US3863004A - Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation - Google Patents

Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation Download PDF

Info

Publication number
US3863004A
US3863004A US236159A US23615972A US3863004A US 3863004 A US3863004 A US 3863004A US 236159 A US236159 A US 236159A US 23615972 A US23615972 A US 23615972A US 3863004 A US3863004 A US 3863004A
Authority
US
United States
Prior art keywords
macroprotein
set forth
particles
denatured
divalent tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236159A
Inventor
Robert G Wolfangel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mallinckrodt Inc
Mallinckrodt Chemical Works
Original Assignee
Mallinckrodt Chemical Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mallinckrodt Chemical Works filed Critical Mallinckrodt Chemical Works
Priority to US236159A priority Critical patent/US3863004A/en
Priority to GB1188673A priority patent/GB1409176A/en
Priority to IL41767A priority patent/IL41767A/en
Priority to AU53375/73A priority patent/AU472255B2/en
Priority to BE1004909A priority patent/BE796962A/en
Priority to DE19732314059 priority patent/DE2314059A1/en
Priority to NL7303842A priority patent/NL7303842A/xx
Priority to IT48899/73A priority patent/IT989625B/en
Priority to FR7309886A priority patent/FR2182880B1/fr
Priority to JP3253773A priority patent/JPS5328971B2/ja
Application granted granted Critical
Publication of US3863004A publication Critical patent/US3863004A/en
Assigned to MALLINCKRODT, INC. reassignment MALLINCKRODT, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MALCO, INC.
Assigned to MALLINCKRODT MEDICAL, INC., A DE CORP. reassignment MALLINCKRODT MEDICAL, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MALLINCKRODT, INC., A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/081Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the protein being an albumin, e.g. human serum albumin [HSA], bovine serum albumin [BSA], ovalbumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1217Dispersions, suspensions, colloids, emulsions, e.g. perfluorinated emulsion, sols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1255Granulates, agglomerates, microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo

