Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3860771 A
Publication typeGrant
Publication dateJan 14, 1975
Filing dateOct 29, 1973
Priority dateOct 29, 1973
Also published asDE2448587A1, DE2448587B2, DE7434187U
Publication numberUS 3860771 A, US 3860771A, US-A-3860771, US3860771 A, US3860771A
InventorsLynn William J, Seeger Richard E
Original AssigneeChomerics Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Keyboard switch assembly with dome shaped actuator having associated underlying contactor means
US 3860771 A
Abstract
A keyboard device utilizing a conductive plastic material layer which contacts circuit elements or pathways, the improvement of snapable plastic means raised on a pedestal through which it snaps through center to provide a feel of completion of circuit contact to the user.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [19] Lynn et al.

[ Jan. 14, 1975 l l KEYBOARD SWITCH ASSEMBLY WITH DOME SHAPED ACTUATOR HAVING ASSOCIATED UNDERLYING CONTACTOR MEANS 175] Inventors: William ,1. Lynn, (lrovcland;

Richard E. Seeger, Topsficld, both of Mass.

173] Assignce: Chomerics, Inc., Woburn, Mass.

[22] Filed: Oct. 29, 1973 [21] Appl. N0.: 410,329

[52] U.S. Cl. 200/5 A, 200/76, 200/1 R, 200/5 R, 200/159 B, 200/262, ZOO/265,

[51] Int. Cl. Hl h 13/70, HOlh 1/02 [58] Field of Search 200/1 R, R, 5 A, 16 A, ZOO/DIG. l, 67 DA, 67 DB, 76, 159 R, 159

A, 159 B, 166 C, 166 PC, 172 R, 245,

[56] References Cited UNITED STATES PATENTS 3,246,112 4/1966 Adams et a1 200/302 3,317,698 5/1967 Mansfield 200/302 X 3,603,756 9/1971 Carpentier et a1 200/76 X 3,619,530 11/1971 Vincent et al. ..200/67 DBX 3,643,041 2/1972 Jackson ..200/5 DIG. 1X 3,699,294 /1972 Sudduth ..200/5 AX 3,721,778 3/1973 Seeger, Jr. et a1 ..200/5 AX 3,743,797 7/1973 Hoffman ZOO/5 R X 3,796,843 3/1974 Durkcc ct al. 2011/5 A FOREIGN PATENTS OR APPLICATIONS 1,806,241 8/1969 Germany 2110/) 11 OTHER PUBLICATIONS IBM Technical Disclosure Bulletin, Kuntzlcman, Keyboard Transducer, Vol. 7, No. 12, p. 1170, May

1965. IBM Technical Disclosure Bulletin, Sedaris et al., Elastic Diaphragm Switch, Vol. 14, No. 3, p. 767, August 1971. Flex Key Data Bulletin DK-l, Flex Key Integrated Decimal Keyboard Units, published 1970.

Primary Examiner-James R, Scott Attorney, Agent, or Firm-Dike, Bronstein, Roberts, Cushman & Pfund [57] ABSTRACT A keyboard device utilizing a conductive plastic material layer which contacts circuit elements or pathways, the improvement of snapable plastic means raised on a pedestal through which it snaps through center to provide a feel of completion of circuit contact to the user.

46 Claims, 23 Drawing Figures &

PATENTED JAN 1 M975 3.860.771 SHEEI 10F 3 FIG.I6

FAIENTEDJANMBB 3.860.771

SHEET 20F 3 0 0 (11111 O C) O (MGM) O 0 C) C) C) O 0 C) C) Q 0 C) G G KEYBOARD SWITCH ASSEMBLY WITI-IDOME SHAPED ACTUATOR HAVING ASSOCIATED UNDERLYING CONTACTOR MEANS BACKGROUND OF THE DISCLOSURE This invention is directed a a new, improved and inexpensive method to manufacture (in comparison with the prior art) keyboard devices whichinclude new and improved means to effect the users sense of feel so as to provide the user with confidence that electrical connection has been made.

Within the last few years the personal calculator market has mushroomed with the result'that many manufacturers have entered the business. With numerous manufacturers competing for the same market, the price of culculators have begun to decrease rapidly.

Accordingly, as prices fell, calculator manufacturers looked for ways to cut their manufacturing and component part costs.

In order to attempt to satisfy the cost reduction efforts of calculator manufacturers, keyboard manufacturers also had todevelop new and improved techniques to reduce their-manufacturing and parts costs.

The present invention represents the results of one such effort in cost reduction and provides less costly to manufacture keyboards in comparison with other keyboards previously and presently offered by the assignee of this application. For example, see U.S. Pat. Nos. 3,705,276, 3,721,778, 3,780,237, and 3,773,998, and application on file in the U.S. Patent Office and assigned to Chomerics, Inc.

Attention is also directed to U.S. Pat. Nos. 3,699,294, 3,707,609, 3,120,583, 3,600,528, 3,594,684 and 3,476,972 among many others which disclose other keyboard configurations.

BRIEF SUMMARY OF THE DISCLOSURE This invention is directed to a keyboard in various configurations for providing an encoded signal representative of key depression. As part of this keyboard there is provided a resilient and flexible material layer in which there is provided a plurality of raised buttons, e.g., a cylindrical pedestal having straight or sloped walls topped or capped by a portion of a curved surface e.g., a portion of a sphere.

In the preferred embodiment, indicia, e.g., numbers, letters, or symbols are printed on the curved surfaces so that they may be seen by the user. In the preferrred embodiment, the raised protrusions not only carry the indicia of the keyboard but also act and feel like snap acting keys when depressed although they are many times less costly to manufacture.

In other configurations the sheet having the plurality of protrusions is used in conjunction with a key to provide the key or button user with the snap action indicative of contact closure.

As another feature of this invention, it has been determined that a better snap action is obtained if a separator or snap through layer of material (insulator) having a plurality of holes or openings (about the same size as the bottom of the pedestal) is positioned immediately below the layer carrying the protrusions with each opening in register with a different one of the pedestal bottoms.

