Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3860521 A
Publication typeGrant
Publication dateJan 14, 1975
Filing dateMar 20, 1972
Priority dateMar 20, 1972
Also published asDE2313330A1
Publication numberUS 3860521 A, US 3860521A, US-A-3860521, US3860521 A, US3860521A
InventorsOtto T Aepli, Harold L Conaway, Malachy E Sorgenfrei
Original AssigneeBasf Wyandotte Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Soap based chain conveyor lubricant
US 3860521 A
Abstract
Chain Conveyor Lubricant:
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Aepli et al.

[451 Jan. 14, 1975 SOAP BASED CHAIN CONVEYOR LUBRICANT Inventors: Otto T. Aepli, Southgate; Malachy E. Sorgenfrei, Trenton; Harold L. Conaway, Wyandotte, all of Mich.

Assignee: BASF Wyandotte Corporation,

Wyandotte, Mich.

Filed: Mar. 20, 1972 Appl. No.: 236,349

US. Cl 252/34.7, 252/33.3, 252/33.6, 252/42.l, 252/49.3, 252/49.5, 252/49.8

Int. Cl.....C10m 3/40, ClOm 3/18, ClOm 3/04 Field of Search 252/347, 42.1, 49.3, 49.5, 252/33.6, 49.8, 41, 33.3

References Cited UNITED STATES PATENTS 7/1942 Waugh 252/34.7

3,277,001 10/1966 Fischer et al. 252/347 3,336,225 8/1967 Sayad et al. 252/34.7 3,399,144 8/1968 Hathaway et al.... 252/49.8

3,583,914 6/1971 Garvin et al. 252/34.7 3,657,123, 4/1972 Stram 252/34.7

Primary ExaminerDelbert E. Gantz Assistant Examiner1. Vaughn Attorney, Agent, or Firm-Bernhard R. Swick; Joseph D. Michaels; Robert E. Dunn [57] ABSTRACT '6 Claims, No Drawings SOAP BASED CHAIN CONVEYOR LUBRICANT BACKGROUND 1. Field of the Invention This invention relates to the improved soap based chain conveyor lubricants and more particularly to lubricants which are aqueous compositions containing fatty acid soaps and surfactants.

2. Description of the Prior Art In breweries, soft drink bottling operations and food processing plants, conveyor belts are used to move the bottles, jars, cans and the like along the bottling line. In order to keep the conveyor chains clean and provide lubrication, it is customary to use a lubricant such as a soap based lubricant. However, these lubricants have often tended to foam to such an extent that the labels affixed to the bottles are wetted by the foam thereby giving them a poor appearance and/or are partially removed. Additionally, the use of these lubricants have resulted in the accumulation of unsightly amounts of 20 foam on the floors and other areas.

In view of the prior art, it is an object of this invention to provide a soap based chain conveyor-lubricant having improved defoaming properties. It isstill another object of this invention to provide a soap based chain conveyor lubricant having improved lubricating properties.

These and other objects will become apparent from the following detailed description.

SUMMARY OF THE INVENTION In accordance with this invention, there is provided an aqueous lubricating concentrate for lubricating continuously moving conveyor systems wherein said concentrate contains a fatty acid soap and a surfactant, the improvement comprising the addition to said composition of monostearyl acid phosphate in an amount from about 0.15 to about 1.75 weight percent of the concentrate. The concentrate when diluted with water is then ready for use as a lubricating composition.

DESCRIPTION OF THE PREFERRED EMBODIMENT The typical chain conveyor lubricant for convenience and economy in transporting and storing is manufactured and sold as a concentrate which is then diluted with water in proportions by volume of from about 1:50 parts concentrate to water to about 1:500 parts concentrate to water for usage. The lubricant concentrate typically consists of from about 20 to about 80 percent water, about 0 to percent sequestering agent, about 0 to 30 percent anionic surface active agent, about 2 to 40 percent fatty acid soap, about 0 to 40 percent coupling agent, about 0 to 15 percent nonionic surface active agent. Usually it is more preferred that the concentrate contain about 30 to about 70 percent water, about 2 to 15 percent sequestering agent, about 2 'to 30 percent anionic surface active agent, about 4 to percent fatty acid soap, about 0 to 20 percent coupling agent and about 2 to 10 percent nonionic surface active agent.