Definitions

  • An improved composition suitable for tagging with technetium-99m and use in lung scanning procedures consists essentially of an injectable suspension in buffer solution of particles of a denatured macroprotein having divalent tin bound thereto.
  • the macroprotein has a molecular weight of at least about 20,000.
  • a method for preparing the inject-able suspension by treating macroaggregates or mierospheres of a denatured macroprotein with a solution containing divalent tin ions is also provided.
  • Macroaggregated macroproteins have found use as carriers for radionuclides useful in diagnostic radioscanning techniques.
  • such proteins for example human serum albumin labeled or tagged with a radionuclide, have been used in the diagnosis of pulmonary circulatory defects.
  • radioactive macroprotein particles must be labeled with a gamma emitting radionuclide and be within a prescribed size range.
  • the labeled particles must also be non-toxic and biodegradable, i.e., physically or chemically removable from the lungs in a relatively short period.
  • Macroaggregated human serum albumin tagged with iodine-131 has become widely used for perfusion lung scanning. While the biological properties of this scanning agent are excellent, an important objection to its use arises from the decay scheme of iodine-l 3 I. In the course of decay, iodine-131 emits a beta particle, its gamma rays are difficult to collimate effectively, and it has an 8-day physical half-life. As a result of these characteristics, a patient receiving an injection of iodine- 13l-tagged albumin is exposed to a high radiation dose, not only to the lungs but to other organs such as the thyroid gland as well.
  • a radionuclide which may advantageously be substituted for iodine-131 in lung scanning is technetium- 99m which emits only gamma rays which can be easily collimated, and has a physical half-life of only 6 hours.
  • technetium- 99m which emits only gamma rays which can be easily collimated, and has a physical half-life of only 6 hours.
  • an aqueous solution of albumin can be dispersed in hot, waterimmiscible oil to precipitate the albumin in the form of microspheres.
  • the most common has involved first tagging a solution of albumin with technetium and then precipitating to form the solid albumin in particles ofthe desired size. Where this method is utilized, however, an immediate microscopic examination of the particles must be made to assure their proper size, and purification is required to remove unreacted technetium from the suspension.
  • sterility tests cannot be completed on the denatured and precipitated protein before it is used in human patients.
  • a technetium sulfur colloid is formed in the presence of denatured albumin microspheres causing the spheres to become tagged with the technetium.
  • labeling is not very efficient by this method, and several washes of the protein particles are required to remove the unbound technetium.
  • the tagged microspheres produced by this method are prone to stick together and it becomes necessary to disperse the resulting agglomerates by an appropriate technique such as ultrasonic treatment, immediately prior to injection into a patient.
  • the bond between the technetium and the microspheres is somewhat labile, and if the suspension is allowed to stand unused for as little as an hour or so after preparation, both the purification and ultrasonic treatment must be repeated before injection.
  • technetium-tagged albumin has not been found generally useful as a lung scanning agent, despite its desirable radiation properties.
  • the present invention is directed to a composition suitable for tagging with technetium-99m and use in lung scanning procedures.
  • composition consists essentially of an injectable suspension in a buffer solution of particles of a denatured macroprotein having divalent tin bound thereto, the macroprotein having a molecular weight of at least about 20,000.
  • the invention is further directed to a process for preparing the composition. In this process, particles of a denatured macroprotein are contacted with a solution containing a water-soluble salt of divalent tin causing divalent tin to be bound to the macroprotein. The macroprotein having divalent tin bound thereto is then washed and suspended in buffer solution.
  • the macroprotein constituent of the composition of the invention is preferably denatured human serum albumin, a protein which is particularly suitable for use in lung scanning. It will be understood, however, that any denatured macroprotein having a molecular weight of at least about 20,000 may have divalent tin bound thereto in accordance with the invention to render it more susceptible to labeling with a radioactive isotope of technetium.
  • the particles of the protein constituent of the composition of the invention are characterized as macroaggregates.
  • Macroaggregatcs are considered to be particles of irregular form having an average diameter of between about 5 and about 80 microns.
  • the mean size of the particles is preferably between about l5 and about 30 microns.
  • the improved susceptibility of the suspended protein macroaggregates to tagging with technetium99m relates to the divalent tin which is bound to the protein.
  • a suspension of serum albumin treated with divalent tin in accordance with the invention is subsequently treated with a solution containing heptavalent technetium-99m, for example a solution of sodium pertechnetate, upwards of 90% of the technetium is rapidly and firmly bound to the serum protein.
  • human serum albumin or other appropriate macroprotein is first denatured and then precipitated to form particles of the desired size.
  • Various methods are known to the art for producing macroaggregates 'or microspheres of denatured protein. While any of these methods may be successfully used, excellent results have been obtained using a method wherein a dilute aqueous solution of human serum albumin is first heated at a temperature of about '70l00C., preferably about 85C., to denature the protein, then cooled to a temperature on the order of l8-22C., preferably about 20C.
  • the albumin is then precipitated by slowly adding a dilute acid, approximately 0.1N, until the pH is about 4.8-5.2, i.e., the isoelectric pH of the protein being about 4.9.
  • Hydrochloric acid is preferred for use in adjusting the pH to precipitate the denatured protein.
  • other mineral acids or acetic acid may also be employed.
  • the particle size of the macroaggregates thus precipitated is typically in the range of 5-80 microns with a mean particle size of -30 microns.
  • the integrity of the precipitated aggregates is further improved if the suspension is reheated for a short period of time following precipitation.
  • the reheating temperature is of approximately the same order as the denaturing temperature.
  • the macroaggregated albumin particles are separated from the suspension, washed and resuspended in a fresh buffer solution having essentially the same pH as the isoelectric pH of the protein (i.e.,
  • a convenient buffer solution is an acetate buffer having a pH of 4.9 (0.052N sodium acetate and 0.02N hydrochloric acid).
  • Binding of the protein aggregates with divalent tin is effected by adding to the protein suspension an aqueous solution containing stannous ions. Contact of the macroaggregates with stannous ions causes divalent tin to become bound to the protein.
  • stannous chloride is preferred because of its solubility and greater stability, although other watersoluble stannous salts, such as stannous sulfate. may also be used. lt is necessary. however. to employ a divalent tin solution since tetravalent tin ions are not effective.
