Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3862630 A
Publication typeGrant
Publication dateJan 28, 1975
Filing dateDec 10, 1973
Priority dateOct 27, 1967
Also published asUS3636943, US3794040, US3898992
Publication numberUS 3862630 A, US 3862630A, US-A-3862630, US3862630 A, US3862630A
InventorsLewis Balamuth
Original AssigneeUltrasonic Systems
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ultrasonic surgical methods
US 3862630 A
Abstract
The method and apparatus of the invention use ultrasonic energy in the form of mechanical vibrations transmitted by a tool member to close off small severed blood vessels, such as in humans, by the formation of closures at the terminal portions thereof, and stop what is called "oozes", that requires constant mopping or cleaning techniques during an operation. This tool member may be in the form of a knife ultrasonically vibrated to simultaneously sever and close off respective terminal portions of the severed blood vessels while performing surgical procedures. The tool member, of a proper configuration, may also join together layers of tissue, including the walls of unsevered blood vessels, and with respect to the latter is foreseen as replacing the "tying off" of arteries and veins currently necessary in surgery.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Balamuth 1 Jan. 28, 1975 1 ULTRASONlC SURGICAL METHODS 3.636.943 1/1972 Balamuth 128/024 A 3 794 ()4() 2/l974 Balamuth 118/325 X [75] Inventor: Lewis Balamuth, Southampton.

Primary Examim-r-Channing L. Pace [73] Assignee: Ultrasonic Systems. Inc.,

Farmingdale. NY. [57] ABSTRACT [22] Filed: 1973 The method and apparatus ofthe invention use ultra- [21] Appl. No.: 423,061 sonic energy in the form of mechanical vibrations transmitted by a tool member to close off small sev- Apphcauon Dam ered blood vessels. such as in humans. by the formai l z g flgl oiz 8; l f 'ds pff g tion of closures at the terminal portions thereof. and w stop what is calledfoozes". that requires Constant mopping or cleaning techniques during an operation.

This tool member may be in the form of a knife ultrafi x 9 3: sonically vibrated to simultaneously sever and close h H A 1 off respective terminal portions of the severed blood 1 0 can vessels while performing surgical procedures. The tool I member, of a proper configuration, may also join together layers of tissue, including the walls of unsev- [56] References cued ered blood vessels, and with respect to the latter is UNITED STATES PATENTS foreseen as replacing the "tying off" of arteries and 3,058,470 l0/l962 Seeliger etal. l28/303.l7 X veins currently necessary in surgery. 3.528.4l0 9/l970 Banko 128/024 A 3.618.594 ll/l97l Banko 128/024 A 3 Clamw 29 Drawing Figures i 7; 53 59/. 55A 5511 ,4 /?A 3 304 76/1, m 65A 56A /4A if 613A r 424 68h 2/4 6 65/1 4 i LL55:

| our. 48h

PATEMEDJAW'QYS 3. 862.630

SHEET 1 [1F 5 PEAK TOOL VELOCITY SEQ 1 32 0F MECHANICAL VIBRATION ENERGY PRESSURE ABSORPTION APPLIED WITH T'SSUE TOOL I TISSUE- ZZZIZ'AWCZRKING CLOSURE OR Jommo CUTTING was FRICTIONAL RUBBING HEAT TOOL TEMPERATURE O MENT IN nssus OXYGEN FOR CLOTTING PATENTEUJAN23|975 3.862.630 sum 2 or 5 GENERATOR MEANS PAIENIEB 3.862.630

SHEET 3 OF 5 F/G.3B F/6.3A

1 ULTRASONIC SURGICAL METHODS CROSS-REFERENCE TO RELATED APPLICATION This is a division of application Ser. No. 179,459, filed Sept. 10, I971 now U.S. Pat. No. 3,794,040; which is a division of Ser. No. 678,649, Oct. 27, i967 U.S. Pat. No. 3,636,943.

BACKGROUND AND SUMMARY OF THE INVENTION The present invention relates generally to improvements in surgical procedures whereby ultrasonic energy is utilized and more particularly to methods and apparatus for clossing off the terminal portions of sev ered blood vessels to stop or prevent the flow of blood therefrom during the surgical procedure and the joining of layers of tissue in biological organisms such as humans.

The outstanding and unexpected results obtained by the practice of the method and apparatus of the present invention, are attained by a series of features, steps and elements, working together in inter-related combination, and may be applied to biological organisms in general and particularly humans, and hence will be so illustrated and described with respect to humans.

Applicant has already participated in earlier developments which led to U.S. Pat. No. 3,086,288 covering the use of an ultrasonically vibrating scalpel or knife. The aim of that invention was to increase the ease with which a surgical knife could be used to cut organic tissues.

We are concerned in the present invention with new discoveries by applicant which allow dramatic improvements in the operation of high frequency vibrated knives, and also extend the use of the side area or working surface of a knife to perform a useful function, especially in relation to preventing or stopping bleeding.

Before proceeding to the details of the invention, let us first review briefly generally known facts of bleeding. The blood or circulatory system of the body (for warm blooded animals and humans) is comprised of two great and complex systems of arteries and veins. The arteries carry blood from the heart and these arteries divide in a complex network of smaller arteries or arterials, which in their turn connect to an extraordinarily complex network of very fine blood carrying tubes called capillaries. These capillaries are in communication with all the cells of the body and they provide the nutrients needed to feed these cells and they also supply the white blood cells needed to dispose of wastes and, in general, to police the cells and their environment in respect to unwanted substances and agents. After doing their job, the blood cells find their way back to the heart by means of a similar network of capillaries which join up to veinules or small veins, which in turn connect to veins which ultimately bring the blood back to the heart. There is also a lymph system which participates in this process, wherein again small tubes containing lymph (a kind of blood plasma with white corpuscles and waste products) convey this lymph through various strainers called lymph nodes and then, ultimately by means of the thoracic duct the purified lymph flow back into a large vein in the neck.

Now when the body is cut into at any location, in general a number of the tubes or vessels carrying blood are severed in this region. This severance will include many capillaries, some small veins and arteries and in some cases even a regular artery or a vein or both. The capillaries comprise an area which is as much as 100,000 times the area of the arteries and veins, and thus it is seen that many more capillaries are involved per incision than any other vessels. The severing of capillaries produces an ooze of blood which must be mopped up or swabbed during an operation. while the larger blood vessels involved must be clamped or tied off to prevent bleeding during the surgery. The attending of these bleeding problems takes up about 67 percent of the time of most operations. It is a major aim of this invention to reduce this lost time considerably and at the same time to reduce the total loss of blood and to promote the healing of the wounds created. This is accomplished by the design of ultrasonic instruments so as to enhance those uses of ultrasonic energy needed to accelerate the desired objective, namely to stop bleeding.

Ordinarily, bleeding stops by virtue of the interaction between small bodies in the blood stream called platelets and the oxygen in the air, whereby the platelets disintegrate and form a network of fibers called fibrin which slow up and finally stop the blood flow by the formation of suitable clots. Heat may be used to accelerate this process, and in fact both electric cautery and hot wire cautery are used in controlling bleeding in some procedures. But these types of cautery produce, in addition to rapid clotting, an extensive destruction to all tissue, thereby requiring a long time in the healing. By means of ultrasonic energy it is possible to promote the clotting with far less damage, as will be disclosed herein, so that bleeding may be very quickly halted and at the same time, much quicker healing will take place.

Electric and hot-wire cautery as well as cryogenic techniques are not effective for the care of bleeding from veins and arteries and it is here that special tyingoff methods or hemistatic clamping techniques are used. It is a further aim of this invention to teach how tying-off and clamping techniques may be replaced by utilizing ultrasonic energy in the proper way.

In all the ways whereby ultrasonic energy is used in this invention, the tool member supplying the energy executes vibrations of high frequency and small amplitude. Sinqetllgdevelopment of the ult rasgrgcknife, in partby present afiplicafif, new alloys have become generallyavail able which p e'rifiit the maximum amplitude of vi'bration'lat' 'a given frequent "to" be increased substan'tially. For alan ne;ffiiiiifegiil'ii aseasaisi could be vibrated at 20 Kc/secwith astrokibf'fWiSitbt most four thousandths of an ,inch. A largerj strokei'wouid cause a rapid fatigue failure lofj' th e ultrasonic motor driving the scalpel. with anew alloy of titanium (titanyllwith 6A]; one;such) it is possible to go to strokes fi'fii'gh as eight or ifi thousandths of an inch. This means that the rubbing action of a single stroke may be greatly enhanced, because the peak velocity achieved during the stroke is more than double the peak velocities previously attainable on a practical ba- SIS.