According to this invention monostearyl acid phosphate is added to the foregoing composition to obtain the objects of the present invention. Typically the monostearyl acid phosphate is added in an amount from 0.15 to 1.75 percent of the concentrate exclusive of the water present. More preferably the amount of monostearyl acid phosphate will be from about onehalf to about 1.5 weight percent.

It is preferred to employ as the sequestering agent salts of ethylene diamine tetracetic acid. These sequestering agents'may be added to the composition in the form of the salts or the acid may be added along with a sufficient amount of metallic hydroxide or alkanolamine to neutralize the acid.

Any sequestering agent which will complex calcium and magnesium ions from water may be employed in this invention. Additional suitable sequestering agents are trans-1,Z-diaminocyclohexane tetracetic acid monohydrate, diethylene triamine pentacetic acid, sodium salt of nitrilotriacetic acid, pentasodium salt of N- hydroxyethylene diamine triacetic acid, trisodium salt of N,N-di(beta-hyroxyethyl) glycine, and sodium salt of sodium glucoheptonate.

Where the-formula is diluted in tap water, conventional metallic soap dispersants may be necessary or desirable in addition to the sequestering agents.

Anionic surface active agents which may be employed include linear alkyl benzene sulfonic acids, alpha-olefin sulfonates, alkyl diphenyl oxide disulfonates, sodium N-methyl-N-alkyl-taurate, alkyl sulfonated amides, di(2-ethylhexyl) sulfosuccinate, dioctyl sodium sulfosuccinate, sodium sulfonate of oleic acid, anionic phosphate esters, alkyl ether sulfates, alkyl polyethyleneoxy esters, alcohol sulfates such as sodium lauryl sulfate, the product of chlorosulfonation of paraffin hydrocarbons, e.g., octadecenyl sulfonate and the condensate of a fatty acid chloride with an amine.

For the sake of simplicity in formulating the composition, instead of adding fatty acid soap as such it is preferred to simply add fatty acid in amount from about 2 to 30 weight percent for the broad composition or 4 to 15 percent by weight in the preferred composition and then add a sufficient amount of an alkali metal (from the first column of the periodic table) hydroxide, ammonium hydroxide or an alkanolamine to neutralize the fatty acid to produce the fatty acid soap. Where the sequestering agent is also added in the acid form, the foregoing hydroxide or alkanolamine is added in sufficient amount to neutralize both the sequestering agent acid and the fatty acid. Preferred fatty acids for this purpose are tall oil fatty acids with low rosin content of about 0.5 to 0.9 percent by weight and which generally comprise approximately 52 percent by weight oleic acid, percent by weight-linoleic acid, 1 percent by weight linolenic acid, and 2.3 percent by weight saturated acid. Coconut oil fatty acids, generally comprised of percent lauric, 20 percent myristic, 10 percent oleic, 10 percent palmitic, 8 percent of other saturated fatty acids, and about 2 percent unsaturated fatty acids are also desirable for this purpose. Additional useful fatty acids include those derived from tallow, soya beans, corn, cottonseed, palm, and blends or hydrogenated forms of the basic type of fatty acid to give desired characteristics such as low solubilization temperature, viscosity, and reduced corrosion tendency.

Sodium, ammonium or potassium hydroxide and mono, di, and triethanolamine or isopropanolamine are the preferred source used for neutralizing and converting fatty acids and sulfonic acid derivatives to soap or amides. Potassium hydroxide and monoethanolamine are preferred for their ability to produce compounds with a pH and foam generating capacity suitable for conveyor lubricants.