  • stannous ions are available for binding to the protein if the mixture of the protein suspension and stannous salt solution contains approximately 3 mg. of stannous ions per mg. of macroaggregates. With such proportions, binding of divalent tin to the protein molecule occurs quickly at room temperature and appears to be substantially complete in about 15 minutes or so. For optimum results, however, the mixture containing stannous ions and protein should be allowed to stand for a longer time, preferably about 24 hours. After the treatment period is complete, the aggregates are separated from the liquid phase, washed with and rcsuspended in fresh buffer solution. After resuspcnsion, the macroaggregates may be stored for a substantial period at 4C.
  • the precipitation and tin-binding steps of the process are combined into a single step.
  • the stannous salt is dissolved in the dilute acid used to precipitate the heat-denatured protein thus eliminating one step of the above-described process. Whichever procedure is followed, the same end result is realized, i.e., the preparation of a suspension of precipitated de natured protein particles having divalent tin bound thereto.
  • the resulting suspensions have a shelf life of approximately 60 days when stored at 4C. before such characteristics as particle integrity and susceptability to radionuclide tagging begin to deteriorate. If 60 days of storage are significantly exceeded, the tagging efficiency normally falls off to the extent that the product should be discarded.
  • the shelf life of the macroaggregate suspensions may be extended beyond 60 days by freezing the suspension and storing it in the frozen state.
  • the shelf life of the frozen suspension has been found to extend to approximately 4 months or longer. Storage in the frozen state has not generally been attractive, however, since the macroaggregate particles tend to clump together during subsequent thawing and form agglomerates which are too large for use in lung scanning procedures.
  • an antiagglomerating agent such as propylene glycol, glycerin, gelatin or sucrose.
  • the preferred antiagglomerating agent is propylene glycol. Agglomeration of the macroprotein particles is effectively prevented by inclusion of the anti-agglomerating agent in the suspension immediately prior to freezing.
  • a suitable preservative is also advisable.
  • the addition of approximately 1% by weight of benzyl alcohol to the initial protein solutions or to the finished suspensions of the invention has been found acceptable and effective.
  • Other nontoxic bacte riostatic preservatives may be substituted for benzyl alcohol.
  • the tin-treated protein of the suspension is conveniently and easily tagged with technetium-99m by adding the sodium pertechnetate eluate from a technetium generator directly to the suspension.
  • Generators suitable for preparation of the eluate are commercially available. For example, one such generator is described in Shumate US. Pat. No. 3,535,085, dated October 20, 1970.
  • binding of the technetium to the protein occurs spontaneously and quickly with an efficiency of 95% or more.
  • about 30 minutes are allowed to optimize the specific activity of the tagged suspension.
  • the mechanism of tagging is not clear but it involves oxidation of the divalent tin to the tetravalent state with concomitant reduction of the heptavalent technetium to a lower valency. Tetravalent tin remains attached to the protein. Within minutes of the addition of the technetium eluate thereto, the suspension of tagged albumin may be intravenously injected directly into animals or humans without any further treatment.
  • the effectiveness of lung scanning is optimized by using sufficient eluate to provide a tagged suspension having a specific activity of up to approximately 20 mci TcO /mg. of the macroaggregated albumin.
  • the lungs of a subject contain 90% or more of the injected technetium-99m.
  • the presence or absence of a pathological condition is then determined by radioscanning the lungs of the patient and comparing the emission pattern thereof with a standard pattern.
  • the tagged denatured albumin is eliminated from the subjects lungs at a rate corresponding to a biological half life of approximately 510 hours.
  • the suspensions of the tin-treated albumin macroaggregates may be stored for substantial periods of time while still retaining their potency. Then, when desired, they may be tagged with technetium merely by adding a solution containing sodium pertechnetate for immediate use as a lung scanning agent without further treatment.
  • the invention thus obviates the costly, timeconsuming and difficult procedures which have heretofore been necessary.
  • EXAMPLE 1 A solution containing fresh human serum albumin (500 mg.) in a 1% by weight aqueous solution of benzyl alcohol (45 cc.) was heated for minutes at 85C. with slow stirring to denature the protein. The solution was then transferred to a cold water bath, and when the temperature had reached l8-22C. 2 ml. of 0.085N hydrochloric acid solution was slowly added over a period of about 3 minutes with rapid stirring. The pH of the resulting suspension of precipitated albumin was 4.8 to 5.2. The suspension was then reheated to 83C. for 5 minutes with slow stirring, causing the precipitated albumin aggregates to become more compact and less subject to fragmentation.
  • the particle size analysis of the precipitated macroaggregates indicated the size range to be 5-80 microns, with a mean of 15-30 microns.
  • the macroaggregates were collected by centrifugation and resuspcndcd in 30 ml. of an acetate buffer solution having a pH of 4.8 (0.052N sodium acetate and 0.02N hydrochloric acid).
  • EXAMPLE 2 To the suspension produced in Example 1 was added 0.6 ml. ofa 1N HCl solution containing 50 mg. of stannous chloride per ml. This is equivalent to approximately 3 mg. of divalent tin per I00 mg. of albumin. The pH of the resulting mixture was 4.04.l. Two ml. of a 0.4M sodium acetate solution was added, and the mixture allowed to incubate for 24 hours. After the incubation period was complete, the protein macroaggregates were washed three times by centrifugation, with resuspension in 30 ml. of fresh acetate buffer following each washing. The treated particles were finally resuspended in 50 ml. of pH 4.8 acetate buffer containing 1% by weight benzyl alcohol.
  • the resulting suspensions may be stored at 4C. or frozen as previously described. If they are to be stored at 4C., the suspensions are diluted 1:5 with acetate buffer (pH 4.8) containing 1% benzyl alcohol. If theyare to be frozen the suspensions are diluted I15 with acetate buffer (pH 4.8) containing 1% benzyl alcohol and 8-16% propylene glycol, for example.
  • a composition suitable for rapid tagging with technetium-99m and use in lung scanning procedures consisting essentially of an injectable suspension in a buffer solution of particles of denatured macroprotein having divalent tin bound thereto, said macroprotein having a molecular weight of at least about 20,000.
  • composition as set forth in claim 1 wherein said macroprotein comprises particles of macroaggregated human serum albumin.
  • composition as set forth in claim 1 wherein the size of the particles is substantially between about 5 and about microns.
  • composition as set forth in claim 4 wherein the mean size of said particles is between about 15 and about 30 microns.
  • composition as set forth in claim 1 including macroprotein particles in the form of microspheres.
  • an antiagglomerating agent selected from the group consisting of propylene glycol, sucrose, glycerin and gelatin.
  • a process for preparing a buffered injectable sus pension of particles of denatured macroprotein suitable for rapid tagging with technetium-99m and use in lung scanning procedures comprising the steps of:

Abstract

An improved composition suitable for tagging with technetium-99m and use in lung scanning procedures consists essentially of an injectable suspension in buffer solution of particles of a denatured macroprotein having divalent tin bound thereto. The macroprotein has a molecular weight of at least about 20,000. A method for preparing the injectable suspension by treating macroaggregates or microspheres of a denatured macroprotein with a solution containing divalent tin ions is also provided.

Description

United States Patent 1 [1 1 Wolfangel I DENATURED MACROIROTEIN WITH DIVALENT TIN FOR TAGGING WITH TECHNETIUM-99M AND METHOD OF PREPARATION [75] Inventor: Robert G. Wolfangel, St. Louis. Mo.
[73] Assignee: Mallinckrodt Chemical Works. St.
Louis. Mo.
[22] Filed: Mar. 20, 1972 [2]] App]. No; 236.159
OTHER PUBLICATIONS Lin et al., Journal of Nuclear Medicine, Vol. 12. No. 5 (1971) pp. 204-21]. Eckelman et al.. Journal of Nuclear Medicine, Vol.
[ Jan. 28, 1975 12. No. 11 (197]) pp. 707-710.
Morcellet. Use of TinTc 99rn-Nuclear Sci. Abs. Vol 24. No 4.. p. 617. Feb. 28. 1970. Item No. 6078. Charamza. Chemical Abstracts. Vol. 72. 1970 p.86, Item No. 87066.
De Paoli. Nuclear Sci. Abs.. Vol. 20. No. 23 Dec. 15. 1966. Item No, 43390 Albumin Macroaggregatcs etc."
Primary Examiner-Benjamin R. Padgett Attorney, Agent. or FirmKocnig. Senniger, Powers. and Leavitt ABSTRACT An improved composition suitable for tagging with technetium-99m and use in lung scanning procedures consists essentially of an injectable suspension in buffer solution of particles of a denatured macroprotein having divalent tin bound thereto. The macroprotein has a molecular weight of at least about 20,000. A method for preparing the inject-able suspension by treating macroaggregates or mierospheres of a denatured macroprotein with a solution containing divalent tin ions is also provided.
14 Claims, No Drawings DENATURED MACROPROTEIN WITH DIVALENT TIN FOR TAGGING WITH TECHNETIUM-99M AND METHOD OF PREPARATION BACKGROUND OF THE INVENTION This invention relates to the field of radiopharmaceutical diagnostic testing and more particularly to an injectable suspension of solid particulate denatured macroprotein suitable for tagging with technetium-99m and use in lung scanning procedures.
Macroaggregated macroproteins have found use as carriers for radionuclides useful in diagnostic radioscanning techniques. In particular, such proteins, for example human serum albumin labeled or tagged with a radionuclide, have been used in the diagnosis of pulmonary circulatory defects. The distribution in the lungs of radioactively labeled protein macroaggregates, as determined by isotope radioscanning, indicates the presence or absence of certain pathological conditions.
To be useful in lung scanning, radioactive macroprotein particles must be labeled with a gamma emitting radionuclide and be within a prescribed size range. The labeled particles must also be non-toxic and biodegradable, i.e., physically or chemically removable from the lungs in a relatively short period.
Macroaggregated human serum albumin tagged with iodine-131 has become widely used for perfusion lung scanning. While the biological properties of this scanning agent are excellent, an important objection to its use arises from the decay scheme of iodine-l 3 I. In the course of decay, iodine-131 emits a beta particle, its gamma rays are difficult to collimate effectively, and it has an 8-day physical half-life. As a result of these characteristics, a patient receiving an injection of iodine- 13l-tagged albumin is exposed to a high radiation dose, not only to the lungs but to other organs such as the thyroid gland as well.
A radionuclide which may advantageously be substituted for iodine-131 in lung scanning is technetium- 99m which emits only gamma rays which can be easily collimated, and has a physical half-life of only 6 hours. Chiefly on the basis of favorable dosimetry profiles, a host of technetium-99m labeled particles have been prepared and used in lung scanning. A comprehensive review of the present state of knowledge in this field was published by G. V. Taplin and N. S. MacDonald in Seminars in Nuclear Medicine, Vol. I, No. 2 (April), 1971, pages 132-52.
The safety, convenience and effectiveness of the lung scanning techniques employing technetium-99m have heretofore been limited, however, by problems associated with the preparation of technetium-tagged albumin. To prepare serum albumin for use in lung scanning, it must be both denatured and precipitated in the form of macroaggregates or microspheres of a particular range of particle size. To prepare the albumin in such form, a solution of albumin is typically heated to denature the protein after which the solution is cooled and the albumin precipitated by adjusting the pH to the isoelectric point (approximately pH 4.9). Particles of the desired size are obtained by suitable control of both pH and temperature. Alternatively, an aqueous solution of albumin can be dispersed in hot, waterimmiscible oil to precipitate the albumin in the form of microspheres. Of the several known methods for tagging protein particles with technetium-99m, the most common has involved first tagging a solution of albumin with technetium and then precipitating to form the solid albumin in particles ofthe desired size. Where this method is utilized, however, an immediate microscopic examination of the particles must be made to assure their proper size, and purification is required to remove unreacted technetium from the suspension. Moreover. because of the short half-life of technetium-99m, sterility tests cannot be completed on the denatured and precipitated protein before it is used in human patients.
In an alternative method for preparing technetium- 99m tagged macroaggregates, a technetium sulfur colloid is formed in the presence of denatured albumin microspheres causing the spheres to become tagged with the technetium. However, labeling is not very efficient by this method, and several washes of the protein particles are required to remove the unbound technetium. Also, the tagged microspheres produced by this method are prone to stick together and it becomes necessary to disperse the resulting agglomerates by an appropriate technique such as ultrasonic treatment, immediately prior to injection into a patient. Furthermore, the bond between the technetium and the microspheres is somewhat labile, and if the suspension is allowed to stand unused for as little as an hour or so after preparation, both the purification and ultrasonic treatment must be repeated before injection.
As a consequence of the various disadvantages outlined above, technetium-tagged albumin has not been found generally useful as a lung scanning agent, despite its desirable radiation properties.
SUMMARY OF THE INVENTION Among the objects of the present invention may be noted the provision of an improved composition which may be readily and efficiently tagged with technetium- 99m to produce an injectable suspension for use in lung scanning procedures; the provision of such a composition which can be stored for substantial periods of time without degradation, be tagged with technetium-99m and then used for injection without particle size examination, ultrasonic treatment or purification; and the provision of processes for preparing the composition. Other objects and features will be in part apparent and in part pointed out hereinafter.