It has been found that with the separator layer, the curved surfaces snap better through the center upon depression and feels more like the depression of a key.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. lis a top view of a keyboard according to this disclosure with parts broken away;

FIG. 2 is a top view illustrating a plurality of snap action protrusions in a sheet of the keyboard;

FIG. 3 is a top view of the first and second separator sheet of the device of FIG. 1;

FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

FIG. 5 is a sectional view taken along line 5-5 in FIG. 1 illustrating the moving parts of the keyboard before being depressed;

FIG. 6 is a sectional view of the keyboard illustrating the moving parts of the keyboard after being depressed;

FIG. 7 illustrates in a sectional view taken similarly to FIG. 5 another embodiment of the keyboard;

FIG. 8 illustrates in a sectional view taken similarly to FIG. 5 another embodiment of the keyboard;

FIG. 9 illustrates in a bottom view the contactor means of the keyboard of FIG. 8;

FIG. 10 is a sectional view taken along line 10-10 of FIG. 9;

FIG. 11 illustrates in a bottom view the sheet with protrusions supporting an isolated layer of electrically conductive contactor means;

FIG. 12 is a sectional view taken along line 12-12 of FIG. 11;

FIG. 13 is a sectional view taken similarly to FIG. 5 illustrating the contactor means and sheet shown in FIGS. 11 and 12;

FIG. 14 is a bottom view of the sheet with protrusions covered by a layer of electrically conductive contactor means;

FIG. 15 is a sectional view taken along line 15-15 of FIG. 14;

FIG. 16 is a sectional view similar to FIG. 5 illustrat- I ing the coated sheet of FIGS. 14 and 15 in the keyboard;

FIG. 17 is a bottom view of the sheet with protrusions covered by a layer of conductive circuitry or circuit pattern for making contact with contact elements of a circuit board;

FIG. 18 is a sectional view taken along line 18-18 of FIG. 17;

FIG. 19 illustrates in a sectional view a modified keyboard using a button to depress the protrusions of the sheet;

FIGS. 20 and 21 illustrates in a top and bottom view an apparatus suitable for forming the protrusions in the sheet of the FIGS;

FIG. 22 illustrates the protrusion being formed in the plastic sheet; and

FIG. 23 illustrates in a sectional view similar to FIG. 5, a keyboard constructed of a sheet means having a plurality of curved protrusions without a pedestal.

DETAILED DESCRIPTION OF THE DISCLOSURE Reference should now be had to FIGS. l-6 for a description of a keyboard embodying the invention. In these FIGS. a keyboard is disclosed as having a frame 30 e.g., of a plastic, e.g., polysterene; polypropylene or other high impact plastics well known in the art.

The frame is open at the bottom and is provided with a plurality of windows or openings 31 and a plurality of rods 32 extending downwardly. Heads 32a may be formed by heat depending on the plastic used as shown in FIGS. 5 and 6 to hold the layers to be described of the keyboard together as a unit. Alternatively the rods may be threaded and nuts may be used to do likewise.

Positioned below the frame top is a layer 35 preferably of a flexible and resilient plastic having a plurality of raised protrusions formed with a curved snapable portion 35a capping or on top of a pedestal 35 preferably cylindrically shaped although obviously its shape can vary somewhat so long as its side walls can easily spread outwardly as the snapable portions pass through the center (see FIG. 6).

The plastic layer 35 may be of thermoplastic or thermosetting flexible and resilient plastic materials such'as polyester e.g. Mylar, polypropylene, polyethelene, silicone rubbers, polyurethane, etc.

Positioned below the snapable layer there is preferably provided a snap through layer 36 e.g., of insulator material such as Mylar, having a plurality of windows or holes 36a of about the same size as the pedestal 35b bottom. 1

The snap through layer is used to provide the total feel of snap through by giving the snapable portion 35a enough room to fully invert. It should be understood that the snap through layer 35 is not necessary but is preferred to provide the best tactile feel in most cases.

Below the snap through layer is an elastomeric conductive plastic layer such as of silicone rubber filled with conductive particles such as silver as shown in US. Pat. No. 3,721,778 or in the aforementioned applications.

Other well known conductive particles such as carbon, gold, or composites thereof may be used as is well known in the art.

Positioned below the conductive plastic layer 37 is an insulator material separator layer 38 e.g., Mylar, polyethylene having the same configuration as the layer 36 in FIG. 3 and also having a plurality of holes or windows 38a which the elastomeric conductive layer 37 may be forced.

At 49 there is shown a typical circuit board e.g., of Bakelite having a conductive pattern 39 supported thereby. The conductive pattern maybe etched copper or a conductive ink.

In this embodiments shown in FIG. 5 connecting pins are shown at 41 and 42 for making electrical contact with the conductive plastic layer 37 as well as the circuit pattern 39.

In FIG. 6 there is shown pressure (by a finger) being applied to the snapable portion 35a and forcing it to snap through center to force the conductive plastic layer'37 through the separator 38 and into contact with one or more elements or pathways of the circuit pattern 39.

Various circuit patterns aforementioned US Pat. 3,721,778.

Upon release and removal of the finger, the protrusions comprising the snapable members 35a.and pedestal 35b return to the unflexed position shown in FIG. 5 with the electrically conductive contactor or conductive plastic layer 37 also returning as shown.

Indicia such as numbers may be applied to the snapable portion 35aby printing techniques well known in the art or even paste-on numbers may be applied thereto. Thus the snapable members look like keys to the user. In practice'it has been found that the layer with protrusions may comprise a 5 mil sheet of Mylar may be observed in the Nos. 3,705,276 and with the pedestal height t,, being 10 mils and the curved portion height being 21 mils and the pedestal bottom having a diameter of about inch. The curved portion is a portion of a sphere-having a 700 mil radius.

