2014Dow Global Technologies LlcMixing system comprising an extensional flow mixer
US20080017246 *Apr 9, 2007Jan 24, 2008Fuji Xerox Co., Ltd.Microchannel device
US20080240987 *Oct 5, 2007Oct 2, 2008Fuji Xerox Co., Ltd.Micro fluidic device and method for producing micro fluidic device
US20090098027 *Aug 4, 2008Apr 16, 2009Fuji Xerox Co., Ltd.Microreactor device
US20100229987 *Oct 7, 2009Sep 16, 2010Fuji Xerox Co., Ltd.Micro fluidic device and fluid control method
US20110182134 *Jan 22, 2010Jul 28, 2011Dow Global Technologies Inc.Mixing system comprising an extensional flow mixer
US20120134232 *Jan 31, 2007May 31, 2012Stamixco Technology AgMixing Element for a static mixer and process for producing such a mixing element
US20120287744 *Jan 20, 2011Nov 15, 2012Dow Global Technologies LlcMixing system comprising an extensional flow mixer
EP1125624A1 *Oct 22, 1998Aug 22, 2001Maeda CorporationKneader
EP1125624A4 *Oct 22, 1998Apr 28, 2004Maeda ConstructionKneader
WO1983002133A1 *Dec 17, 1981Jun 23, 1983Bailey, John, M.Dual fuel mixer-emulsifier
WO2005035995A1 *Oct 6, 2004Apr 21, 2005Kvaerner Process Systems A.S.Fluid phase distribution adjuster
WO2015073657A1 *Nov 13, 2014May 21, 2015Dow Global Technologies LlcInterfacial surface generators and methods of manufacture thereof
Classifications
U.S. Classification366/336
International ClassificationB01F5/06, B01F5/00
Cooperative ClassificationB01F5/0644, B01F5/0646
European ClassificationB01F5/06B3F, B01F5/06B3C4
Legal Events
DateCodeEventDescription
Feb 29, 1992ASAssignment
Owner name: HELLER FINANCIAL, INC.
Free format text: SECURITY INTEREST;ASSIGNOR:O.D.E. MANUFACTURING, INC., A CORP. OF DE;REEL/FRAME:006034/0231
Effective date: 19900220
Dec 19, 1980AS03Merger
Owner name: CHEMINEER, INC., A CORP. OF OH
Effective date: 19801107
Owner name: KENICS CORPORATION