In essence, therefore, the present invention is directed to a composition suitable for tagging with technetium-99m and use in lung scanning procedures. The
'composition consists essentially of an injectable suspension in a buffer solution of particles of a denatured macroprotein having divalent tin bound thereto, the macroprotein having a molecular weight of at least about 20,000. The invention is further directed to a process for preparing the composition. In this process, particles of a denatured macroprotein are contacted with a solution containing a water-soluble salt of divalent tin causing divalent tin to be bound to the macroprotein. The macroprotein having divalent tin bound thereto is then washed and suspended in buffer solution.
DESCRIPTION OF THE PREFERRED EMBODIMENTS It has now been discovered that an injectable suspension ofa denatured and precipitated macroprotein having divalent tin bound thereto may be prepared and stored without degradation for substantial periods prior to use. Even more significantly, it has been found that the macroprotein of the suspension may be quickly and easily tagged with technetium-99m and that the resulting suspension of the tagged protein may be safely and effectively used in lung scanning techniques without particle size determination. ultrasonic treatment or purification for the removal of unbound technetium. Thus, the relatively cumbersome and time-consuming techniques previously required are avoided and both the cost of preparing a suitable suspension for use in lung scanning procedures and the risks associated with its use are minimized.
The macroprotein constituent of the composition of the invention is preferably denatured human serum albumin, a protein which is particularly suitable for use in lung scanning. It will be understood, however, that any denatured macroprotein having a molecular weight of at least about 20,000 may have divalent tin bound thereto in accordance with the invention to render it more susceptible to labeling with a radioactive isotope of technetium.
The particles of the protein constituent of the composition of the invention are characterized as macroaggregates. Macroaggregatcs are considered to be particles of irregular form having an average diameter of between about 5 and about 80 microns. Where the protein particles are intended for use as lung scanning agents, the mean size of the particles is preferably between about l5 and about 30 microns.
The improved susceptibility of the suspended protein macroaggregates to tagging with technetium99m relates to the divalent tin which is bound to the protein. When a suspension of serum albumin treated with divalent tin in accordance with the invention is subsequently treated with a solution containing heptavalent technetium-99m, for example a solution of sodium pertechnetate, upwards of 90% of the technetium is rapidly and firmly bound to the serum protein.
In the practice of the invention, human serum albumin or other appropriate macroprotein is first denatured and then precipitated to form particles of the desired size. Various methods are known to the art for producing macroaggregates 'or microspheres of denatured protein. While any of these methods may be successfully used, excellent results have been obtained using a method wherein a dilute aqueous solution of human serum albumin is first heated at a temperature of about '70l00C., preferably about 85C., to denature the protein, then cooled to a temperature on the order of l8-22C., preferably about 20C. The albumin is then precipitated by slowly adding a dilute acid, approximately 0.1N, until the pH is about 4.8-5.2, i.e., the isoelectric pH of the protein being about 4.9. Hydrochloric acid is preferred for use in adjusting the pH to precipitate the denatured protein. However, other mineral acids or acetic acid may also be employed. The particle size of the macroaggregates thus precipitated is typically in the range of 5-80 microns with a mean particle size of -30 microns. The integrity of the precipitated aggregates is further improved if the suspension is reheated for a short period of time following precipitation. Preferably the reheating temperature is of approximately the same order as the denaturing temperature.
After reheating, the macroaggregated albumin particles are separated from the suspension, washed and resuspended in a fresh buffer solution having essentially the same pH as the isoelectric pH of the protein (i.e.,
pH 4.9). A convenient buffer solution is an acetate buffer having a pH of 4.9 (0.052N sodium acetate and 0.02N hydrochloric acid).
Binding of the protein aggregates with divalent tin is effected by adding to the protein suspension an aqueous solution containing stannous ions. Contact of the macroaggregates with stannous ions causes divalent tin to become bound to the protein. For this purpose, stannous chloride is preferred because of its solubility and greater stability, although other watersoluble stannous salts, such as stannous sulfate. may also be used. lt is necessary. however. to employ a divalent tin solution since tetravalent tin ions are not effective.
Sufficient stannous ions are available for binding to the protein if the mixture of the protein suspension and stannous salt solution contains approximately 3 mg. of stannous ions per mg. of macroaggregates. With such proportions, binding of divalent tin to the protein molecule occurs quickly at room temperature and appears to be substantially complete in about 15 minutes or so. For optimum results, however, the mixture containing stannous ions and protein should be allowed to stand for a longer time, preferably about 24 hours. After the treatment period is complete, the aggregates are separated from the liquid phase, washed with and rcsuspended in fresh buffer solution. After resuspcnsion, the macroaggregates may be stored for a substantial period at 4C.
In an alternative embodiment of the invention, the precipitation and tin-binding steps of the process are combined into a single step. Following this alternative, the stannous salt is dissolved in the dilute acid used to precipitate the heat-denatured protein thus eliminating one step of the above-described process. Whichever procedure is followed, the same end result is realized, i.e., the preparation of a suspension of precipitated de natured protein particles having divalent tin bound thereto.
The resulting suspensions have a shelf life of approximately 60 days when stored at 4C. before such characteristics as particle integrity and susceptability to radionuclide tagging begin to deteriorate. If 60 days of storage are significantly exceeded, the tagging efficiency normally falls off to the extent that the product should be discarded.
The shelf life of the macroaggregate suspensions may be extended beyond 60 days by freezing the suspension and storing it in the frozen state. The shelf life of the frozen suspension has been found to extend to approximately 4 months or longer. Storage in the frozen state has not generally been attractive, however, since the macroaggregate particles tend to clump together during subsequent thawing and form agglomerates which are too large for use in lung scanning procedures.