In FIG. 7 there is shown an alternate embodiment of the disclosure in that a composite contactor is formed of an elastomeric non-electrically conductive layer and a thin flexible conductive layer such as of a polyamide filled or loaded withconductive particles.

The elastomeric layer may be rubber such as silicone, nitrile, etc., and the flexible conductive layer may be of a polyamide adhesive e.g., Versalon l 140 by General Electric or others such as polyester, e.g., Mylar, filled with silver particles e.g., 20 to 40 volume percent. The thickness of the elastomeric layer may vary between 5 to 200 mils with about 20 mils being convenient and the flexible conductive layer 51 is preferably between 5 microns to about 2 mil in thickness with about 10 to 25 microns being preferred.

Since the remaining parts in this embodiment is the same, the same numbers designate like parts. In FIGS. 8-10 there is shown still a further embodiment with like parts being given like numeral designations.

In this embodiment the electrical contact is made between portions of a conductivepattern or conductive pathways 61 and portions or elements of the circuit board supported circuit pattern 39.

The conductive pattern is supported by an elastomeric layer 60. The pattern 61 may be sprayed on through a stencil to form the pattern 61.

The flexible conductive plastic material used for the layer 61 is the same as the material used for the layer 51'and the elastomeric layer is also of the same material as layer 50.

FIGS. 11-13 illustrate yet another embodiment of the invention. In this embodiment as well as the embodiments shown in FIGS. 14-18, the elastomeric or flexible layers (conductive or non-conductive) as shown in FIGs. l-10 are not used.

In FIGS. I l-l3 the layer 3'5supports layers of flexible electrically conductive plastic material on the underside of the snapable members-35a. The layers 70 adhere thereto for movement with the snapable portions 35a. The flexible conductive plastic material may comprise a thin plastics such as epoxies, e.g., Nazdar Co. BE-l70 epoxy; polyesters, e.g., General Formulation, Div. of General Research Inc. No. 140-1303. In addition adhesives may also be used to provide adherence of the layer 70 to the layer 35 with the above or other flexible conductive plastics.

The layer 70 is filled with electrically conductive particles such as silver, gold, carbon, etc., and in a volume percent of between 10 to percent with 20 to 40 volume percent being preferred.

The thickness of the layer 70 is preferably 5 microns to 1 mil with 5 microns to 12 microns being preferred. The layer 70 preferably has a volume resistivity preferably less than l0 ohm cm, more preferably below I ohm cm, and most preferably below .5 ohm cm. The silver particles may be silflake as is well known in the art. r

The flexible conductive plastic layer 70 may comprise other materials such as polycarbonates (e.g., Lexan), epoxy (e.g., Corvel) polyacetate, polystyrine modified or unmodified by a plastisizer to obtain the desired flexibility to flex with the snapable members 35a and 35b. 1

A suitable formulation for the conductive layer 70 may comprise the mixture of parts by'weight of the 'BE-170 epoxy above, 80 parts by weight of Silflake 135. The formulation is then preferably applied to the layer 35 before forming the protrusions as in FIGS. 20-22. The layer 70 may be applied to the layer 35 by knife coating it, silkscreening it or spraying it through a mesh or stencil. Thereafter the layer 70 is cured in an oven as is conventional in the art.

The protrusions 35a are now preferably formed. Alternatively, the layer 70 may be applied after the protrusions 35a are formed. Organic solvents e.g., such as NAZ DARS 70-182 Retarder Thinner conventional in the art may be added if desired to permit easy application of the layer 70.

As may be seen in this embodiment of FIG. 13 the separator layer 38 is removed and the conductive pattern or elements 39 are separated into isolated elements 39a and 39b with contact pins 42a and 42b being coupled to them as shown.

Electrical contact is made between the layers 39a and 39b by the layer 70 making contact with both after being depressed.

FIGS. 14-16 illustrate -a further modification and in this embodiment a layer of flexible conductive plastic material of the same composition and thickness as layer 70 is supported by and adheres to the layer 35.

Depression of the snapable member 35a again causes contact with the board 40 supported conductive circuit pattern 39.

FIGS. 17 and 18 illustrate still another embodiment wherein a flexible conductive plastic circuit pattern 85 is supported by and adheres to the plastic layer 35. A pin is provided at 81 to make electrical contact with a portion of the circuit pattern 85.

Thus the configuration of FIGS. 17 and 18 provides further advantages in savings of material.

The material 85 is again the same as the flexible material 70 in composition and thickness.

FIG. 19 illustrates a device such as in FIG. 1 using a button 91 supported in a modified frame 90 for depressing the snapable member 35a.

In this configuration, the button is merely the extension of a users finger. The operation of this device is the same as heretofore described. Obviously the other modifications of FIGS. 7-18 may be included in FIG. 19. In this FIG. like numbers are again used to designate the same parts as shown in FIGS. l-6.

In order to fabricate the flexible layer 35 protrusions comprising the pedestal 35b and the curved portion 35a, the dies 95 and 96 shown in FIGS. 20-22 may be used. In this configuration shaped rods 95a are provided for mating with cavities 96a.

The plastic material 35 e.g., Mylar is placed between the metal e.g., steel dies (see FIG. 22) and pressure and heat is applied for a preset amout of time to form the protrusions. In practice it has been found that with a Mylar layer 35 of a 5 mil thickness, a temperature of about 210 F with 3,000 lbs. pressure for 15 seconds is adequate to form the about 34; inch wide pedestal (bottom opening) and curved portion.

In FIG. 23 there is shown a device similar to that shown in FIG. 5 except that in this case the sheet 35 is provided with protrusions having only curved portions 350 and no pedestal 35b. In this case the snap through layer 36 if used is preferably made thicker to compensate for the lack of a pedestal. Although this configuration is usable, the protrusions with a pedestal 3511 are much preferred because they give a better tactile or key like feel under depression. Like numbers used herein designate like parts as in FIG. 5. The modifications shown in FIGS. 7-19 may also be included in the structure of FIG. 23.