This improvement led applicant into the development of procedures and tools whereby such large ultrasonic motions could be put to work to stop capillary bleeding while cutting the surrounding tissue. In order to understand this, let us consider the transfer of energy which occurs during cutting. Wherever the tissue comes into contact with the cutting tool or scalpel, the tool member is moving to and fro at high frequency parallel to the surface of the tissue being severed. To the extent that there is good acoustic coupling between tissue and tool, there will be a transfer of shear waves into the tissue. But, tissue is of an acoustic nature as to be practically incapable of supporting high frequency shear waves. Therefore, the shear waves damp out very rapidly and dissipate their energy in the superficial tis sue as heat. This promotes fibrin formation and clotting at the capillaries, while the damage to underlying tissue is minimal due to lack of penetration of this clotting energy. To the extent that the tool slips past the tissue during its to and fro motion, a rubbing action is set up, due to relative motion of tool and tissue and a frictional heat is generated at the tool tissue interface, again producing a heating and clotting action on the adjacent terminal portion of the opened capillaries and other blood vessels. Thus, entirely due to the ultrasonic to and fro motion of the tool, a cooperative dual effect is engendered whereby the ooze" during an operation is effectively stopped while cutting.

Applicant has further found that the peak rubbing speed, which equals rrfx the peak to and fro stroke (f frequency of tool) is relatively constant with respect to frequency. This is because the peak strain set up in the ultrasonic motor driving the cutting tool depends directly on the peak speed of the cutting tool and not on the peak frequency. Of course, this merely means that if one wishes to operate at a higher frequency, then one has to be content with a proportionately diminished to and fro stroke of the tool. In any case, due to the cooperative effect, above outlined, essentially all of the energy of the tool is used in local, superficial heating, except for that used to actually sever the tissue itself. This latter component of energy is only a small fraction of the total energy used.

In actual practice, applicant has discovered that, by texturing or roughening the side walls of the cutting tool, the transfer of superficial cauterizing energy is increased so as such for certain surgical procedures it is preferable to use scalpels whose working surfaces or side faces are roughened rather than very smooth. The same principle applies to spatulate tools wherein no cutting is contemplated, but the tool is designed primarily to cauterize an already opened bed of blood vessels such as capillaries in a wound. In the case of the spatulate tool the amount of energy transfer may be increased by pressing the spatula tool working surface, while vibrating, with increased pressure against the wound to apply a compressive force for the transmission of the shear waves or increasing the frictional rubbing. Applicant has also discovered, that although it is not essential, it is nevertheless desirable to supply the cutting edge ofa knife or scalpel with a set of small serrations. This further aids in clotting, and permits faster cutting, while at the same time halting capillary bleedmg.

Now, in addition to all of the above there are still additional aids arising from the use of ultrasonic energy during the cutting operation. This arises because the collagenous substances in the walls of the capillaries and also in those of veins and arteries, are capable of being joined or sealed together by the application of said high frequency energy. In fact, it is just this property which makes it possible to close offa vein or an artery by clamping it in a specially designed ultrasonic instrument, so that the walls of said blood vessel are briefly clamped while vibrating one or both of the tool jaws. Since this same principle applies to other soft body tissue such as the skin, this same type of tool may be used in place of the conventional suturing which is used in closing incisions in surgical procedures.

Thus, it may be seen that we are dealing with a highly complicated set of phenomena in practicing applicant's method of bloodless surgery. At this time, it is not known quantitatively just how large a role is played by each factor, such as shear wave absorption, frictional heat production and tissue sealing. The point is that by employing ultrasonic motors capable of producing generally higher strokes than previously available, the combination of effects permits for the first time, true bloodless surgical procedure by ultrasonic means. Where extremely fast procedures are essential, one may also resort to auxiliary heating of the vibrating tool member, but only to sub-cautery temperatures. This temperature is preferably above room temperature but below a temperature that would normally burn the tissue. This may be accomplished conventionally, or in accordance with the method disclosed in US. Pat No.

3,321,558 in which applicant is a co-inventor.

OBJECTIVES OF THE INVENTION An object of the present invention is to provide an improved method and apparatus for forming surgical procedures with ultrasonic energy.

Another object of the present invention is to provide an improved method and apparatus for securing together layers of tissue in biological organisms, such as humans.

Yet another object of the present invention is to provide an improved method and apparatus for forming closures at the severed terminal portions of blood vessels in vivo, which blood vessesl are in the general neighborhood of what are called capillaries, so as to prevent ooze," which requires contact mopping or cleansing during surgical operations.

A further object of the present invention is to provide improved method and apparatus for permanently or temporarily closing off blood vessels so as to replace the tying off" of arteries and veins currently necessary in surgery.

Still another object of the present invention is to provide a method and apparatus of bloodless surgery which combines the surgical cutting of tissue and a closing off of the severed blood vessels to prevent the ooze" normally associated with operations.

Yet still another object of the present invention is to provide a method and apparatus for simultaneously joining and trimming, as by cutting, a large blood vessel.

Yet still a further object of the present invention is to provide an improved method and apparatus for ultrasonically joining together layers of tissue.

Still a further object of the present invention is to provide an improved method and apparatus for increasing the flow of oxygen to the terminal portion of the severed blood vessel to expedite the clotting of the blood thereat.

Still yet a further object of the present invention is to provide an improved sealing apparatus for joining together layers of human tissue.

Still yet a further object of the present invention is to provide specially designed tools adapted to be ultrasonically vibrated and employed in surgical procedures.

Other objects and advantages of this invention will become apparent as the disclosure proceeds.

BRIEF DESCRIPTION OF THE DRAWINGS Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:

FIG. 1 is a chart indicating the relationship of the principal factors affecting the practicing of the present invention for surgical procedures;

FIG. 2 is an assembled somewhat schematic view of an ultrasonic motor generator system of the type in which the motor is capable of being hand held and manipulated, for driving a tool member adapted to engage the biological organism for performing a surgical procedure, and which in the present instance the tool member is illustrated as a knife for severing blood vessels, the latter shown on a greatly enlarged scale for discussion purposes;

FIG. 3 is a side view of an ultrasonic tool member having a textured working surface in accordance with the present invention;

FIGS. 3A and 3B are end views of the tool member in FIG. 3 and illustrates two preferred ways of obtaining the textured working surface;

FIG. 4 is a greatly enlarged schematic representation of a portion of a tool member with its working surface in engagement with the terminal portion of a blood vessel for forming a closure thereat to prevent the flow of blood from said terminal portion;

FIG. 4A is an enlarged section view taken along line 4A-4A of FIG. 4 to illustrate the interfacial contact between the tool working surface and blood vessel for the transmission of frictional energy and shear waves for localized heating of the terminal portion;

FIG. 4B is a greatly enlarged schematic representation illustrating an ultrasonically vibrating tool member engaging a severed portion of tissue for simultaneously forming a plurality of closures at the terminal portions thereof;

FIG. 4C is a greatly enlarged schematic representation illustrating the angular relationship between the tool member and blood vessel which defines a terminal plane that may define an extreme angle with the axis of the blood vessel and still obtain the desired results of the present invention;

FIG. 4D is an end view of the tool member and blood vessel of FIG. 4C;

FIGS. 5, 5A, 5B and 5C are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the side walls thereof are joined together;

FIG. 5D is an extremely enlarged view of a blood specimen to illustrate some of the important components thereof;

FIGS. 6 and 6A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by partially converging the side walls thereof and forming a blood clot in the reduced opening;

FIGS. 7 and 7A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by primarily forming a blood clot at the terminal portion thereof;

FIGS. 8 and 8A are side and elevational views respectively, of a spatula tool member having a textured working surface for ultrasonic cautery;

FIG. 9 is an enlarged sectional view illustrating the forming of a plurality of closures on respective terminal portions in an open wound by the use of a spatula shaped tool;

FIG. 10 is a top longitudinal view, of one preferred form of ultrasonic system, of the type capable of being hand held and manipulated, for joining together layers of tissue, such as in humans;

FIG. 11 is a side longitudinal view, partly in crosssection, of the ultrasonic system of FIG. 10;

FIG. 12 is an enlarged schematic view, in crosssection, illustrating the application of the ultrasonic instrument illustrated in FIGS. 10 and II for securing together the walls of a blood vessel;

FIG. 12A is an enlarged schematic view, in crosssection, similar to FIG. 12 illustrating the actual joining of the overlapping wall portions;

FIG. 12B is a further enlarged schematic view, in cross-section, showing the actual bond obtained between the wall portions of the blood vessel;

FIG. 12C illustrates the ultrasonic system as used for simultaneously joining and cutting layers of tissue; and

FIG. 12D illustrates the ultrasonic system clamping means for intermittently joining overlapped layers of tissue.

DETAILED DISCUSSION OF THE DRAWINGS The high frequency transducer means may be either in the sonic or ultrasonic frequency range but for purposes of the present invention the word ultrasonic will be used to denote vibrations in the range of approximately 5,000 to 1,000,000 cycles per second. In addition the term blood vessel as used herein is intended to include any tubular member of the human body, but particularly capillaries, arterials, veinules, arteries and veins.

In performing the surgical procedures of the present invention there are several factors that have to be taken into consideration and analyzed in terms of a total or effective value to obtain the desired end results. The term total value may be defined as the proper combination of these factors to obtain the desired end result.