This problem is overcome by incorporating into the suspension between about 8% and about 16% by weight of an antiagglomerating agent such as propylene glycol, glycerin, gelatin or sucrose. The preferred antiagglomerating agent is propylene glycol. Agglomeration of the macroprotein particles is effectively prevented by inclusion of the anti-agglomerating agent in the suspension immediately prior to freezing.
To prevent bacterial growth in the suspension, the addition of a suitable preservative is also advisable. For this purpose, the addition of approximately 1% by weight of benzyl alcohol to the initial protein solutions or to the finished suspensions of the invention has been found acceptable and effective. Other nontoxic bacte riostatic preservatives may be substituted for benzyl alcohol.
The tin-treated protein of the suspension is conveniently and easily tagged with technetium-99m by adding the sodium pertechnetate eluate from a technetium generator directly to the suspension. Generators suitable for preparation of the eluate are commercially available. For example, one such generator is described in Shumate US. Pat. No. 3,535,085, dated October 20, 1970. When the eluate and suspension are mixed, binding of the technetium to the protein occurs spontaneously and quickly with an efficiency of 95% or more. Preferably, about 30 minutes are allowed to optimize the specific activity of the tagged suspension. The mechanism of tagging is not clear but it involves oxidation of the divalent tin to the tetravalent state with concomitant reduction of the heptavalent technetium to a lower valency. Tetravalent tin remains attached to the protein. Within minutes of the addition of the technetium eluate thereto, the suspension of tagged albumin may be intravenously injected directly into animals or humans without any further treatment.
The effectiveness of lung scanning is optimized by using sufficient eluate to provide a tagged suspension having a specific activity of up to approximately 20 mci TcO /mg. of the macroaggregated albumin. Five minutes after injection, the lungs of a subject contain 90% or more of the injected technetium-99m. The presence or absence of a pathological condition is then determined by radioscanning the lungs of the patient and comparing the emission pattern thereof with a standard pattern.
The tagged denatured albumin is eliminated from the subjects lungs at a rate corresponding to a biological half life of approximately 510 hours.
Thus, the suspensions of the tin-treated albumin macroaggregates may be stored for substantial periods of time while still retaining their potency. Then, when desired, they may be tagged with technetium merely by adding a solution containing sodium pertechnetate for immediate use as a lung scanning agent without further treatment. The invention thus obviates the costly, timeconsuming and difficult procedures which have heretofore been necessary.
The following examples illustrate the invention.
EXAMPLE 1 A solution containing fresh human serum albumin (500 mg.) in a 1% by weight aqueous solution of benzyl alcohol (45 cc.) was heated for minutes at 85C. with slow stirring to denature the protein. The solution was then transferred to a cold water bath, and when the temperature had reached l8-22C. 2 ml. of 0.085N hydrochloric acid solution was slowly added over a period of about 3 minutes with rapid stirring. The pH of the resulting suspension of precipitated albumin was 4.8 to 5.2. The suspension was then reheated to 83C. for 5 minutes with slow stirring, causing the precipitated albumin aggregates to become more compact and less subject to fragmentation. The particle size analysis of the precipitated macroaggregates indicated the size range to be 5-80 microns, with a mean of 15-30 microns. After reheating, the macroaggregates were collected by centrifugation and resuspcndcd in 30 ml. of an acetate buffer solution having a pH of 4.8 (0.052N sodium acetate and 0.02N hydrochloric acid).
EXAMPLE 2 To the suspension produced in Example 1 was added 0.6 ml. ofa 1N HCl solution containing 50 mg. of stannous chloride per ml. This is equivalent to approximately 3 mg. of divalent tin per I00 mg. of albumin. The pH of the resulting mixture was 4.04.l. Two ml. of a 0.4M sodium acetate solution was added, and the mixture allowed to incubate for 24 hours. After the incubation period was complete, the protein macroaggregates were washed three times by centrifugation, with resuspension in 30 ml. of fresh acetate buffer following each washing. The treated particles were finally resuspended in 50 ml. of pH 4.8 acetate buffer containing 1% by weight benzyl alcohol.
The resulting suspensions may be stored at 4C. or frozen as previously described. If they are to be stored at 4C., the suspensions are diluted 1:5 with acetate buffer (pH 4.8) containing 1% benzyl alcohol. If theyare to be frozen the suspensions are diluted I15 with acetate buffer (pH 4.8) containing 1% benzyl alcohol and 8-16% propylene glycol, for example.
ln view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above methods and products without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. A composition suitable for rapid tagging with technetium-99m and use in lung scanning procedures consisting essentially of an injectable suspension in a buffer solution of particles of denatured macroprotein having divalent tin bound thereto, said macroprotein having a molecular weight of at least about 20,000.
2. A composition as set forth in claim 1 wherein the pH of said buffer solution is approximately the isoelec tric pH of said denatured macroprotein.
3. A composition as set forth in claim 1 wherein said macroprotein comprises particles of macroaggregated human serum albumin.
4. A composition as set forth in claim 1 wherein the size of the particles is substantially between about 5 and about microns.
5. A composition as set forth in claim 4 wherein the mean size of said particles is between about 15 and about 30 microns.
6. A composition as set forth in claim 1 including macroprotein particles in the form of microspheres.
7. A composition as set forth in claim 1 wherein the buffer solution contains between about 8 and about l6 by weight of an antiagglomerating agent selected from the group consisting of propylene glycol, sucrose, glycerin and gelatin.
8. A process for preparing a buffered injectable sus pension of particles of denatured macroprotein suitable for rapid tagging with technetium-99m and use in lung scanning procedures comprising the steps of:
contacting particles of a denatured macroprotein with a solution containing a water-soluble salt of divalent tin causing divalent tin to be bound to said macroprotein;
washing the macroprotein having divalent tin bound thereto with a buffer solution; and
12. A process as set forth in claim 8 wherein said macroprotein is in the form of macroaggregates.
13. A process as set forth in claim 8 wherein said macroprotein is in the form of microspheres.
14. A process as set forth in claim 8 wherein said macroprotein is prepared by precipitating denatured macroprotein in an acid medium at a pH approximately the isoelectric pH of said protein.