We claim:

1. A keyboard assembly comprising first means for supporting an electrically conductive contact means, electrically conductive contactor means positioned over but out of electrical contact with said contact means, support means for positioning said conductive contact or means over but out of electrical contact with said contact means a flexible and resilient plastic sheet means positioned above said conductive contactor means and having formed therein a plurality of raised protrusions positioned at the center thereof farthest from said conductive contact means, said protrusions each comprising a pedestal and a curved surface capping said pedestal, said curved surface being depressable at its center under pressure below the pedestal to push said conductive contactor means against said contact means and snapping through the center upon depression sufficient to cause electrical contact between said conductive contactor means and said contact means, and said curved surface recovering back through the center after pressure is withdrawn therefrom and a snap through layer positioned between said sheet means and said conductive contact or means, said snap through layer having a plurality of openings therethrough in register with said protrusions, said protrusions extending into said openings upon depression throughcenter sufficient to cause contact between said contactor means and contact means.

2. A keyboard according to claim 1, in which said support means comprises a separator layer is positioned between said contactor means and contact means, said separator layer having a plurality of openings each in register with a different one of said protrusions and each in exposing portions of said contact means for contact with said contactor means.

3. A keyboard according to claim 2 in which said snap through layer which is positioned between said contactor means and said sheet means has its plurality of openings each in register with a different one of said protrusions and with a different one of said openings of said separator layer.

4. A keyboard according to claim 3 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said buttons positioned to depress a different one of said protrusions, and wherein means is provided for supporting said button assembly over said sheet means and its protrusions.

5. A keyboard according to claim 4 in which the conductive contactor means comprises an elastomeric conductive layer.

10. A keyboard according toclaim 9 in which the pedestal is cylindrical in shape.

11. In a keyboard according to claim 1 including a plurality of spring loaded buttons for depressing said protrusions, and means for supporting said buttons oversaid protrusions.

12. A keyboard assembly comprising first means for supporting. an electrically conductive contact'means, electrically conductive contactor means positioned above but out of electrical contact with said electrically conductive contact means, a plastic sheet means positioned above said conductive contactor means and having formed therein a'plurality of raised flexible and resilient protrusions positioned farthest at their centers from said conductive contact means, said protrusions each comprising a pedestal and a curved surface capping said pedestal, said curved surface being'depressable under pressure below said pedestal to push said conductive contactor means against said contact means and snapping through center upon depression sufficient to cause electrical contact between said conductive contactor means and said contact means, and said curved surface recovering back through the center after pressure is withdrawn therefrom and said electrically conductive contactor means supported on the under surface of said curved surface.

13. A keyboard assembly according to claim 12 in which a snap through layer is positioned between said sheet means and said conductive contact means, said snap through layer having a plurality of openings therethrough in register with said protrusions, said protrusions extending into said openings upon depression sufficient to cause contact between said contactor and contact means.

14. A keyboard according to claim 13 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said protrusions by a different one of said buttons, and means for supporting said button assembly over said sheet and its protrusions.

15. A keyboard assembly according to claim 13 in which the conductive contactormeans extends over the sheet means and is supported thereby for movement with theunder surface of the pedestal and the curved surface.

]6 A keyboard assembly according to claim 13 in which the conductive contactor means is in the shape of a circuit pattern supported by the sheet means with portions thereof extending into the protrusions and supported by the under surface of the pedestal and the curved surface for movement therewith.

17. A keyboard according to claim 12 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said buttons positioned to depress a different one of said protrusions, and means for supporting said button assembly over said sheet and its protrusions.

18. A keyboard assembly according to claim 12 in which the flexible plastic conductive layer is confined to the under surface of said curved surface.

19. A keyboard assembly accord-ing to claim 12 including indicia formed in, on, or supported by said protrusion curved surface.

20. A keyboard assembly comprising first means for supporting an electrically conductive contact means,

electrically conductive contactor means positioned above but out of electrical contact with said contact means a plastic sheet means positioned above said con ductive contactor means and having therein a plurality of flexible and resilient raised protrusions positioned farthest'from said conductive contact means said protrusions each comprising a curved surface which at its uppermost point is farthest from said contact means said curved surface being depressable under pressure to push said conductive contactor. means against said contact means and snapping through'the center and inverting upon depression sufficient to cause electrical contact between said conductivecontactor means and said contact means, said surved surface recovering back through the center after pressure is withdrawn therefrom, said electrically conductive contact means supported on the under surface of said curved surface.

21. A keyboard assembly according to claim 20 in which a snap through layer is positioned between said sheet means and said conductive contact means, said snap through layer having a plurality of openings therethrough in register with said protrusions, said protrusions extending into said openings upon depression sufficient to'cause contact between said contactor and contact means.

22. A keyboard according to claim 21 in which said protrusions also include a substantially cylindrical pedestal which supports said curved surface on the top thereof.

23. A keyboard according to claim 22 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said buttons positioned to depress a different one of said protrusions, and means for supporting said button assembly above said protrusions.

24. A keyboard according to claim 22 in which the conductive contactor means comprises a flexible insulator filled with electrically conductive particles.

25. A keyboardaccording to claim 20 in which said protrusions also include a substantially cylindrical pedestal which supports said curved surface on the top thereof. V i

26. A keyboard according to claim 20 in which the conductive contactor comprises an elasto meric insulator material filled with electrically conductive particles.

27. A keyboard according to claim 20 in whichithe conductive contactor comprises a flexible plastic insulator material filled with electrically conductive particles.

28. A keyboard according to claim 20 in which the curved portion is a portion of a sphere.

29. In. a keyboard according to claim 20 including a plurality of spring loaded buttons for depressing said protrusions and means for supporting said buttons over said protrusions. g

30. A keyboard assembly comprising a circuit board for supporting an electrically conductive circuit having contact means, electrically conductive contactor means positioned above but out of electrical contact with said contact means, a sheet means of insulator plastic material positioned above saidconductive contactor means and having therein a plurality of raised protrusions positioned farthest from said conductive contact means, said protrusions each comprising a curved surface, said curved surface being depressable under pressure to push said conductive contactor means against said contact means and snapping through the center and inverting upon depression sufficient to cause electrical contact between said conductive contactor means and said contact means, and said curved surface recovering back through the center after pressure is withdrawn therefrom, said electrically conductive contactor means supported on the under surface of said curved surface.