The nonionic surface active agents which are advantageously employed in the compositions of the invention are generally the polyoxyalkylene adducts of hydrophobic bases wherein the oxygen/carbon atom ratio in the oxyalkylene portion of the molecule is greater than 0.40. Those compositions which are condensed with hydrophobic bases to provide a polyoxyalkylene portion having 'an oxygen/carbon atom ratio greater than 0.40 include ethylene oxide, butadiene dioxide and glycidol, mixtures of these alkylene oxides with each other and with minor amounts of propylene oxide, butylene oxide, amylene oxide, styrene oxide, and other higher molecular weight alkylene oxides. Ethylene oxide, for example, is condensed with the hydrophobic base in an amount sufficient to impart water dispersibility or solubility and surface active properties to the molecule being prepared. The exact amount of ethylene oxide condensed with the hydrophobic base will depend upon the chemical characteristics of the base employed and is readily apparent to those of ordinary skill in the art relating to the synthesis of oxyalkylene surfactant condensates.

Typical hydrophobic bases which can be condensed with ethylene oxide in order to prepare nonionic surface active agents include monoand polyalkyl phenols, polyoxypropylene condensed with a base having from about 1 to 6 carbon atoms and at least one reactive hydrogen atom, fatty acids, fatty amines, fatty amides and fatty alcohols. The hydrocarbon ethers such as the benzyl or lower alkyl ether of the polyoxyethylene surfactant condensates are also advantageously employed in the compositions of the invention.

Among the suitable nonionic surface active agents are the polyoxyethylene condensates of alkyl phenols having from about 6 to carbon atoms in the alkyl portion and from about 5 to 30 ethenoxy groups in the polyoxyethylene radical. The alkyl substituent on the aromatic nucleus may be octyl, diamyl, n-dodecyl, polymerized propylene such as propylene tetramer and trimer, isoctyl, nonyl, etc. The benzyl ethers of the polyoxyethylene condensates of monoalkyl phenols impart good properties to the compositions of the invention and a typical product corresponds to the formula:

c8ril7- 0011 011 1 50011 0 1 15 Higher polyalkyl oxyethylated phenols corresponding to the formula:

fiowazcazo) H R wherein R is hydrogen or an alkyl radical having from about 1 to 12 carbon atoms, R and R are alkyl radicals having from about 6 to 16 carbon atoms and n has a value from about 10 to 40, are also suitable as nonionic surface active agents. A typical oxyethylated polyalkyl phenol is dinonyl phenol condensed with 14' moles of ethylene oxide.

Other suitable nonionic surface active agents are cogeneric mixtures of conjugated polyoxyalkylene compounds containing in their structure at least one hydrophobic oxyalkylene chain in which the oxygen/carbon atom ratio does not exceed 0.40 and at least one hydrophilic oxyalkylene chain in which the oxygen/carbon atom ratio is greater than 0.40.

Polymers of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide, styrene oxide, mixtures of such oxyalkylene groups with each other and with minor amounts of polyoxyalkylene groups obtained from ethylene oxide, butadiene dioxide, and glycidol are illustrative of hydrophobic oxyalkylene chains having an oxygen/carbon atom ratio not exceeding 0.40. Polymers of oxyalkylene groups obtained from ethylene oxide, butadiene dioxide, glycidol, mixtures of such oxyalkylene groups with each other and with minor amounts of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide and styrene oxide are illustrative of hydrophilic oxyalkylene chains having an oxygen/carbon atom ratio greater than 0.40.

Further suitable nonionic surface active agents are the polyoxyethylene esters of higher fatty acids having from about 8 to 22 carbon atoms in the acyl group and from about 8 to 30 ethenoxy units in the oxyethylene portion. Typical products are the polyoxyethylene adducts of tall oil, rosin acids, lauric, stearic and oleic acids and the like. Additional nonionic surface active agents are the polyoxyethylene condensates of higher fatty acid amines and amides having from about 8 to 22 carbon atoms in the fatty alkyl or acyl group and about 10 to 30 ethenoxy units in the oxyethylene portion. lllustrative products are coconut oil fatty acid amines and amides condensed with about 10 to 30 moles of ethylene oxide.