Claims (13)

  1. 2. A composition as set forth in claim 1 wherein the pH of said buffer solution is approximately the isoelectric pH of said denatured macroprotein.
  2. 3. A composition as set forth in claim 1 wherein said macroprotein comprises particles of macroaggregated human serum albumin.
  3. 4. A composition as set forth in claim 1 wherein the size of the particles is substantially between about 5 and about 80 microns.
  4. 5. A composition as set forth in claim 4 wherein the mean size of said particles is between about 15 and about 30 microns.
  5. 6. A composition as set forth in claim 1 including macroprotein particles in the form of microspheres.
  6. 7. A composition as set forth in claim 1 wherein the buffer solution contains between about 8 % and about 16 % by weight of an antiagglomerating agent selected from the group consisting of propylene glycol, sucrose, glycerin and gelatin.
  7. 8. A process for preparing a buffered injectable suspension of particles of denatured macroprotein suitable for rapid tagging with technetium-99m and use in lung scanning procedures comprising the steps of: contacting particles of a denatured macroprotein with a solution containing a water-soluble salt of divalent tin causing divalent tin to be bound to said macroprotein; washing the macroprotein having divalent tin bound thereto with a buffer solution; and thereafter suspending in a buffer solution the macroprotein having divalent tin bound thereto.
  8. 9. A process as set forth in claim 8 wherein said macroprotein is human serum albumin.
  9. 10. A process as set forth in claim 8 wherein said solution containing divalent tin ions is a solution of stannous chloride.
  10. 11. A process as set forth in claim 10 wherein said solution contains approximately 3 mg. of divalent tin for each 100 mg. of macroprotein.
  11. 12. A process as set forth in claim 8 wherein said macroprotein is in the form of macroaggregates.
  12. 13. A process as set forth in claim 8 wherein said macroprotein is in the form of microspheres.
  13. 14. A process as set forth in claim 8 wherein said macroprotein is prepared by precipitating denatured macroprotein in an acid medium at a pH approximately the isoelectric pH of said protein.
US236159A 1972-03-20 1972-03-20 Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation Expired - Lifetime US3863004A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US236159A US3863004A (en) 1972-03-20 1972-03-20 Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation
GB1188673A GB1409176A (en) 1972-03-20 1973-03-13 Protein composition for labelling with technetium-99m and method of preparation
IL41767A IL41767A (en) 1972-03-20 1973-03-13 Injectable composition for tagging with technetium-99m and its preparation
AU53375/73A AU472255B2 (en) 1972-03-20 1973-03-16 Improved composition for tagging with technetium-99m and method of preparation
DE19732314059 DE2314059A1 (en) 1972-03-20 1973-03-19 IMPROVED SUBSTANCE FOR MARKING WITH TECHNETIUM-99M AND METHOD OF MANUFACTURING IT
NL7303842A NL7303842A (en) 1972-03-20 1973-03-19
BE1004909A BE796962A (en) 1972-03-20 1973-03-19 IMPROVED TECHNETIUM-99M LABELING COMPOSITION AND PREPARATION PROCESS
IT48899/73A IT989625B (en) 1972-03-20 1973-03-20 PROCESS FOR PREPARING A COMPOSITION FOR LABELING WITH TECNETIO 99M AND RELATED COMPOSITION
FR7309886A FR2182880B1 (en) 1972-03-20 1973-03-20
JP3253773A JPS5328971B2 (en) 1972-03-20 1973-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US236159A US3863004A (en) 1972-03-20 1972-03-20 Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation

Publications (1)

Publication Number Publication Date
US3863004A true US3863004A (en) 1975-01-28

Family

ID=22888369

Family Applications (1)

Application Number Title Priority Date Filing Date
US236159A Expired - Lifetime US3863004A (en) 1972-03-20 1972-03-20 Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation

Country Status (10)

Country Link
US (1) US3863004A (en)
JP (1) JPS5328971B2 (en)
AU (1) AU472255B2 (en)
BE (1) BE796962A (en)
DE (1) DE2314059A1 (en)
FR (1) FR2182880B1 (en)
GB (1) GB1409176A (en)
IL (1) IL41767A (en)
IT (1) IT989625B (en)
NL (1) NL7303842A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968221A (en) * 1972-05-05 1976-07-06 Medi-Physics, Inc. 99M-Technetium labeled tin colloid radiopharmaceuticals
US3992513A (en) * 1975-01-07 1976-11-16 Atomic Energy Of Canada Limited Labelled phospholipid material colloidially dispersed and sized to localize at preselected organs
US4024233A (en) * 1972-06-05 1977-05-17 Medi-Physics, Inc. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical
US4057617A (en) * 1975-05-15 1977-11-08 Abramovici J Method of labeling proteins with technetium
US4226846A (en) * 1977-04-01 1980-10-07 New England Nuclear Corporation Albumin microaggregates for radioactive scanning of reticuloendothelial systems
US4337240A (en) * 1978-04-20 1982-06-29 New England Nuclear Corporation Denatured albumin complexes for radioscintigraphic imaging and evaluation of reticuloendothelial systems
US4338248A (en) * 1979-08-29 1982-07-06 Nihon Medi-Physics Co., Ltd. 2-Oxopropionaldehyde bis(thiosemicarbazone) protein derivatives, and their production and use
US4406876A (en) * 1980-10-14 1983-09-27 Research Foundation Of The State Univ. Of New York Sulfur free small-particle production of technetium sulfur colloid
US4410507A (en) * 1981-08-28 1983-10-18 Solco Basel Ag Process for the preparation of physiologically degradable, colloidal radioisotope carriers and their use
US4462980A (en) * 1981-01-05 1984-07-31 Novo Industri A/S Stabilized plasmin compositions and method for preparation thereof
US4880616A (en) * 1984-10-26 1989-11-14 Nihon Medi-Physics Co., Ltd Stable stannous chloride composition for labeling with radioactive technetium
US5013720A (en) * 1986-05-06 1991-05-07 Abbott Laboratories SAP-6-Val proteins and methods
US5071965A (en) * 1988-07-19 1991-12-10 Mallinckrodt Medical, Inc. Novel tc-99m complexes
US5096696A (en) * 1990-02-05 1992-03-17 The Research Foundation Of State University Of New York Binding of radiolabeled albumin fragments to fibrin clots
US5116596A (en) * 1986-12-10 1992-05-26 Hoechst Aktiengesellschaft Process for the preparation of an organ-specific substance labeled with technetium-99m
US5300281A (en) * 1991-02-15 1994-04-05 The Dow Chemical Company Radiolabeled compositions containing a calcific matrix and their use for treatment of arthritis
US6022525A (en) * 1991-04-10 2000-02-08 Quadrant Healthcare (Uk) Limited Preparation of diagnostic agents
WO2002067997A1 (en) * 2001-02-28 2002-09-06 Bracco Diagnostics Inc. Manufacturing process to control particle size
WO2004091581A1 (en) * 2003-04-16 2004-10-28 Boehringer Ingelheim International Gmbh Radioactively marked microparticles, method for the production thereof and use of the same
US20050181758A1 (en) * 2004-02-13 2005-08-18 Nokia Corporation Generating charging information in a communication system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987157A (en) * 1974-08-29 1976-10-19 Union Carbide Corporation Technetium 99-m labeled radio-diagnostic agents employing stannous tartrate and method of preparation
GB1535847A (en) * 1976-03-19 1978-12-13 Radiochemical Centre Ltd Technetium-99m labelled tin colloid for body scanning
US4094965A (en) * 1977-04-01 1978-06-13 New England Nuclear Corporation Diagnostic agents containing albumin and method for making same
JPS5645790U (en) * 1979-09-17 1981-04-24
US5306482A (en) * 1991-04-09 1994-04-26 Merck Frosst Canada, Inc. Radiopharmaceutical bacteriostats
AU3783893A (en) * 1992-02-28 1993-09-13 Stanley E. Order Use of aggregated proteins to prolong retention time of a therapeutic agent adjacent a targeted site such as a tumor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663686A (en) * 1968-04-24 1972-05-16 Minnesota Mining & Mfg Biodegradable radioactive particles
US3663687A (en) * 1968-06-26 1972-05-16 Minnesota Mining & Mfg Biodegradable parenteral microspherules
US3725295A (en) * 1971-07-20 1973-04-03 Atomic Energy Commission Technetium labeling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS208162B2 (en) * 1971-07-20 1981-08-31 Thomas A Haney Method of making the macroagregates of the technicium-99m,albumine and tin ion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663686A (en) * 1968-04-24 1972-05-16 Minnesota Mining & Mfg Biodegradable radioactive particles
US3663687A (en) * 1968-06-26 1972-05-16 Minnesota Mining & Mfg Biodegradable parenteral microspherules
US3725295A (en) * 1971-07-20 1973-04-03 Atomic Energy Commission Technetium labeling