31. A keyboard assembly according to claim 30 in which a snap through layer is positioned between said sheet means and said conductive contact means, said layer having a plurality of openings therethrough in register with said protrusions, said protrusions extending into said openings upon depression sufficient to cause contact between said contactor and contact means.

32. A keyboard according to claim 31 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said protrusions by a different one of said buttons, and means for supporting said buttons over said protrusions.

33. A keyboard according to claim 30 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said buttons positioned to depress a different one of said protrusions, and means for supporting said buttons over said protrusions.

34. A keyboard assembly according to claim 30 in which the contactor means comprises a flexible plastic conductive material which extends over the sheet means and is supported thereby on the under surface thereof.

35. A keyboard assembly according to claim 30 in which the contactor means comprises flexible plastic conductive material confined to the curved surface.

36. A keyboard assembly according to claim 30 in which the contactor means comprises flexible plastic conductive material in the shape of a circuit pattern is supported by the under surface of the sheet means with portions thereof supported by the curved surface for movement therewith.

37. A keyboard assembly according to claim 30 including indicia formed in, on, or supported by said protrusion curved surface.

38. A keyboard assembly comprising first means for supporting electrically conductive contact means, an insulator spacer having a plurality of openings in register with selected portions of said contact means, electrically conductive contactor means positioned over said insulator spacer, a snap through insulator material layer positioned over said electrically conductive contactor means and having openings therethrough in register with the opening of said spacer, and a sheet means of insulator plastic material positioned over said snap through layer and having a plurality of raised protrusions in register with the openings of the snap through layer and comprising a curved surface, said curved surface being depressable and inverting under pressure to extend through the openings of said snap through layer to engage said contactor means to force same through said openings of the spacer to electrically contact the contact means.

39. A keyboard assembly according to claim 38 in which a spring loaded button assembly comprising a plurality of buttons is provided to depress said protrusions, a different one of said protrusions by a different one of said buttons, and means for supporting said buttons over said protrusions.

40. A keyboard assembly comprising support means, electrically conductive contact means supported by said support means, an insulator material snap through layer having one side thereof positioned over said conductive contact means, said snap through layer having a plurality of openings therethrough in register with portions of said electrically conductive contact means, a sheet of flexible and resilient insulator plastic material positioned on the opposite side of said snap through layer, said sheet having formed therein a plurality of raised protrusions which extend above said sheet and away from said snap through layer, each of said protrusions comprising a curved surface and each of said protrusions in register with a different one of said openings of said snap through layer, electrically conductive circuit pattern means adhered to the side of the sheet closest to said snap through layer and having portions thereof extending into the protrusions and adhering to the under surface of the curved surface and providing contactor means so that upon depression of said protrusions said protrusions snap through center and invert into said openings of said snap through layer and position said contactor means against said contact means.

41. A keyboard assembly according to claim 40 in which said protrusions each comprises a pedestal supporting said curved surface on the top thereof and in which the circuit pattern means also adheres to the under surface of the pedestal.

42. A keyboard assembly according to claim 41 in which said circuit pattern is of a flexible conductive plastic material.

43. A keyboard assembly according to claim 42 in which there is provided a plurality of buttons for depressing said curved surface, and in which there is provided means for supporting said buttons over different ones of said protrusions to depress said curved surface thereof.

44. A keyboard assembly according to claim 40 in which said circuit pattern is of a flexible conductive plastic material.

45. A keyboard assembly according to claim 44 in which there is provided a plurality of buttons for depressing said curved surface, and in which there is provided means for supporting said buttons over different ones of said protrusions to depress said curved surface thereof. 4

46. A keyboard assembly according to claim 1 including indicia formed in, on, or supported by said protrusion curved surface.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,860,771

DATED January 14, 1975 INVENTOR( William J. Lynn and Richard E. Seeger it is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:

Claim 6, line 56 "claim 3" should be -claim 4-- Claim 15, line 42 "claim 13 should be --claim 14-- 9 Signed and Scaled this sixteenth D3) Of September 1975 [SEAL] Arrest:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner uj'iarenrs and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3246112 *Apr 6, 1964Apr 12, 1966Donald R AdamsPolypropylene diaphragm assemblies
US3317698 *Mar 11, 1966May 2, 1967Nichols Engineering IncSwitch including sealing and shielding means therefor
US3603756 *Jan 29, 1970Sep 7, 1971Sperry Rand CorpSnap action switch
US3619530 *Apr 30, 1970Nov 9, 1971Gen Motors CorpDoorjamb switch
US3643041 *Dec 30, 1970Feb 15, 1972Unidynamics PhoenixPushbutton diaphragm switch with improved dimple actuator and/or capacitance-type switch contact structure
US3699294 *May 18, 1971Oct 17, 1972Flex Key CorpKeyboard, digital coding, switch for digital logic, and low power detector switches
US3721778 *Jun 21, 1971Mar 20, 1973Chomerics IncKeyboard switch assembly with improved operator and contact structure
US3743797 *Aug 30, 1971Jul 3, 1973Bell Telephone Labor IncStroke coded keyboard switch assembly
US3796843 *Jan 2, 1973Mar 12, 1974Bomar Instr CorpCalculator keyboard switch with disc spring contact and printed circuit board
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3917917 *Aug 22, 1974Nov 4, 1975Alps Electric Co LtdKeyboard pushbutton switch assembly having multilayer contact and circuit structure
US3947390 *Sep 23, 1974Mar 30, 1976Xerox CorporationArch shaped snap-type switch contact
US3959610 *Dec 13, 1974May 25, 1976Motorola, Inc.Hermetically sealed keyboard type assembly with elastomeric electrical connecting link between switch and component modules
US3971902 *Mar 21, 1975Jul 27, 1976Amp IncorporatedKeyboard switch assembly having one piece plural pushbutton actuator and resilient mounting structure for plural cantilever beam contacts
US3978297 *Mar 31, 1975Aug 31, 1976Chomerics, Inc.Keyboard switch assembly with improved pushbutton and associated double snap acting actuator/contactor structure
US3988551 *Apr 3, 1975Oct 26, 1976Magic Dot, Inc.Membrane keyboard apparatus having common apertured electrode, aperture inserted electrodes and conductive bubble contactors
US3995126 *Apr 3, 1975Nov 30, 1976Magic Dot, Inc.Membrane keyboard apparatus
US3996430 *May 2, 1975Dec 7, 1976Preh Elektrofeinmechanische WerkeKeyboard switch assembly having multilayer printed circuit structure
US4005293 *Nov 29, 1974Jan 25, 1977Texas Instruments IncorporatedPushbutton keyboard switch assembly having individual concave-convex contacts integrally attached to conductor strips
US4017697 *Sep 15, 1975Apr 12, 1977Globe-Union Inc.Keyboard membrane switch having threshold force structure
US4021630 *Apr 25, 1975May 3, 1977Neomed IncorporatedHermetically sealed resilient contact switch having surgical applications
US4022993 *Jun 9, 1975May 10, 1977Litton Systems, Inc.Switch assembly having electrically illuminated character display devices between transparent actuators and switch arrays
US4028509 *Aug 29, 1975Jun 7, 1977Hughes Aircraft CompanySimplified tabulator keyboard assembly for use in watch/calculator having transparent foldable flexible printed circuit board with contacts and actuator indicia
US4033030 *Mar 15, 1976Jul 5, 1977Mohawk Data Sciences CorporationMethod of manufacturing keyswitch assemblies
US4034176 *Jun 11, 1975Jul 5, 1977Magic Dot, Inc.Membrane switch apparatus
US4035593 *Oct 9, 1975Jul 12, 1977Northern Engraving Company, Inc.Flexible pressure sensitive switch actuator module adaptable to a keyboard surface having fixed contact array
US4045636 *Jan 28, 1976Aug 30, 1977Bowmar Instrument CorporationKeyboard switch assembly having printed circuit board with plural layer exposed contacts and undersurface jumper connections
US4046975 *Sep 22, 1975Sep 6, 1977Chomerics, Inc.Keyboard switch assembly having internal gas passages preformed in spacer member
US4055735 *Oct 23, 1975Oct 25, 1977Honeywell Information Systems Inc.Touch sensitive device
US4060703 *Nov 10, 1976Nov 29, 1977Everett Jr Seth LeroyKeyboard switch assembly with tactile feedback having illuminated laminated layers including opaque or transparent conductive layer
US4065649 *Jun 14, 1976Dec 27, 1977Lake Center IndustriesPressure sensitive matrix switch having apertured spacer with flexible double sided adhesive intermediate and channels optionally interposed between apertures
US4066851 *Jul 1, 1976Jan 3, 1978Chomerics, Inc.Keyboard switch assembly having foldable printed circuit board, integral spacer and preformed depression-type alignment fold
US4066860 *Sep 25, 1975Jan 3, 1978Sharp Kabushiki KaishaPushbutton switch key arrangement for keyboards having indicia
US4067102 *Mar 14, 1975Jan 10, 1978Essex International, Inc.Curable nonconductive resin
US4068369 *Aug 20, 1976Jan 17, 1978Texas Instruments IncorporatedMethod of making pushbutton keyboard system
US4070555 *Nov 28, 1975Jan 24, 1978The Alliance Manufacturing CompanySwitching mechanism
US4072004 *Feb 11, 1976Feb 7, 1978Kabushiki Kaisha Daini SeikoshaSwitching construction for a handy electronic device
US4081898 *May 5, 1976Apr 4, 1978Texas Instruments IncorporatedMethod of manufacturing an electronic calculator utilizing a flexible carrier
US4096364 *Feb 22, 1977Jun 20, 1978Chomerics, Inc.Keyboard switch assembly having flexible contact layer with snap initiator dome