Referring now to the drawings, FIG. I is a chart illustrating the relationship of the seven principal factors which are involvedin whole or in part for determining the total value associated with forming closures at the terminal portions of severed blood vessels, or joining together overlapping segments of layers of human tissue. The related factors are peak tool velocity, frequency of vibration, pressure applied with tool, tool working surface, cutting edge, tool temperature and oxygen for clotting. These factors vary with respect to the procedure being performed.

In the embodiments of the invention discussed below the working surface of the tool member is placed in engagement with at least one of the layers of tissue at a surface thereof such that a small compressive force is applied in a plane substantially normal to the engaged surface. While this compressive force is maintained the working surface of the tool member is vibrated at an ultrasonic rate to apply an additional energy producing force at the engaged surface. The compressive and energy producing forces are continued until the layers of tissue are secured together by the combined action of these forces.

When these layers of tissue form the walls of a blood vessel the forces are applied to the terminal surface thereof for producing localized heating in forming a closure to prevent the blood from escaping therefrom. The energy producing force may be divided into mechanical vibration energy absorption in tissue and frictional rubbing heat development in tissue both of which result in a localized heating of the walls of the blood vessel to obtain the tissue closure. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to FIGS. 2 through 9, inclusive.

In contrast to this we have the joining of layers of tissue in overlapping relation to each other and in which case the compressive and vibrational forces are applied to one of the overlapped surfaces in a plane substantially normal thereto and in which case we primarily rely on mechanical vibration energy absorption in tissue to obtain the tissue joining. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to H65. 10 through 12D, inclusive.

Referring again to the drawings, and with respect to FIG. 2, it will be seen that an apparatus 10 for ultrasonically performing surgical procedures on a biological organism, such as a human, may include an ultrasonic transducer or motor 11 for effecting the necessary high frequency vibrations of the tool member 13, such as a knife, having a sharp output edge or surface 15 with a working surface 16. The ultrasonic motor 11, as illustrated may be in the form of a driving member adapted for being hand held as by an operator l2, and generally comprising a tubular housing or casing 14 into which an insert unit 17 supporting the tool member 13 may be partially telescoped. The ultrasonic motor 11 is energized by an oscillation generator 18, with a power cable 19, connecting the two together. The generator is an oscillator adapted to produce electrical energy having an ultrasonic frequency.

The ultrasonic motor 11 may be one of a variety of electromechanical types, such as electrodynamic, piesoelectric and magnetostrictive. The ultrasonic motor for effecting surgical procedures through hand directed tools of suitable configuration, which are readily replaceable or inter-changeable with other work performing tools in acoustically vibrated material treating devices, may be of the type disclosed in U.S. Pat. Nos. Re 25,033, 3,075,288, 3,076,904 and 3,213,537, and wherein each work tool member is rigidly joined, in end-to-end relationship to a connecting body or acoustic impedance transformer and to a transducer which may form an insert unit or assembly which is removably supported in a housing containing a coil in surrounding relationship to the transducer and receiving alternating current for producing an alternating electromagnetic field.

The transducer in the ultrasonic motor 11 is longitudinally dimensioned so as to have lengths which are whole multiples of half-wavelengths of the compressional waves established therein at the frequency of the biassed alternating current supplied so that longitudinal loops of motion as indicated by arrow 23, occur both at the end of the insert unit l7 to which the tool member 13 is rigidly connected and the knife edge. Thus. the optimum amplitude of longitudinal vibration and hyper-accelerations of tool member 13 is achieved, and such amplitude is determined by the relationship of the masses of the tool member 13 and insert unit 17 which may be made effective to either magnify or reduce the amplitude of the vibrations received from the transducer.

The tool member 13 may be in the form of relatively flat metal spatula member, as shown in FIGS. 8 and 8A, hereinafter discussed in detail, to provide relatively wide surface areas for contact with the tissue to which the vibrations are to be applied for effecting the closure of severed blood vessels.

The tool member 13 may be permanently attached to the end of insert unit 17, for example. by brazing, solder or the like, or the tool may be provided with a threaded stud 20 adapted to be screwed into a tapped hole in the end of insert unit 17 for effecting the rigid connection of the tool to the stern. A base portion 21 is provided from which the stud 20 extends, from one end thereof, and from the other end a body 28 which is firmly secured thereto for the transmission of the ultrasonic vibrations. The body 28 may be brazed or welded to the base Zl ofthe tool member 13. A tapered surface 22 may be provided which connects the cutting edge 15 with the working surface 16.

As seen somewhat schematically in H6. 2 the biological organism 25, such as a human, contains a layer of outer tissue or skin 26, an internal cellular structure 27 with a plurality of blood vessels 30 extending therethrough shown in an enlarged scale, as well as in the skin (not shown).

FIGS. 3, 3A and 3B illustrate various types of replaceable surgical implements, such as knives, that may be employed in accordance with the present invention. The knife 13a of FIG. 3 is similar to that illustrated in FIG. 2 and includes a base portion 21a, capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction by the driving member. A threaded stud 20a extends from one end of the base 21a for engagement with the insert unit. The body portion 28a, in the form of a cutting blade, extends from the opposite end of the base 21a and includes a textured working surface 16a for enhancing the coupling action between the tool member 13a and the terminal portion of the severed blood vessels to be engaged. The cutting edge 15a may be serrated and have an outwardly tapered portion 22a between the cutting edge 15a and the substantially flat working surface 160. The textured surface 160 may begin in close proximity to or start at the working edge so that when cutting and sealing small capillaries the rubbing action and transmission of shear waves begins immediately. The textured surface finish of 16a may vary from a micro finish in the range of 10 micro-inch to 10,000 micro-inch, but preferably in the range of 40 micro-inch to 200 microinch.

As illustrated in FIG. 3A the tool member 13a includes a body portion 280 having a coated textured layer of friction inducing material 29a which forms the working surface 16a and which may be of diamond or steel powder particles bonded to the body portion in any conventional manner well known in the art, to obtain the desired micro finish. The layer of coated material may be applied to both surfaces of the tool member and each surface may be of the same or different micro finish to obtain a debriding and superficial cauterizing. The advantages are quicker healing as well as less damage to the tissue being treated.

FIG. 38 illustrates the obtainment of the working surface 16a by finishing the metallic body 28a in any conventional manner to obtain the desired surface roughness. By providing the textured surface it is possible to control the rate of frictional heating of the blood vessels. The surface roughness is generally selected in accordance with the ultrasonic rate of vibration and the compressive force to be applied. This will in many instances relate to the particular surgeon performing the operation.

THEORY OF PRESENT INVENTION Whereas a scientific explanation of the theory based on the phenomena involved in disclosed below, it is to be clearly understood that the invention is by no means limited by any such scientific explanation.

Applicant has now discovered that mechanical vibrations properly applied may produce closures at the terminal ends of blood vessels to prevent the flow of blood therefrom and also join together layers of human tissue. With respect to forming the terminal closure it is possible to simultaneously cut through layers of tissue and seal off the terminal ends.

For purposes of illustration, we have in FIGS. 4 and 4A a single blood vessel 3011 having a wall 31b with a terminal portion 33b terminating in an end surface 32b, the latter in engagement with the working surface 16b of the tool member 13b which is being ultrasonically vibrated in the direction 23b.

At the interface of the working surface 16b and terminal surface 32b we have a transmission of both rubbing forces and mechanical vibrational energy to the blood vessel 30b which results in a localized heating of the terminal portion 33b. FIG. 4A illustrates the contour of the surfaces in engagement with each other and the transmission of the shear waves over the distance D. The pressure applied with the tool member, partially determines the degree of shear waves and rubbing vibrations transmitted to the terminal portion 33b of the blood vessel for a given textured tool. At point P shear vibration is developed in the tissue 310, then at P; the shear vibration has dropped almost to zero whereby the shear vibration energy is converted into heat in the tissue ofthe blood vessel. The smallness or minimal depth of penetration of P P is what makes for quick healing and cauterizing action of the tool member.

The shear wave pattern 35b extends the distance D, which is the distance from P to P along the blood vessel 30b to obtain the localized heating of the terminal portion. The coupling action at the working surface 16b and blood vessel 30b is enhanced by the application of the smal compressive force, as indicated by arrow 36b, in a plane substantially normal to the plane defined by said terminal end surface 32b. At P, in addition, to the extent that shear vibration is not induced in the tissue, there will be a slippage and a frictional rubbing action which will also produce heat practically instantaneously at P,. It is a combination of these effects which create the closure at the terminal portion of the blood vessel.

It will be appreciated that the relative amounts of shear vibration and frictional rubbing action will be determined or selected by the magnitude of the tool vibration and the tool surface in relation to the tissue surface. Many combinations are possible whereby either the frictional or the shear components may be emphasized.

The extent that the rise in temperature occurs at the terminal portion 33b of the blood vessel 30b is related to the rubbing vibrations applied and this is related to the peak speed which is:

V peak 2 11' f A A peak amplitude f frequency V peak velocity So that if f is raised, A is lowered and we can retain the same peak speed at all frequencies. This is why the more rubs per second the higher the frequency for the same output peak speed. Accordingly the working surface 16b of the tool member 13b may be surface finished for sufficient roughness to allow increased friction against the tissue. This is quite different from a standard knife or scalpel which has polished sides.