Other suitable polyoxyalkylene nonionic surface active agents are the alkylene oxide adducts of higher aliphatic alcohols and thioalcohols having from about 8 to 22 carbon atoms in the aliphatic portion and about 3 to 50 oxyalkylene portion. Typical products are synthetic fatty alcohols, such as n-decyl, n-undecyl, n-

dodecyl n-tridecyl, n-tetradecyl, n-hexadecyl, noxtadecyl and mixtures thereof condensed with 3 to 50 moles of ethylene oxide, a mixture of normal fatty alcohols condensed with 8 to 20 moles of ethylene oxide and capped with benzyl halide or an alkyl halide, a mixture of normal fatty alcohols condensed with 10 to 30 moles of a mixture of ethylene and propylene oxides, a mixture of several fatty alcohols condensed sequentially with 2 to 20 moles of ethylene oxide and 3 to 10 moles of propylene oxide, in either order; or a mixture of normal fatty alcohols condensed with a mixture of propylene and ethylene oxides, in which the oxygen/- carbon atom ratio is less than 0.40 followed by a mixture of propylene and ethylene oxides in which the oxygen/carbon atom ratio is greater than 040 or a linear secondary alcohol condensed with 3 to 30 moles of ethylene oxide, or a linear secondary alcohol condensed with a mixture of propylene and ethylene oxides, or a linear secondary alcohol condensed with a mixture of ethylene, propylene, and higher alkylene oxides. As couplers or hydrotropes which may be employed in this invention, or perhaps they could be equally described as homogenizers or phase control agents, the following are typical examples of useful agents for this purpose: propylene glycol, isopropyl alcohol and ethylene glycol.

The compositions of this invention are prepared by standard well-known open kettle mixing techniques known in the industry.

The practice of this invention is illustrated by, but not limited by, the examples given below. Unless otherwise noted, temperature is expressed in degrees Centigrade and parts are parts by weight.

In determining foam characteristics and lubricity (pounds gate pressure) a 12 foot section of continuous bottle conveyor, driven by a one-third horse power motor is loaded with 50 water-filled 6.5 fluid ounce bottles. The test lubricating composition is diluted in a proportion by weight of 1:100. This dilute solution is then applied at a single application point at the end of the conveyor distal to the drive, thus simulating operating conditions of the section of the actual bottle conveyor. The relative efficiency of the lubricant is determined by the force in pounds of gate pressure exerted by the stationary bottles on a spring balance at the end of the conveyor as the chain moves under the load. Compositions with poor lubricity will result in a higher gate pressure due to the force transmitted to the bottle column by the friction of the chain passing under the bottle load. Generally, a lubricant yielding a gate pressure of greater than 12 pounds on the balance with the standard load will exhibit poor lubricity under actual use conditions.

The current load in watts of the drive motor is also proportional to the lubricity of the lubricant as related to the friction between the bottle load and the conveyor chain. The foam generating capacity of the test formula is determined by the height of the suds that build up between adjacent bottles. Lubricants giving a gate pressure of less than 12 pounds and an electricalload ofless than 105 watts have been shown to perform satisfactorily in actual conveyor systems. The results of lubricity and foam generating capacity of the below listed compositions are indicated in Table l below.

EXAMPLE I A quantity of phosphate-free aqueous commercial conveyor chain lubricant containing a non-ionic surfacrant and a fatty acid soap was divided into two parts. One portion was marked sample A and used as a control. To the other portion, marked sample B, was added and uniformly dispersed therein one percent by weight of monostearyl acid phosphate (hereinafter for convenience called MSAP in this and the'following examples). Each sample was tested in the bottle conveyor test described above.

EXAMPLE II A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. The lubricants contained on a percent by weight basis:

-Continued Sample A Sample B Nonionic surfactant A 5.0 5.0

EXAMPLE III A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. On a percent by weight basis the lubricant contained:

A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. On a percent by weight basis the lubricant contained:

Sample A Sample 8 Water 57.5 56.5

Tall oil fatty acid 10.0 10.0

MSAP 1.0

lsopropyl alcohol 7.0 7.0

Monophosphate ester of nonionic surfactant A 10.0 10.0

Nonionic surfactant 8 3.0 3.0

Potassium hydroxide 2.0 2.0

lsopropylamine 4.0 4.0

Trisodium salt of nitrilotriacetate 6.5 6.5

Nonionic surfactant A is an oxyalkylated alcohol wherein the alcohol is a mixture comprising 85% by weight of a C alcohol, 8.5% by weight of a C alcohol and 6.5% by weight of a C alcohol; the oxyalkyl is a mixture of 68 parts of ethylene oxide and 12 parts of ethylene oxide, total oxyalkyl weight content weight ratio of ethylene oxide to propylene oxide 5.67 to l.