US4117292 *Jun 10, 1977Sep 26, 1978Telaris Telecommunications, Inc.Dual spring actuator for keyboard switch assembly
US4118858 *Mar 11, 1977Oct 10, 1978Texas Instruments IncorporatedMethod of making an electronic calculator
US4127752 *Oct 13, 1977Nov 28, 1978Sheldahl, Inc.Tactile touch switch panel
US4127758 *Oct 13, 1977Nov 28, 1978Sheldahl, Inc.Tactile layer having hinged dome
US4128744 *Feb 22, 1977Dec 5, 1978Chomerics, Inc.Keyboard with concave and convex domes
US4129758 *Jun 10, 1977Dec 12, 1978Telaris Telecommunications, Inc.Keyboard switch assembly having flexible contact carrying member between contact carrying substrate and flexible, resilient, key-depressible bubble protrusions
US4145584 *Apr 25, 1977Mar 20, 1979Otterlei Jon LFlexible keyboard switch with integral spacer protrusions
US4153987 *Feb 14, 1977May 15, 1979Texas Instruments IncorporatedMethod for assembling keyboard
US4164634 *Jun 10, 1977Aug 14, 1979Telaris Telecommunications, Inc.Keyboard switch assembly with multiple isolated electrical engagement regions
US4180336 *Nov 25, 1977Dec 25, 1979Safeway Stores, IncorporatedTouch checking key tops for keyboard
US4180711 *Sep 14, 1977Dec 25, 1979Canon Kabushiki KaishaDesk-top calculator keyboard switch
US4181964 *Jul 2, 1975Jan 1, 1980Texas Instruments IncorporatedIntegrated electronics assembly on a plastic chassis
US4190748 *Jan 31, 1977Feb 26, 1980Rogers CorporationKeyboard switch assembly
US4194097 *Jun 12, 1978Mar 18, 1980Ncr CorporationMembrane keyboard apparatus with tactile feedback
US4194099 *Oct 25, 1977Mar 18, 1980W. H. Brady Co.Control panel overlay
US4204098 *Feb 25, 1977May 20, 1980Tektronix, Inc.Multiple circuit switch assembly
US4207443 *Aug 9, 1978Jun 10, 1980Mikado Precision Industries Ltd.Key-operated switch and an assemblage of such switches for electronic desk calculators or the like
US4216968 *Oct 11, 1978Aug 12, 1980David YeedaSelf-scoring multiple function dart game
US4228330 *Jul 10, 1978Oct 14, 1980Litton Systems, Inc.Touch panel mechanism
US4249054 *Feb 28, 1979Feb 3, 1981Sharp Kabushiki KaishaMetallic housing for an electronic apparatus with a flat keyboard
US4251734 *May 4, 1979Feb 17, 1981Chomerics, Inc.Publications cover with display device
US4254309 *Dec 18, 1978Mar 3, 1981Texas Instruments IncorporatedSnap-through characteristic keyboard switch
US4259551 *Mar 14, 1979Mar 31, 1981Citizen Watch Co., Ltd.External operation device for electronic timepieces
US4264477 *Feb 21, 1978Apr 28, 1981Chomerics, Inc.Keyboard
US4289940 *Nov 21, 1979Sep 15, 1981Shin-Etsu Polymer Company, Ltd.Keyboard switch covering pads
US4292510 *Mar 15, 1979Sep 29, 1981Manfred HildKeyboard for a miniature calculator
US4301378 *Nov 29, 1979Nov 17, 1981Motorola, Inc.Dual rate bi-directional switch
US4314116 *Jun 23, 1980Feb 2, 1982Rogers CorporationKeyboard switch with graphic overlay
US4314117 *Jul 24, 1980Feb 2, 1982Re-Al, Inc.Membrane contact switch
US4322587 *Dec 6, 1979Mar 30, 1982Rogers CorporationKeyboard device
US4345119 *Feb 19, 1981Aug 17, 1982Motorola Inc.Membrane switch assembly with improved spacer
US4354068 *Feb 4, 1980Oct 12, 1982Texas Instruments IncorporatedLong travel elastomer keyboard
US4362911 *Sep 17, 1980Dec 7, 1982Ncr CorporationMembrane keyboard switch assembly having selectable tactile properties
US4376239 *Apr 30, 1982Mar 8, 1983Allen-Bradley CompanyIndustrial membrane switch
US4390758 *Jan 16, 1981Jun 28, 1983Hendrickson Max SKey-actuated electrical lock
US4402131 *Nov 4, 1981Sep 6, 1983Advanced Circuit TechnologyElectrical switch assembly and method of manufacture
US4423294 *Jun 17, 1982Dec 27, 1983The Hall CompanyLaminate switch assembly having improved durability
US4440999 *Aug 13, 1982Apr 3, 1984Press On, Inc.Membrane switch
US4446342 *Aug 5, 1981May 1, 1984Advanced Circuit TechnologyElectrical switch assembly and method of manufacture
US4465209 *Aug 2, 1982Aug 14, 1984Dover CorporationInformation center for gasoline dispensing nozzle
US4471177 *Aug 13, 1982Sep 11, 1984Press On, Inc.Enlarged switch area membrane switch and method
US4471189 *Aug 31, 1982Sep 11, 1984La Telemecanique ElectriqueSealed, modular keyboard providing a tactile feel
US4477700 *Nov 14, 1983Oct 16, 1984Rogers CorporationTactile membrane keyboard with elliptical tactile key elements
US4488016 *Jan 24, 1983Dec 11, 1984Amp IncorporatedMembrane switch having crossing circuit conductors
US4492829 *Feb 13, 1984Jan 8, 1985Rogers CorporationTactile membrane keyboard with asymmetrical tactile key elements
US4493959 *Mar 7, 1983Jan 15, 1985Preh Elektrofeinmechanische Werke Jakob Preh Nachf., Gmbh & Co.Keyboard with improved key design permitting tilting about either side
US4499342 *Mar 3, 1983Feb 12, 1985Murakami Kaimeido Co., Ltd.Multi-position electric switch
US4510353 *Jan 31, 1983Apr 9, 1985Arrow Display Company, Inc.Method and kit for construction of custom prototype membrane switch panel
US4517421 *Feb 18, 1983May 14, 1985Margolin George DResilient deformable keyboard
US4533555 *May 9, 1984Aug 6, 1985Rca CorporationProtrusions in plastic sheet
US4540865 *Feb 29, 1984Sep 10, 1985Plessey Overseas LimitedPush buttons
US4558231 *Nov 1, 1982Dec 10, 1985Motorola, Inc.Variable rate bi-directional slew control and method therefor
US4565910 *Nov 19, 1984Jan 21, 1986Bed-Check CorporationBy the weight of a patient in a bed
US4598472 *Aug 19, 1983Jul 8, 1986Amp IncorporatedProtective breathing apparatus