The thickness of the tool member should also be held to a minimum so as to permit a more rapid local temperature rise which is attributable to the shear production and absorption in the adjacent tissue and the temperature rise due to rubbing of tissue surface, which involves slippage between tool member and tissue surfaces. We can say that during the to and fro motion, neglecting the energy of cutting itself, when a knife is used we have:

Ultrasonic energy per stroke Ultrasonic shear energy produced per stroke Frictional rubbing energy per stroke.

Since, in both cases the energy absorbed goes into superficial heating of tissue and cutting tool, we can estimate the effects by considering all the energy to be frictional for ease of making approximate calculations.

Assuming an average force of friction, F, we have the power dissipated superficially at a tool tissue interface equal to:

S stroke F average friction force P power Now V max. for a frequency of 20 Kc/sec and a stroke of 0.010 inch is approximately 50 FPS. Therefore P is approximately 15 watts, when F is between one half and one pound. Since this power is dissipated in a superficial region of the cutting, the heat capacity of the tissue and the tool are quite small. For example for a steel tool of dimension 1 inch X 0.125 inch x 0.010 inch the total heat capacity is only a few hundreths of a gram. In such a case it is possible to obtain local temperature rises of the order of hundreds of degrees centigrade under the condition outlined above. This is ample to stop ooze."

Accordingly the frequency and amplitude of vibration of said tool member is selected at a level wherein the transmitted shear waves are substantially maintained at the terminal portion 33b with only superficial penetration and heating of the remainder of the blood vessel 30b.

Accordingly, the frequency and amplitude of vibration is preferably selected at a level to provide a peak velocity of at least 10 feet per second along the working surface 16b of the tool member 13b and more generally the general range of approximately 40 feet per second to 100 feet per second.

FIG. 4B shows a portion of the biological organism 25b with an outer layer of skin 26b and a plurality of blood vessels 30b extending through the cellular structure 27b and terminating against the working surface 16b of the tool member 13b. The tool member 13b is being vibrated at an ultrasonic rate in the direction of arrow 23b, which is in a plane substantially parallel to the plane defined by the terminal end portions 33b. to induce shear waves 35b, which penetrate the blood vessels 30b and surrounding tissue structure 27b. The high frequency vibration and amplitude of the tool member is selected to obtain only a superficial penetration and resulting heating of the terminal portions 3317 so that there is a minimum of damage to the underlying tissue area 31b and all of the blood vessels are simultaneously closed off.

As illustrated in FlGS. 4C and 4D the terminal portion 33b has an and surface 30b that defines a plane 37b that may vary in angular relationship to the axis of the blood vessel 30b. In practice the angular engagement between the working surface 16b of the tool member 13b and the end surface 32b may not always be controlled during a surgical procedure since the blood vessels such as capillaries, veinules, veins, arterials and arteries extend in various directions throughout the body. The important consideration is that the ultrasonic longitudinal mechanical vibrations, as indicated by arrow 23b, are applied having a major compone nt of vibration parallel to the terminal plane 37b and a component of compressive force, as indicated by arrow 36b, in a plane substantially perpendicular to the terminal plane 37b.

FIGS. 5, A, 5B, 5C, 6, 6A, 7 and 7A illustrate the actual surgical procedure in vivo of obtaining a closure at the terminal portion ofa blood vessel using the ultrasonic instrument illustrated in FIG. 2, or a tool member illustrated in FIGS. 4, 4A and 4B. As explained with respect to the theory of the present invention in FIGS. 3, 3A, 3B, 3C and 3D the degree of shear waves and frictional rubbing may be controlled so that a predominant reliance on-one or the other is produced.

in FIGS. 5, 5A, 5B and 5C the terminal closure 40c is formed primarily by producing a plastic flow of the wall of the blood vessel and continuing the flow for a period of time sufficient to obtain a joining of the severed ends together. initially the cutting edge c of the tool member 13c is placed in engagement with the skin 26c of the body c and the tool member 130 is ultrasonically vibrated and a small compressive force in the direction of arrow 36c is applied to obtain a cutting of the skin 26c and progressively sever the tissue by a continued movement of the cutting edge 15c through the cellular mate rial 270 until the wall 31c of the blood vessel c is engaged. The wall 31c for purposes of discussion is considered as layers of tissue 42c and 430, respectively.

As seen in FIG. 5A after the cutting edge 15c severs the tissue layer 42 a certain amount of blood 44c flows from within the blood vessel 30c into the opening 45c that has been formed. As the movement of the ultrasonic instrument is continued downwardly we have the engagement of the working surface l6c with the terminal end portion 33c of the blood vessel to apply a compressive force to the end surface to obtain a localized heating of the terminal portion by the application of the ultrasonic mechanical vibration. The relative movement is continued so that the application of the mechanical vibrations are transmitted for a period of time sufficient for the localized heating to form the closure 40c at the terminal portion 33c. In this manner the terminal portion 33c is closed off by the formation of the closure 45c and the blood contained therein is prevented from escaping through the closure. The closure 45c is produced at least in part by the production of said shear waves and their conversion into heat coupled with the localized heating obtained by inducing frictional rubbing at the terminal portion 33c. The extent of each factor will vary with the texture of the working surface 16c and the degree of the compressive force applied by the working surface against the terminal portion.

FIG. 5D is an enlarged microscopic examination of the blood 44c and as illustrated the blood contains red corpuscles 460, white corpuscles 47c and platelets 48c, the latter play an important role in the natural clotting of blood by producing fibrin when exposed to air. This natural clotting ability of blood is relied upon at least in part with respect to the formation of the closures illustrated in FIGS. 6, 6A, 7 and 7A.

H65. 6 and 6A illustrate the formation of the closure which is substantially formed by clotting of the blood at the terminal position. The working surface 16d is placed in engagement with the layers of wall 42d and 43d of the blood vessel 30d, which is of a size in the capillary range, with the blood 44d contained therein. The tool member 13d preferably has a textured surface to permit air and most importantly oxygen to be delivered past the layer of skin 26a to the terminal portion 33d of the blood vessel to obtain a clotting action. The tool member 16d acts as an ultrasonic pump and stimulates the flow of air to the work site. As the air reaches the work site we have the additional action of the conversion of the ultrasonic mechanical vibrations to obtain a localized heating by the conversion of the frictional motion into heat and the localized heating expediates the formation of the blood clot 50d which forms the closure 40d. Since the blood vessel is relatively small in diameter we have the formation of the closure 40d that is substantially formed by a clotting of the blood 44d therein. As seen in FIG. 6A the tool member is then removed leaving the opening of wound 45d and closures 40d formed on each respective end of the severed blood vessels.

FIGS. 7 and 7A illustrate the formation of a closure 40a by partially closing the layers 422 and 43e of the wall 31a of the blood vessel 30e at the terminal portions 332 by the localized heating and the remainder by forming a blood clot 50e of the blood 44a contained in the rediced area of the blood vessel. The ultrasonic tool member 13c transmits the mechanial vibration which produces a plastic flow of the wall 312 of said blood vessel which flow is continued for a period of time to obtain a reduced cross sectional area" and during which same period of time the localized heating assists in the formation of the blood clot 50e which together with the reduced area forms the closure 40e to prevent the blood from escaping therefrom. The tool member is then removed past the skin 26a leaving the opening 45e.

lt is appreciated that the process although illustrated for a single blood vessel can be occurring simultaneously on a plurality of blood vessels. To increase the rate at which the closure is formed and reduce healing time the working surface of the tool member may be heated to a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel. The temperature of the tool may be heated in any conventional manner, as for example, in accordance with US. Pat. No. 3,321,558.

There are instances in surgical procedures where it is desirable to be able to stop bleeding independently of having previously cut the tissue of the body. As for example, in gunshot wounds and other accidents it is often desirable to stop bleeding and accordingly spatula like tools in accordance with the present invention may be utilized.

FIGS. 8 and 8A illustrate one form of readily replaceable implement, in the form of a spatula like tool member 13f, having a body portion 28f with substantially flat parallel working surfaces 16f that have been textured to a preselected micro finish to provide means for coupling the ultrasonic vibrations to the terminal portions of the blood vessels. The surface finish is selected for the transmission of rubbing vibrations and shear waves to obtain the localized heating. One end of the spatula body portion 28f is fixedly secured to the base portion 21], and the latter has a threaded stud 20f for securement to the ultrasonic driving member. The base portion 21f is preferably of a metallic material capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction at ultrasonic frequencies. The body portion 28f may be in the order of 0.0l to 0.160 inches thick and be concave in configuration for strength reasons. It may also be designed to vibrate elliptically to permit intermittent separation of the tool member and terminal portions to promote the flow of air to the terminal portions for clotting.