Nonionic surfactant B is an ethylenediamine initiated oxypropylene oxyethylene polymer wherein the molecular weight of the. po1y(oxypropy1ene) hydrophobe ent.

TABLE I CONVEYOR LUBRICANT TEST RESULTS (Dilution ratio lzl) l. Dilution water hardness zero p.p.m. (CaCO 2. Dilution water hardness l20 p.p.m. (CaCO I A 4.5-5.0 moderate-high foam l B 3.5-4.0 low-moderate foam II A 3.5-4.0 high foam ll B 3.0-3.5 moderate foam lll A 3.5-4.0 moderate foam III B 3.5-4.0 very low foam lV A 4.5-5.0 low-moderate IV 8 3.0-3.5 low In the foregoing tests the use of MSAP substantially reduced foam build-up on the bottles on the conveyor regardless of which lubricant was used. Additionally the lubricity of the lubricant was usually improved by the use of MSAP.

The foregoing examples and methods have been described in the foregoing specification for the purpose of illustration and not limitation. Many other modifications and ramifications will naturally suggest themselves to those skilled in the art based on this disclosure. These are intended to be comprehended as within the scope of this invention.

Having thus described the invention, what it is desired to claim and secure by Letters Patent is:

1. In an aqueous lubricating composition concentrate for lubricating continuously moving conveyor systems wherein said concentrate consists essentially of by weight of about 30 to about percent water, about 2 to 15 percent sequestering agent, about 2 to 30 percent anionic surface active agent, about 4 to 20 percent fatty acid soap selected from the group consisting of fatty acid alkali metal soap, fatty acid alkanol amine soap and fatty acid ammonia soap, zero to 20 percent coupling agent selected from the group consisting of propylene glycol, isopropyl alcohol and ethylene glyco], and about 2 to 10 percent nonionic surface active agent, the improvement comprising adding monostearyl acid phosphate to said concentrate in an amount from about 0.15 to about 1.75 weight percent of said concentrate whereby improved defoaming properties are obtained.

2. The concentrate according to claim 1 wherein the amount of monostearyl acid phosphate is from about k to about 1.5 weight percent.

3. The concentrate according to claim 1 wherein said fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to 30 weight percent along with an agent selected from the group consisting of alkali metal hydroxide, ammonium hydroxide and alkanolamines in amount sufficient to react with the fatty acid to produce the fatty acid soap.

4. A lubricating composition consisting essentially of the concentrate according to claim 1 and water in a volumetric proportion of concentrate to water of about 1:50 to about 1:500.

5. The lubricating composition according to claim 4 wherein said concentrate contains from about 2% to about 1.5 weight percent of monostearyl acid phosphate.

6. The lubricating composition according to claim 4 wherein said concentrate fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to about 30 weight percent along with an agent selected from the group consisting of alkali metal metal hydroxide, ammonium hydroxide and alkanolamines in an amount sufficient to react with the fatty acid to produce the fatty acid soap.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENTNO.: 5,860,521 DATED January l t, 1975 INVENTOR(S) Otto T. Ae 1i, Malachy E. Sorgenfrei and Harold L. onaway It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Signcd and Scalcd this second Day of Beulah-r1975 [SEAL] Arrest:

RUTH C. MASON C. IAISIIALL DANN Arresting Officer Commissioner ofParems and Tmdenwrks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2291066 *Jan 10, 1941Jul 28, 1942Tide Water Associated Oil CompLubricant
US3277001 *Jul 6, 1965Oct 4, 1966Union Oil CoAqueous lubricant
US3336225 *Jan 17, 1966Aug 15, 1967Dow Chemical CoMethod and composition for reducing friction on conveyors
US3399144 *Jan 4, 1966Aug 27, 1968Procter & GambleDefoaming agent
US3583914 *Jul 18, 1968Jun 8, 1971Basf Wyandotte CorpMicrobe control in food processing and related industries
US3657123 *Mar 23, 1970Apr 18, 1972Atlantic Richfield CoLubricant compositions
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4178260 *Jul 12, 1977Dec 11, 1979Exxon Research & Engineering Co.Ester based metal working lubricants
US4257902 *Jul 27, 1977Mar 24, 1981Singer & Hersch Industrial Development (Pty.) Ltd.Dispersions; for use in hydraulic systems, metal shaping operations and underground mining
US4274973 *Jun 22, 1979Jun 23, 1981The Diversey CorporationNeodecanoic acid
US4359393 *Mar 9, 1981Nov 16, 1982The Cincinnati Vulcan CompanyAn alkanolamine salt of a dimer or trimer acid, an aliphatic monoalcohol or carboxylic acid, and an alkyl ester of a fatty acid
US4384965 *Feb 5, 1981May 24, 1983Berol Kemi AbMethod for the mechanical working of metals and lubricant concentrate
US4392865 *Jan 16, 1980Jul 12, 1983Lanko, Inc.Hydrocarbon-water fuels, emulsions, slurries and other particulate mixtures
US4491607 *Nov 23, 1981Jan 1, 1985Park Chemical CompanyMold release agents and means of application
US4602060 *Apr 25, 1983Jul 22, 1986Frekote, Inc.Carboxy-terminated silicon, metal salt of long chain acid/
US4769162 *Jun 12, 1987Sep 6, 1988Diversey Wyandotte CorporationConveyor lubricant comprising an anionic surfactant and a water-soluble aluminum salt
US4784795 *Dec 27, 1985Nov 15, 1988Dow Corning GmbhLubricant composition for water fittings
US4929375 *Jul 14, 1988May 29, 1990Diversey CorporationConveyor lubricant containing alkyl amine coupling agents
US5002675 *Jul 13, 1989Mar 26, 1991Randisi Sal ACable pulling compounds
US5009801 *Aug 25, 1989Apr 23, 1991Diversey CorporationCompositions for preventing stress cracks in poly(alkylene terephthalate) articles and methods of use therefor
US5062978 *Nov 29, 1989Nov 5, 1991Unilever Patent Holdings BvAqueous lubricant solutions based on fatty alkyl amines
US5062979 *Sep 13, 1989Nov 5, 1991Ecolab Inc.Soap free conveyor lubricant that gives clear solutions in water comprising alkoxyphosphate ester, alkyl benzene sulfonate and carboxylic acid
US5073280 *Jun 8, 1990Dec 17, 1991Diversey CorporationComposition for inhibiting stress cracks in plastic articles and methods of use therefor
US5080814 *May 8, 1990Jan 14, 1992Henkel CorporationEthoxylated Organic Compounds
US5174914 *Jan 16, 1991Dec 29, 1992Ecolab Inc.Conveyor lubricant composition having superior compatibility with synthetic plastic containers
US5182035 *Jan 16, 1991Jan 26, 1993Ecolab Inc.Antimicrobial lubricant composition containing a diamine acetate
US5202037 *Oct 2, 1989Apr 13, 1993Diversey CorporationHigh solids lubricant
US5244589 *Jan 16, 1991Sep 14, 1993Ecolab Inc.Food processing equipment
US5279677 *Jun 17, 1991Jan 18, 1994Coral International, Inc.Treating aluminum, or alloy thereof; containing a sulfosuccinate salt and surfactant
US5352376 *Feb 19, 1993Oct 4, 1994Ecolab Inc.Alkylpolyglycoside with one to three reducing saccharide units and long chain fatty alkyl group
US5441654 *Jun 28, 1993Aug 15, 1995Diversey Corp., A Corp. Of CanadaComposition for inhibiting stress cracks in plastic articles and methods of use therefor