US4605828 *May 29, 1984Aug 12, 1986International Business Machines CorporationMembrane keyboard switch mounting
US4640994 *Feb 7, 1986Feb 3, 1987Sharp Kabushiki KaishaElectronic apparatus with a flat panel keyboard unit
US4647729 *Oct 7, 1985Mar 3, 1987Northern Telecom LimitedCircuit board with contact positions, as used for telecommunications terminals and other apparatus
US4684767 *Jul 7, 1986Aug 4, 1987Phalen Robert FTactile affirmative response membrane switch
US4695681 *May 15, 1986Sep 22, 1987Velleman-Switch, Naamloze VennootschapMembrane for membrane switches and composing elements thereof
US4720610 *Dec 19, 1986Jan 19, 1988Amp IncorporatedMembrane key switch with anti-inversion feature
US4742192 *Jun 1, 1987May 3, 1988Saturn CorporationSteering wheel rim horn blow mechanism
US4831219 *Aug 2, 1988May 16, 1989Kabushiki Kaisha BandaiKeyboard
US4857683 *Dec 28, 1988Aug 15, 1989W. H. Brady Co.Membrane switchcores with key cell contact elements connected together for continuous path testing
US4899244 *Jul 28, 1988Feb 6, 1990Polaroid CorporationDisk cartridge with hub seal
US4922070 *Dec 16, 1988May 1, 1990Motorola, Inc.Switch assembly
US4929804 *Dec 1, 1988May 29, 1990Toshiba Silicone Co., Ltd.Push button switch
US4977298 *Sep 8, 1989Dec 11, 1990Matsushita Electric Industrial Co., Ltd.Panel switch
US5061830 *Apr 16, 1990Oct 29, 1991Ambrose Stephen DExtension electrical switch system and method of manufacture
US5095302 *Jun 19, 1989Mar 10, 1992International Business Machines CorporationThree dimensional mouse via finger ring or cavity
US5117073 *Apr 2, 1991May 26, 1992Motorola, Inc.Control signal initiator responsive to a hinge position
US5121091 *Sep 27, 1990Jun 9, 1992Matsushita Electric Industrial Co., Ltd.Panel switch
US5147990 *Apr 1, 1991Sep 15, 1992Motorola, Inc.Integral slide switch
US5177330 *Jul 16, 1991Jan 5, 1993Futaba Denshi Kogyo K.K.Key board switch
US5212473 *Feb 21, 1991May 18, 1993Typeright Keyboard Corp.Membrane keyboard and method of using same
US5274217 *Oct 8, 1991Dec 28, 1993Fritz Hartmann Geratebau GmbH & Co. KGKeyboard having keys with different heights
US5403980 *Aug 6, 1993Apr 4, 1995Iowa State University Research Foundation, Inc.Touch sensitive switch pads
US5430263 *Jun 29, 1994Jul 4, 1995Key Tronic CorporationComputer keyboard with integral dome sheet and support pegs
US5448028 *Dec 10, 1993Sep 5, 1995Davidson Textron, Inc.Armrest electrical switch arrangement with soft interior trim panel
US5493082 *Aug 9, 1994Feb 20, 1996Hughes Aircraft CompanyElastomeric switch for electronic devices
US5521342 *Dec 27, 1994May 28, 1996General Motors CorporationSwitch having combined light pipe and printed circuit board
US5670760 *Oct 24, 1995Sep 23, 1997Golden Books Publishing Company, Inc.Multi-switch membrane-switch assembly
US5969320 *Jul 10, 1998Oct 19, 1999Ncr CorporationKeyboard
US6100484 *Nov 21, 1997Aug 8, 2000Molex IncorporatedElectrical switch with insert-molded circuitry
US6349984 *Apr 5, 1999Feb 26, 2002Diane MarrazzoIlluminated activator for an internal vehicle trunk release mechanism
US6590177 *Jun 3, 2002Jul 8, 2003Fujikura Ltd.Membrane switch and pressure sensitive sensor
US6887001 *May 13, 2002May 3, 2005Nec CorporationKey button structure for handheld mobile phone and its similar instrument, and method for forming the same
US8061912 *Aug 9, 2007Nov 22, 2011Shenzhen Futaihong Precision Industry Co., Ltd.Keypad assembly and portable electronic device using same
US8247714 *Jun 8, 2010Aug 21, 2012Sunrex Technology CorpBack lighted membrane keyboard with components being secured together by subjecting to ultrasonic welding
US20070018998 *Dec 15, 2003Jan 25, 2007Sca Packaging Sweden AbPoster with electronic touchpad input areas
US20110297523 *Jun 8, 2010Dec 8, 2011Sunrex Technology Corp.Back lighted membrane keyboard with components being secured together by subjecting to ultrasonic welding
DE2805722A1 *Feb 10, 1978Aug 24, 1978Chomerics IncTastatur mit konkaven und konvexen kuppen
DE2924993A1 *Jun 21, 1979Jan 22, 1981Licentia GmbhTastenfeld
DE3011674A1 *Mar 26, 1980Oct 1, 1981Preh Elektro FeinmechanikTastatur
DE4290919C2 *Mar 13, 1992Nov 14, 1996Motorola IncScharnierbetätigte Schalteranordnung für ein elektronisches Gerät
EP0435131A1 *Dec 18, 1990Jul 3, 1991Alcatel Business SystemsKeybord with captive keys
WO1982001100A1 *Sep 9, 1981Apr 1, 1982Ncr CoKeyboard and method of producing a keyboard
WO1984000847A1 *Jul 28, 1983Mar 1, 1984Press On IncEnlarged switch area membrane switch and method
WO1992015083A1 *Dec 20, 1991Aug 22, 1992Typeright Keyboard CorpMembrane keyboard and method of using same
WO1992017893A1 *Mar 13, 1992Oct 3, 1992Motorola IncControl signal initiator responsive to a hinge position
WO1996005604A1 *Aug 8, 1995Feb 22, 1996Hughes Aircraft CoElastomeric switch for electronic devices
Legal Events
DateCodeEventDescription
Feb 8, 1990ASAssignment
Owner name: AMP KEYBOARD TECHNOLOGIES, INC., A WHOLLY OWNED SU
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMP INCORPORATED;REEL/FRAME:005258/0518
Effective date: 19890418
Owner name: LUCAS DURALITH AKT CORPORATION
Free format text: CHANGE OF NAME;ASSIGNOR:AMP KEYBOARD TECHNOLOGIES INC.;REEL/FRAME:005258/0527
Effective date: 19890428
May 21, 1981ASAssignment
Owner name: AMP INCORPORATED, HARRISBURG, PA., 17105, A CORP.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHOMERICS, INC.;REEL/FRAME:003854/0523
Effective date: 19810511