As illustrated in FIG. 9 the spatula like tool member is illustrated for surgical procedures in which it is desired to form closures at terminal ends of blood vessels 30g separately from when the actual cutting is performed. Accordingly the spatula like tool Hg is inserted within the opening 45g of the body 25g such that the working surface 16g of the tool member 13g applies a compressive force against the terminal portions 33g of the severed blood vessels. The compressive force is applied in the direction of arrow 36g. The tool 13g is simultaneously vibrated, in a direction as indicated by arrow 23g, and at an ultrasonic rate to transmit mechanical vibrations to the terminal portion 33g of the blood vessels to obtain a localized heating of at least some of the terminal portion. The application of said compressive force and mechanical vibrations are continued until a closure at the terminal portion is formed and the blood contained therein is prevented from escaping through the formed closure. The thickness of the spatula tool member 13g may be narrower, as illustrated in H0. 9, than the opening 45g in the body, such that only one surface 16g engages the severed blood vessels. If desired the width of the spatula body 283 may be substantially equal to that of the body opening 453 so that both terminal ends 333 of a respective blood vessel 30g is closed during one insertion of the tool member within the wound.

The localized heating to obtain the closures may be induced by frictional rubbing at the terminal portion 33g of the blood vessel 30g so that the closure. is produced at least in part by frictional heating. By providing a textured surface to the tool member 13g the rate of frictional heating may be controlled when combined with the other factors to produce the terminal closure. Depending upon the thickness of the spatula tool member either pure longitudinal vibration will be obtained or a fiexural component of motion, as indicated by the arrow 51g, so as to obtain elliptical vibrational motion along the working surface 16g. This permits intermittent disengagement between the wall surface or terminal end of the blood vessel 33g and the working surface 16 so that air and in turn oxygen may be continuously supplied to the work site to assist in the clotting of the blood.

FlGS. l0 and 11 illustrate one form 10h of the ultrasonic system for joining together in vivo, overlapping layers of organic tissue. The system includes a hand held instrument including an ultrasonic motor llh, which may be the type as discussed with reference to FIG. 2, and include a tool member 13h having an enlarged portion 53h terminating in a working surface 16h that extends in a plane substantially normal to the direction of mechanical vibrations illustrated by the arrow 23h. The base 21h of the tool member i3]: is secured to the insert portion 17h. Support means 5511 is provided to act as an anvil or clamp so that the overlapped layers of tissue 42h and 43h of the wall 31h of the blood vessel 30h may be compressed between the vibratory working surface and a support surface.

The support means 55h includes a pair of legs 56h and 57h respectively, secured together at their lower end by bands 58h and provided with gripping means in the form of individual lugs 59h that extend outwardly from the upper end of the legs for engagement by the fingers of the surgeon or operator 12h in a manner hereinafter described. The leg 57h has a lower extension 60h that terminates in a support arm 61h at substantially right angle to the extension 6011, and is provided with a support surface 62/1 in spaced relation to the working surface 16h of the tool member 1311.

The legs 56h and 57h are in spaced relation to each other and may be contoured to conform to the cylindrical configuration of the ultrasonic transducer housing 14h. The generator 1811 is connected to the transducer 1111 by means of cable 19h in a conventional manner. As seen in FIG. 10 the cable 19h may enter the ultrasonic motor llh from the side so as to leave the rear end 63h free for engagement by the thumb or any other finger of the surgeon to permit manual control of the relative displacement between the overlapping working and support surfaces.

The support means 55h is mounted for relative movement, with respect to the ultrasonic motor llh by providing a pair of slots 65h on each of the legs 56h and 57h, and which slots accept headed fasteners 66h which extend from the casing l4h through the slots 65h to permit free relative movement between the ultrasonic motor 1111 and support means 55h. The lower end of the casing 14h is provided with an annular shoulder 67h which is adapted to receive spring means in the form of a spring 68h which is contained within the shoulder 67h at one end thereof and in engagement with the bands 58h at the opposite end thereof. The spring 68h applies a force in the direction of arrow 68h, so that the working surfaces of the support means and ultrasonic motor means are biassed away from each other whereby the force' applied by the surgeon is required to bring the overlapping working and support surfaces together. If desired the spring may be coupled to the support and ultrasonic motor means so as to force them together with predetermined static force which might be varied in a conventional manner not shown. In this manner once the static force is determined for the particular thickness of tissue the resultant permanent or temporary seal may be obtained. Accordingly the spring means may yieldably urge the support means 55h and transducer means llh relative to each other to a position wherein the working and support surfaces 16h and 62h, respectively, are normally in engagement with each other under a predetermined static force, so that the support and transducer means are first separated for the placement of the layers of tissue 4211 and 43h therebetween. In contrast to this the spring means may be adjusted such that the working and support surfaces are normally maintained in spacially fixed relation to each other, so that the layers 42h and 43h are positioned between the surfaces which are brought together by the operation of the hand held instrument.

As previously explained during surgical procedures it becomes necessary to tie-off veins and arteries so as to prevent the flow of blood therethrough. In accordance with the invention the joining of the walls may be of a permanent or semi-permanent nature, and this is accomplished by properly selecting the frequency and amplitude of ultrasonic mechanical vibrations to produce an optimum fiow of the collagenous elements contained in the overlapping portions of tissue. This collagenous material is similar to that normally found in the ormation of scar tissue. In practice the ultrasonic instrument h may be employed to join together, at a select area the wall ofa blood vessel and as seen in FIG. 10 the wall 31h may be considered to include the overlapping layers of tissue 42h and 43h.

As seen in FIGS. 12, 12A and 128 we have the blood vessel 30h exposed within an opening 45h within the organic body 25h. To produce a joining of the overlapping layers of wall tissue 42h and 43h respectively, the arm 61h of the support means 55h is placed beneath the blood vessel 30h and the working surface 16h of the tool member 13h is brought into contact with the layer of tissue 42h. The working and support surfaces 1611 and 62h are moved relative toward each other until the blood vessel 30h has the overlapping layers of tissue 42h and 43h in contact with each other as seen in FIG. 12A. Simultaneously therewith a small compressive force, in the direction of arrow 3611, is applied to the layers of tissue traversing the area of overlap.

The working surface of the tool member 13h is vibrated at an ultrasonic rate, as for example, in the frequency range of from 15 Kc/sec to 100 Kc/sec and preferably in the range of Kc/sec to 40 Kc/sec, so as to apply an additional recurring force to the overlapped layers of tissue, and produce a superficial heating at the interface of the overlapped layers. The vibrational force has a substantial component of vibration normal to the overlapped surfaces, as indicated by the arrow 23h. The frequency of the ultrasonic rate of vibration is selected in the above frequency range so as to preferably also produce an optimum flow of the collagenous elements in the overlapped layers of tissue. The energy is then continually applied until a closure or bond 40h is formed between the collagenous elements in the overlapping layers of tissue, as seen in FIG. 12B, and

the blood is prevented from flowing past the closure.

The closure 40h may be of a temporary nature or permanent one depending upon the proper control of the vibratory energy and static force to fuse together the 5 superficially heated interface.

For certain applications it is desirable to join together the overlapping layers of tissue and at the same time cut off the excess material. As illustrated in FIG. 12C the support arm 6lj is provided with a cutting edge 70j and as the overlapped layers of tissue 42j and 43j are compressed between the working surface l6j and support surface 26] and joined together by the energy transmitted through the tool member I3j and the excess tissue layers 7lj and 72j are cut off. If desired the cutting edge may be placed on the working surface l6j of the tool member l3j.

For those applications in which it is desired to intermittently join together overlapping layers of tissue we have the apparatus illustrated in FIG. 12D. The overlapping layers of tissue 42k and 43k are first clamped together by clamping means 75k which includes clamping members 76k and 77k which may form part of the ultrasonic instrument or may be the forward portion of a pair specially designed clamping instrument. The clamping means 75k is applied in close proximity to the area of overlap of the layers of tissue 42k and 43k to be joined together. The ultrasonic instrument 10k includes the support means 55k for engaging one side of the overlapped layers of tissue and which opposite side is engaged by the tool member 13k which as illustrated is provided with a circular working surface. By intermittently moving the ultrasonic instrument along the area of overlap a number of closures or bonds k, such as stitches may be formed.

While the invention has been described in connection with particular ultrasonic motor and tool member constructions, various other devices and methods of practicing the invention will occur to those skilled in the art. Therefore, it is not desired that the invention be limited to the specific details illustrated and described and it is intended by the appended claims to cover all modifications which fall within the spirit and scope of the invention.

1 claim:

1. A method ofjoining together overlapping portions of layers of tissue in vivo, comprising the steps of A. applying ultrasonic mechanical vibrations to the overlapping portions of said layers of tissue in their area of overlap, said mechanical vibrations being applied in a direction substantially normal to said area of overlap,

B. simultaneously compressing said layers of tissue together in their area of overlap,

C. selecting the frequency and amplitude of said ultrasonic mechanical vibrations to produce a superficial heating at the interface of said overlapping layers of tissue, and

D. continuing the application of said mechanical vibrations and compressive force until said layers of tissue are fused together at said superficially heated interface.