US5462681 *Nov 12, 1993Oct 31, 1995Ecolab, Inc.Particulate suspending antimicrobial additives
US5559087 *Jun 28, 1994Sep 24, 1996Ecolab Inc.Thermoplastic compatible lubricant for plastic conveyor systems
US5641734 *Jul 20, 1995Jun 24, 1997The Lubrizol CorporationBiodegradable chain bar lubricant composition for chain saws
US5723418 *May 31, 1996Mar 3, 1998Ecolab Inc.Polycarboxylic acid corrosion inhibitor
US5863874 *Sep 10, 1997Jan 26, 1999Ecolab Inc.Alkyl ether amine conveyor lubricant
US5925601 *Oct 13, 1998Jul 20, 1999Ecolab Inc.Fatty amide ethoxylate phosphate ester conveyor lubricant
US5932526 *Jun 20, 1997Aug 3, 1999Ecolab, Inc.Alkaline ether amine conveyor lubricant
US6247478Nov 15, 1996Jun 19, 2001Ecolab Inc.First concentrate comprising: nonionic surfactant having a cloud point of 5 to 60 degrees c.; and an acid; second concentrate comprising a builder
US6372698 *Feb 22, 1993Apr 16, 2002Henkel-Ecolab Gmbh & Co. OhgLubricant for chain conveyor belts and its use
US6525005May 26, 2000Feb 25, 2003Ecolab Inc.Alkyl alkoxylated phosphate ester; alkyl quaternary ammonium antimicrobial agent; extreme pressure additive; water; neutralizing agent
US6554005Sep 25, 2000Apr 29, 2003Ecolab Inc.Cleaning method for polyethylene terephthalate containers
US6653263Sep 6, 2000Nov 25, 2003Ecolab Inc.Fluorine-containing lubricants
US6667283Jan 15, 1999Dec 23, 2003Ecolab Inc.Antimicrobial, high load bearing conveyor lubricant
US6677280Dec 6, 2000Jan 13, 2004Ecolab Gmbh & Co. OhgTransport of containers on conveyors
US6756347Jan 8, 1999Jun 29, 2004Ecolab Inc.Antimicrobial, beverage compatible conveyor lubricant
US6809068Sep 6, 2000Oct 26, 2004Ecolab Inc.Use of lubricants based on polysiloxanes
US6855676Feb 11, 2002Feb 15, 2005Ecolab., Inc.Mixture of polyalkylene oxide and fatty acid; applying to belt, track
US6962897Jan 30, 2003Nov 8, 2005Ecolab Inc.Food conveyors; microbiocides
US6967189Nov 27, 2002Nov 22, 2005Ecolab Inc.Buffered lubricant for conveyor system
US7125827Aug 13, 2003Oct 24, 2006Ecolab Inc.Lubricant composition having a fatty acid, a polyalkylene glycol polymer, and an anionic surfactant, wherein the lubricant is for a conveyor system
USRE33124 *Sep 12, 1986Dec 5, 1989Singer and Hersch Industrial Development (PTY) Ltd.Oil-soluble sulfur- or chlorosulfur-containing additive in stable aqueous dispersion with polymeric thickener; extreme pressure lubricants
EP0486656A1 *Jun 7, 1991May 27, 1992Diversey CorpComposition for inhibiting stress cracks in plastic articles and methods of use therefor.
EP1842898A1 *Jun 20, 2000Oct 10, 2007JohnsonDiversey, Inc., Renee J. RymarzLubricant composition for lubricating a conveyor belt
WO1981000014A1 *Jun 19, 1980Jan 8, 1981Diversey CorpImproved aqueous soap-based lubricant composition
WO1984004275A1 *Apr 24, 1984Nov 8, 1984Frekote IncTwo-component mold release system and method
WO1999035221A1 *Sep 18, 1998Jul 15, 1999Ecolab IncAntimicrobial, beverage compatible conveyor lubricant
WO2001042097A2 *Nov 30, 2000Jun 14, 2001Henkel Ecolab Gmbh & Co OhgTransport of drums on transport installations
WO2011008131A2 *Jul 8, 2010Jan 20, 2011Naumov Vladimir NikolaevichWater-soluble conveyor lubricant
Legal Events
DateCodeEventDescription
Jan 28, 1982ASAssignment
Owner name: DIVERSEY WYANDOTTE CORPORATION, 1532 BIDDLE AVE.,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125
Effective date: 19820107
Owner name: DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE., MI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125