2. A method of joining together layers of tissue in vivo, with a tool member having a working surface, comprising the steps of A. overlapping the layers of tissue in contact with each other,

l7 18 B. applying the working surface of said tool member D. selecting the frequency of said ultrasonic rate so against said overlapping portions at a surface as to produce an optimum flow of the collagenous thereof, such that said working surface applies a elements in said layers of overlapping tissue, and small compressive force to said tissue traversing E. continuing the application of said ultrasonic vibrathe area of overlap, tions until a bond in formed between the collage- C. vibrating the working surface of said tool member nous elements, so as to join together said overlapat an ultrasonic rate to apply an additional recurping layers of tissue. ring force to said layers of tissue, with said force 3. A method as claimed in claim 2, wherein said step having a substantial component of vibration norof vibrating the working surface is in the range of apmal to the overlapped surfaces of said layers of tis- 10 proximately 20 Kc/sec. to lOOKc/sec. sues, a: i :inm

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3058470 *Apr 19, 1957Oct 16, 1962Siemens Reiniger Werke AgApparatus for electrical highfrequency surgery
US3528410 *Sep 16, 1968Sep 15, 1970Surgical Design CorpUltrasonic method for retinal attachment
US3618594 *Apr 6, 1970Nov 9, 1971Surgical Design CorpUltrasonic apparatus for retinal reattachment
US3636943 *Oct 27, 1967Jan 25, 1972Ultrasonic SystemsUltrasonic cauterization
US3794040 *Sep 10, 1971Feb 26, 1974Ultrasonic SystemsUltrasonic surgical procedures
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4674498 *Jul 18, 1985Jun 23, 1987Everest Medical CorporationElectro cautery surgical blade
US4832683 *Jul 15, 1986May 23, 1989Sumitomo Bakellite Company LimitedSurgical instrument
US4886060 *May 8, 1989Dec 12, 1989Swedemed AbEquipment for use in surgical operations to remove tissue
US5045054 *Feb 6, 1990Sep 3, 1991Advanced Osseous Technologies Inc.Apparatus for implantation and extraction of osteal prostheses
US5062827 *Feb 14, 1989Nov 5, 1991Swedemede AbDevice in ultrasonic aspirators
US5284484 *May 29, 1991Feb 8, 1994Advanced Osseous Technologies, Inc.Apparatus for implantation and extraction of osteal prostheses
US5318570 *Jun 11, 1991Jun 7, 1994Advanced Osseous Technologies, Inc.Ultrasonic tool
US5322055 *Jan 27, 1993Jun 21, 1994Ultracision, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
US5324297 *Mar 5, 1991Jun 28, 1994Advanced Osseous Technologies, Inc.Ultrasonic tool connector
US5330481 *Feb 18, 1992Jul 19, 1994Advanced Osseous Technologies, Inc.Apparatus for implantation and extraction of osteal prostheses
US5382251 *Feb 14, 1992Jan 17, 1995Biomet, Inc.Plug pulling method
US5456686 *Oct 25, 1993Oct 10, 1995Biomet, Inc.Implantation and removal of orthopedic prostheses
US6004335 *Feb 12, 1996Dec 21, 1999Ethicon Endo-Surgery, Inc.Ultrasonic hemostatic and cutting instrument
US6004336 *Oct 1, 1998Dec 21, 1999Olympus Optical Co., Ltd.Angiostomy apparatus using ultrasonic energy and angiostomy method
US6024750 *Aug 14, 1997Feb 15, 2000United States SurgicalUltrasonic curved blade
US6036667 *Aug 14, 1997Mar 14, 2000United States Surgical CorporationUltrasonic dissection and coagulation system
US6063050 *Oct 16, 1998May 16, 2000United States Surgical Corp.Ultrasonic dissection and coagulation system
US6117152 *Jun 18, 1999Sep 12, 2000Ethicon Endo-Surgery, Inc.Multi-function ultrasonic surgical instrument
US6231578Aug 2, 1999May 15, 2001United States Surgical CorporationUltrasonic snare for excising tissue
US6254623Jun 30, 1999Jul 3, 2001Ethicon Endo-Surgery, Inc.Ultrasonic clamp coagulator surgical instrument with improved blade geometry
US6267761Sep 9, 1997Jul 31, 2001Sherwood Services AgApparatus and method for sealing and cutting tissue
US6280407Mar 7, 2000Aug 28, 2001United States Surgical CorporationUltrasonic dissection and coagulation system
US6325811Oct 5, 1999Dec 4, 2001Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US6458142Oct 5, 1999Oct 1, 2002Ethicon Endo-Surgery, Inc.Force limiting mechanism for an ultrasonic surgical instrument
US6468286Sep 6, 2001Oct 22, 2002The United States Surgical CorporationUltrasonic curved blade
US6669690 *Jul 15, 1999Dec 30, 2003Olympus Optical Co., Ltd.Ultrasound treatment system
US6682528Sep 17, 2002Jan 27, 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US6682544Sep 11, 2002Jan 27, 2004United States Surgical CorporationUltrasonic curved blade
US6726686Apr 1, 2002Apr 27, 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US6773444Sep 20, 2001Aug 10, 2004Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US6869439 *Aug 19, 2002Mar 22, 2005United States Surgical CorporationUltrasonic dissector
US6932810Nov 14, 2001Aug 23, 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US6958070Oct 18, 2001Oct 25, 2005Witt David ACurved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US6960210Sep 13, 2002Nov 1, 2005Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US6976969Jan 14, 2002Dec 20, 2005Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US7033354Dec 4, 2003Apr 25, 2006Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7083618Apr 5, 2002Aug 1, 2006Sherwood Services AgVessel sealer and divider
US7090673Jan 22, 2002Aug 15, 2006Sherwood Services AgVessel sealer and divider
US7101371Jun 25, 2002Sep 5, 2006Dycus Sean TVessel sealer and divider
US7101372Apr 6, 2001Sep 5, 2006Sherwood Sevices AgVessel sealer and divider
US7101373Apr 6, 2001Sep 5, 2006Sherwood Services AgVessel sealer and divider
US7118570Apr 6, 2001Oct 10, 2006Sherwood Services AgVessel sealing forceps with disposable electrodes
US7118587Apr 6, 2001Oct 10, 2006Sherwood Services AgVessel sealer and divider
US7131970Nov 17, 2004Nov 7, 2006Sherwood Services AgOpen vessel sealing instrument with cutting mechanism
US7135020Apr 6, 2001Nov 14, 2006Sherwood Services AgElectrosurgical instrument reducing flashover
US7147638Apr 29, 2004Dec 12, 2006Sherwood Services AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7150097Jun 13, 2003Dec 19, 2006Sherwood Services AgMethod of manufacturing jaw assembly for vessel sealer and divider
US7150749Sep 29, 2004Dec 19, 2006Sherwood Services AgVessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7156846Jun 13, 2003Jan 2, 2007Sherwood Services AgVessel sealer and divider for use with small trocars and cannulas
US7160298Apr 6, 2001Jan 9, 2007Sherwood Services AgElectrosurgical instrument which reduces effects to adjacent tissue structures
US7160299Apr 28, 2004Jan 9, 2007Sherwood Services AgMethod of fusing biomaterials with radiofrequency energy
US7179258Apr 7, 2004Feb 20, 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US7195631Sep 9, 2004Mar 27, 2007Sherwood Services AgForceps with spring loaded end effector assembly
US7207990Jun 29, 2005Apr 24, 2007Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US7223265Feb 16, 2006May 29, 2007Sherwood Services AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7232440Oct 21, 2004Jun 19, 2007Sherwood Services AgBipolar forceps having monopolar extension
US7241296Dec 15, 2003Jul 10, 2007Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US7252667Jun 22, 2004Aug 7, 2007Sherwood Services AgOpen vessel sealing instrument with cutting mechanism and distal lockout
US7255697Aug 31, 2006Aug 14, 2007Sherwood Services AgVessel sealer and divider
US7267677Oct 30, 2002Sep 11, 2007Sherwood Services AgVessel sealing instrument
US7270660Jun 29, 2005Sep 18, 2007Sherwood Services AgApparatus and method for sealing and cutting tissue
US7270664May 5, 2006Sep 18, 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US7276068Sep 2, 2004Oct 2, 2007Sherwood Services AgVessel sealing instrument with electrical cutting mechanism
US7291161 *Oct 2, 2002Nov 6, 2007Atricure, Inc.Articulated clamping member
US7329256Dec 23, 2005Feb 12, 2008Sherwood Services AgVessel sealing instrument
US7361172Jun 4, 2003Apr 22, 2008Sound Surgical Technologies LlcUltrasonic device and method for tissue coagulation
US7367976Nov 15, 2004May 6, 2008Sherwood Services AgBipolar forceps having monopolar extension
US7377920May 5, 2005May 27, 2008Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US7384420May 19, 2004Jun 10, 2008Sherwood Services AgVessel sealer and divider
US7384421Sep 30, 2005Jun 10, 2008Sherwood Services AgSlide-activated cutting assembly
US7435249Apr 6, 2001Oct 14, 2008Covidien AgElectrosurgical instruments which reduces collateral damage to adjacent tissue
US7442193Nov 20, 2003Oct 28, 2008Covidien AgElectrically conductive/insulative over-shoe for tissue fusion
US7442194May 7, 2007Oct 28, 2008Covidien AgBipolar forceps having monopolar extension
US7445621May 7, 2007Nov 4, 2008Covidien AgBipolar forceps having monopolar extension
US7458972Mar 27, 2007Dec 2, 2008Covidien AgElectrosurgical electrode having a non-conductive porous ceramic coating
US7473253Apr 6, 2001Jan 6, 2009Covidien AgVessel sealer and divider with non-conductive stop members
US7479148Oct 28, 2005Jan 20, 2009Crescendo Technologies, LlcUltrasonic shear with asymmetrical motion
US7481810May 7, 2007Jan 27, 2009Covidien AgBipolar forceps having monopolar extension
US7491201May 14, 2004Feb 17, 2009Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US7491202Mar 31, 2005Feb 17, 2009Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7500975Oct 3, 2005Mar 10, 2009Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7510556Nov 24, 2004Mar 31, 2009Coviden AgVessel sealing instrument
US7513898Jan 16, 2008Apr 7, 2009Covidien AgVessel sealing instrument
US7540872Sep 19, 2005Jun 2, 2009Covidien AgArticulating bipolar electrosurgical instrument
US7553312Dec 21, 2007Jun 30, 2009Covidien AgVessel sealing instrument
US7582087Apr 6, 2001Sep 1, 2009Covidien AgVessel sealing instrument
US7594916Nov 22, 2005Sep 29, 2009Covidien AgElectrosurgical forceps with energy based tissue division
US7597693Jun 13, 2003Oct 6, 2009Covidien AgVessel sealer and divider for use with small trocars and cannulas
US7628791Aug 19, 2005Dec 8, 2009Covidien AgSingle action tissue sealer
US7628792Sep 22, 2005Dec 8, 2009Covidien AgBilateral foot jaws
US7641653May 4, 2006Jan 5, 2010Covidien AgOpen vessel sealing forceps disposable handswitch
US7655007Dec 18, 2006Feb 2, 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US7686804Jan 10, 2006Mar 30, 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US7686827Oct 21, 2005Mar 30, 2010Covidien AgMagnetic closure mechanism for hemostat
US7708735Jul 19, 2005May 4, 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US7744615Jul 18, 2006Jun 29, 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7753909Apr 29, 2004Jul 13, 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US7766910Nov 9, 2006Aug 3, 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US7771425Feb 6, 2006Aug 10, 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US7776036Mar 13, 2003Aug 17, 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US7776037Jul 7, 2006Aug 17, 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US7780659Aug 29, 2003Aug 24, 2010Olympus CorporationUltrasound treatment system
US7789878Sep 29, 2006Sep 7, 2010Covidien AgIn-line vessel sealer and divider
US7799026Nov 13, 2003Sep 21, 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7799028Sep 26, 2008Sep 21, 2010Covidien AgArticulating bipolar electrosurgical instrument
US7811283Oct 8, 2004Oct 12, 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7819872Sep 29, 2006Oct 26, 2010Covidien AgFlexible endoscopic catheter with ligasure
US7828798Mar 27, 2008Nov 9, 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US7837685Jul 13, 2005Nov 23, 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US7846158May 5, 2006Dec 7, 2010Covidien AgApparatus and method for electrode thermosurgery
US7846161Sep 29, 2006Dec 7, 2010Covidien AgInsulating boot for electrosurgical forceps
US7857812Dec 18, 2006Dec 28, 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7877852Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US7877853Sep 19, 2008Feb 1, 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US7879035Nov 8, 2006Feb 1, 2011Covidien AgInsulating boot for electrosurgical forceps
US7887535Aug 17, 2004Feb 15, 2011Covidien AgVessel sealing wave jaw
US7887536Aug 19, 2009Feb 15, 2011Covidien AgVessel sealing instrument
US7896878Mar 12, 2009Mar 1, 2011Coviden AgVessel sealing instrument
US7901423Nov 30, 2007Mar 8, 2011Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US7909823Jan 17, 2006Mar 22, 2011Covidien AgOpen vessel sealing instrument
US7922718Oct 12, 2006Apr 12, 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US7922953Sep 28, 2006Apr 12, 2011Covidien AgMethod for manufacturing an end effector assembly
US7931649Feb 14, 2007Apr 26, 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US7935052Feb 14, 2007May 3, 2011Covidien AgForceps with spring loaded end effector assembly
US7938822May 12, 2010May 10, 2011Icecure Medical Ltd.Heating and cooling of cryosurgical instrument using a single cryogen
US7947041Aug 19, 2009May 24, 2011Covidien AgVessel sealing instrument
US7951149Oct 17, 2006May 31, 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US7951150Feb 22, 2010May 31, 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US7955332Sep 21, 2005Jun 7, 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US7963965May 10, 2007Jun 21, 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US7967814Feb 5, 2010Jun 28, 2011Icecure Medical Ltd.Cryoprobe with vibrating mechanism
US7967815Mar 25, 2010Jun 28, 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat transfer
US8002782Sep 23, 2005Aug 23, 2011Ethicon Endo-Surgery, Inc.Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments
US8016827Oct 9, 2008Sep 13, 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US8034052Nov 1, 2010Oct 11, 2011Covidien AgApparatus and method for electrode thermosurgery
US8057498Nov 30, 2007Nov 15, 2011Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US8058771Jul 15, 2009Nov 15, 2011Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8070746May 25, 2007Dec 6, 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US8080005Jul 29, 2010Dec 20, 2011Icecure Medical Ltd.Closed loop cryosurgical pressure and flow regulated system
US8083733Apr 13, 2009Dec 27, 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat exchange
US8123743Jul 29, 2008Feb 28, 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US8128624May 30, 2006Mar 6, 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US8133254Sep 18, 2009Mar 13, 2012Tyco Healthcare Group LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8142461Mar 22, 2007Mar 27, 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US8142473Oct 3, 2008Mar 27, 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US8147489Feb 17, 2011Apr 3, 2012Covidien AgOpen vessel sealing instrument
US8162812Mar 12, 2010Apr 24, 2012Icecure Medical Ltd.Combined cryotherapy and brachytherapy device and method
US8162973Aug 15, 2008Apr 24, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8182502Feb 7, 2011May 22, 2012Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US8192433Aug 21, 2007Jun 5, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8197479Dec 10, 2008Jun 12, 2012Tyco Healthcare Group LpVessel sealer and divider
US8197633Mar 15, 2011Jun 12, 2012Covidien AgMethod for manufacturing an end effector assembly
US8211105May 7, 2007Jul 3, 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416Sep 12, 2008Jul 17, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US8226675Mar 22, 2007Jul 24, 2012Ethicon Endo-Surgery, Inc.Surgical instruments
US8235992Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US8235993Sep 24, 2008Aug 7, 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US8236019Mar 26, 2010Aug 7, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8236025Sep 23, 2008Aug 7, 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US8241282Sep 5, 2008Aug 14, 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US8241283Sep 17, 2008Aug 14, 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US8241284Jan 5, 2009Aug 14, 2012Covidien AgVessel sealer and divider with non-conductive stop members
US8241312Aug 17, 2005Aug 14, 2012Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US8251996Sep 23, 2008Aug 28, 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US8252012Jul 31, 2007Aug 28, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with modulator
US8253303Nov 11, 2011Aug 28, 2012Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8257352Sep 7, 2010Sep 4, 2012Covidien AgBipolar forceps having monopolar extension
US8257377Jul 27, 2007Sep 4, 2012Ethicon Endo-Surgery, Inc.Multiple end effectors ultrasonic surgical instruments
US8257387Aug 15, 2008Sep 4, 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US8267935Apr 4, 2007Sep 18, 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US8267936Sep 23, 2008Sep 18, 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US8277447Nov 18, 2009Oct 2, 2012Covidien AgSingle action tissue sealer
US8298228Sep 16, 2008Oct 30, 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8298232Mar 24, 2009Oct 30, 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US8303582Sep 15, 2008Nov 6, 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586Feb 10, 2009Nov 6, 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317787Aug 28, 2008Nov 27, 2012Covidien LpTissue fusion jaw angle improvement
US8319400Jun 24, 2009Nov 27, 2012Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8323302Feb 11, 2010Dec 4, 2012Ethicon Endo-Surgery, Inc.Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8333765Jun 4, 2012Dec 18, 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US8334635Jun 24, 2009Dec 18, 2012Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US8344596Jun 24, 2009Jan 1, 2013Ethicon Endo-Surgery, Inc.Transducer arrangements for ultrasonic surgical instruments
US8348948Jul 29, 2010Jan 8, 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US8348967Jul 27, 2007Jan 8, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8361071Aug 28, 2008Jan 29, 2013Covidien AgVessel sealing forceps with disposable electrodes
US8361072Nov 19, 2010Jan 29, 2013Covidien AgInsulating boot for electrosurgical forceps
US8366709Dec 27, 2011Feb 5, 2013Covidien AgArticulating bipolar electrosurgical instrument
US8372102Apr 20, 2012Feb 12, 2013Ethicon Endo-Surgery, Inc.Folded ultrasonic end effectors with increased active length
US8382754Jan 26, 2009Feb 26, 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8382782Feb 11, 2010Feb 26, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8388647Oct 28, 2009Mar 5, 2013Covidien LpApparatus for tissue sealing
US8394095Jan 12, 2011Mar 12, 2013Covidien AgInsulating boot for electrosurgical forceps
US8394096Apr 11, 2011Mar 12, 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US8419759Feb 11, 2010Apr 16, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument with comb-like tissue trimming device
US8425504Nov 30, 2011Apr 23, 2013Covidien LpRadiofrequency fusion of cardiac tissue
US8430898Jul 31, 2007Apr 30, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8454602May 4, 2012Jun 4, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8461744Jul 15, 2009Jun 11, 2013Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US8469956Jul 21, 2008Jun 25, 2013Covidien LpVariable resistor jaw
US8469957Oct 7, 2008Jun 25, 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8469981Feb 11, 2010Jun 25, 2013Ethicon Endo-Surgery, Inc.Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8469982Apr 7, 2011Jun 25, 2013Ethicon Endo-Surgery, Inc.Curved clamp arm for use with ultrasonic surgical instruments
US8486096Feb 11, 2010Jul 16, 2013Ethicon Endo-Surgery, Inc.Dual purpose surgical instrument for cutting and coagulating tissue
US8486107Oct 20, 2008Jul 16, 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US8496656Jan 16, 2009Jul 30, 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US8512365Jul 31, 2007Aug 20, 2013Ethicon Endo-Surgery, Inc.Surgical instruments
US8523889Jul 27, 2007Sep 3, 2013Ethicon Endo-Surgery, Inc.Ultrasonic end effectors with increased active length
US8523898Aug 10, 2012Sep 3, 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US8531064Feb 11, 2010Sep 10, 2013Ethicon Endo-Surgery, Inc.Ultrasonically powered surgical instruments with rotating cutting implement
US8535312Sep 25, 2008Sep 17, 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US8540711Jul 10, 2007Sep 24, 2013Covidien AgVessel sealer and divider
US8546996Aug 14, 2012Oct 1, 2013Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US8546999Jul 23, 2012Oct 1, 2013Ethicon Endo-Surgery, Inc.Housing arrangements for ultrasonic surgical instruments
US8551091Mar 30, 2011Oct 8, 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US8568444Mar 7, 2012Oct 29, 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US8574228Jun 30, 2010Nov 5, 2013Olympus CorporationUltrasound treatment system
US8579928Feb 11, 2010Nov 12, 2013Ethicon Endo-Surgery, Inc.Outer sheath and blade arrangements for ultrasonic surgical instruments
US8591506Oct 16, 2012Nov 26, 2013Covidien AgVessel sealing system
US8591536Oct 11, 2011Nov 26, 2013Ethicon Endo-Surgery, Inc.Ultrasonic surgical instrument blades
US8597296Aug 31, 2012Dec 3, 2013Covidien AgBipolar forceps having monopolar extension
US8597297Aug 29, 2006Dec 3, 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US8623017Jul 23, 2009Jan 7, 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US8623027Oct 3, 2008Jan 7, 2014Ethicon Endo-Surgery, Inc.Ergonomic surgical instruments
US8623276Feb 9, 2009Jan 7, 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US8636761Oct 9, 2008Jan 28, 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US8641713Sep 15, 2010Feb 4, 2014Covidien AgFlexible endoscopic catheter with ligasure
US8647341Oct 27, 2006Feb 11, 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US8650728Jun 24, 2009Feb 18, 2014Ethicon Endo-Surgery, Inc.Method of assembling a transducer for a surgical instrument
US8652155Aug 1, 2011Feb 18, 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US8663220Jul 15, 2009Mar 4, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments
US8668689Apr 19, 2010Mar 11, 2014Covidien AgIn-line vessel sealer and divider
US8672935Jun 30, 2010Mar 18, 2014Olympus CorporationUltrasound treatment system
US8672959Jun 21, 2013Mar 18, 2014Ethicon Endo-Surgery, Inc.Curved clamp arm for use with ultrasonic surgical instruments
US8679114Apr 23, 2010Mar 25, 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US8696667Aug 9, 2012Apr 15, 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US8704425Aug 13, 2012Apr 22, 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8709031Aug 27, 2012Apr 29, 2014Ethicon Endo-Surgery, Inc.Methods for driving an ultrasonic surgical instrument with modulator
US8734443Sep 19, 2008May 27, 2014Covidien LpVessel sealer and divider for large tissue structures
US8740901Jan 20, 2010Jun 3, 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US8749116Aug 14, 2012Jun 10, 2014Ethicon Endo-Surgery, Inc.Devices and techniques for cutting and coagulating tissue
US8754570Dec 17, 2012Jun 17, 2014Ethicon Endo-Surgery, Inc.Ultrasonic surgical instruments comprising transducer arrangements
US8764748Jan 28, 2009Jul 1, 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US8773001 *Jun 7, 2013Jul 8, 2014Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
US8779648Aug 13, 2012Jul 15, 2014Ethicon Endo-Surgery, Inc.Ultrasonic device for cutting and coagulating with stepped output
US8784417Aug 28, 2008Jul 22, 2014Covidien LpTissue fusion jaw angle improvement
US8795274Aug 28, 2008Aug 5, 2014Covidien LpTissue fusion jaw angle improvement
US8808319Jul 27, 2007Aug 19, 2014Ethicon Endo-Surgery, Inc.Surgical instruments
US8814895Jun 28, 2012Aug 26, 2014Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US20130274732 *Jun 7, 2013Oct 17, 2013Ethicon Endo-Surgery, Inc.Rotating transducer mount for ultrasonic surgical instruments
USRE44834Dec 7, 2012Apr 8, 2014Covidien AgInsulating boot for electrosurgical forceps
CN101815461BJul 24, 2008Dec 26, 2012伊西康内外科公司Improved surgical instruments
EP0238667A1 *Jul 15, 1986Sep 30, 1987Sumitomo Bakelite Company LimitedUltrasonic instrument for surgical operations
EP0695535A1 *Aug 1, 1995Feb 7, 1996Ethicon Endo-Surgery, Inc.Ultrasonic haemostatic and cutting instrument
EP0830845A1Sep 12, 1997Mar 25, 1998United States Surgical CorporationUltrasonic dissector
EP0897696A1Aug 13, 1998Feb 24, 1999United States Surgical CorporationUltrasonic dissection and coagulation system
EP1125555A1Jan 26, 1994Aug 22, 2001Ethicon Endo-Surgery, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
EP1364618A1Sep 12, 1997Nov 26, 2003United States Surgical CorporationUltrasonic dissector
EP1433425A1Jan 26, 1994Jun 30, 2004Ethicon Endo-Surgery, Inc.Clamp coagulator/cutting system for ultrasonic surgical instruments
EP1698289A2 *Sep 30, 1997Sep 6, 2006United States Surgical CorporationInstrument for cutting tissue
EP2292161A2Sep 30, 1997Mar 9, 2011United States Surgical CorporationInstrument for cutting tissue
EP2301452A2Sep 8, 2000Mar 30, 2011Ethicon Endo-Surgery, Inc.Multifunctional curved blade for use with an ultrasonic surgical instrument
EP2311393A1Sep 30, 1997Apr 20, 2011United States Surgical CorporationInstrument for cutting tissue
EP2314199A2Sep 8, 2000Apr 27, 2011Ethicon Endo-Surgery, Inc.Multifunctional curved blade for use with an ultrasonic surgical instrument
EP2322106A2Sep 8, 2000May 18, 2011Ethicon Endo-Surgery, Inc.Blades with functional balance asymmetries for use with ultrasonic surgical instruments
WO1991011965A1 *Feb 5, 1991Aug 22, 1991Advanced Osseous TechApparatus for implantation and extraction of prostheses
WO1994016631A1 *Jan 26, 1994Aug 4, 1994Ultracision IncClamp coagulator/cutting system for ultrasonic surgical instruments
WO1998014126A1Sep 30, 1997Apr 9, 1998United States Surgical CorpUltrasonic dissection and coagulation system
WO1999035982A1Jan 19, 1999Jul 22, 1999Michael John Radley YoungUltrasonic cutting tool
WO2003101531A2Jun 4, 2003Dec 11, 2003Sound Surgical Tech LlcUltrasonic device and method for tissue coagulation
Classifications
U.S. Classification606/1, 606/158
International ClassificationA61B17/12, A61B17/28, A61B17/00, B29C65/08, A61B17/32, B29C65/74, A61B18/20, A61B18/00, A61B17/11
Cooperative ClassificationA61B18/20, A61B17/11, B29L2023/005, B29C66/861, A61B17/320092, A61B17/320068, B29C65/7443, B29C65/08, A61B17/12, A61B18/00, A61B2017/00504
European ClassificationB29C65/08, B29C66/861, B29C65/7443, A61B18/00, A61B17/12, A61B17/11, A61B17/32U, A61B18/20