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968221A (en) * 1972-05-05 1976-07-06 Medi-Physics, Inc. 99M-Technetium labeled tin colloid radiopharmaceuticals
US4024233A (en) * 1972-06-05 1977-05-17 Medi-Physics, Inc. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical
US3992513A (en) * 1975-01-07 1976-11-16 Atomic Energy Of Canada Limited Labelled phospholipid material colloidially dispersed and sized to localize at preselected organs
US4086330A (en) * 1975-01-07 1978-04-25 The Atomic Energy Of Canada Limited Labelled phospholipid spheres for organ visualization
US4057617A (en) * 1975-05-15 1977-11-08 Abramovici J Method of labeling proteins with technetium
US4226846A (en) * 1977-04-01 1980-10-07 New England Nuclear Corporation Albumin microaggregates for radioactive scanning of reticuloendothelial systems
US4337240A (en) * 1978-04-20 1982-06-29 New England Nuclear Corporation Denatured albumin complexes for radioscintigraphic imaging and evaluation of reticuloendothelial systems
US4338248A (en) * 1979-08-29 1982-07-06 Nihon Medi-Physics Co., Ltd. 2-Oxopropionaldehyde bis(thiosemicarbazone) protein derivatives, and their production and use
US4406876A (en) * 1980-10-14 1983-09-27 Research Foundation Of The State Univ. Of New York Sulfur free small-particle production of technetium sulfur colloid
US4462980A (en) * 1981-01-05 1984-07-31 Novo Industri A/S Stabilized plasmin compositions and method for preparation thereof
US4410507A (en) * 1981-08-28 1983-10-18 Solco Basel Ag Process for the preparation of physiologically degradable, colloidal radioisotope carriers and their use
US4880616A (en) * 1984-10-26 1989-11-14 Nihon Medi-Physics Co., Ltd Stable stannous chloride composition for labeling with radioactive technetium
US5096693A (en) * 1984-10-26 1992-03-17 Nihon Medi-Physics Co., Ltd. Stable stannous chloride composition for labeling with radioactive technetium
US5015462A (en) * 1984-10-26 1991-05-14 Nihon Medi-Physics Co. Ltd. Stable stannous chloride composition for labeling with radioactive technetium
US5013720A (en) * 1986-05-06 1991-05-07 Abbott Laboratories SAP-6-Val proteins and methods
US5116596A (en) * 1986-12-10 1992-05-26 Hoechst Aktiengesellschaft Process for the preparation of an organ-specific substance labeled with technetium-99m
US5071965A (en) * 1988-07-19 1991-12-10 Mallinckrodt Medical, Inc. Novel tc-99m complexes
US5096696A (en) * 1990-02-05 1992-03-17 The Research Foundation Of State University Of New York Binding of radiolabeled albumin fragments to fibrin clots
US5300281A (en) * 1991-02-15 1994-04-05 The Dow Chemical Company Radiolabeled compositions containing a calcific matrix and their use for treatment of arthritis
US6022525A (en) * 1991-04-10 2000-02-08 Quadrant Healthcare (Uk) Limited Preparation of diagnostic agents
US6569405B1 (en) 1991-04-10 2003-05-27 Quadrant Healthcare (Uk) Limited Preparation of diagnostic agents
WO2002067997A1 (en) * 2001-02-28 2002-09-06 Bracco Diagnostics Inc. Manufacturing process to control particle size
US6730286B2 (en) 2001-02-28 2004-05-04 Bracco Diagnostics, Inc. Manufacturing process to control particle size
WO2004091581A1 (en) * 2003-04-16 2004-10-28 Boehringer Ingelheim International Gmbh Radioactively marked microparticles, method for the production thereof and use of the same
US20100272638A1 (en) * 2003-04-16 2010-10-28 Boehringer Ingelheim International Gmbh Radiolabelled microparticles, processes for the preparation thereof and the use thereof
US20050181758A1 (en) * 2004-02-13 2005-08-18 Nokia Corporation Generating charging information in a communication system

Also Published As

Publication number Publication date
FR2182880A1 (en) 1973-12-14
DE2314059A1 (en) 1973-10-04
GB1409176A (en) 1975-10-08
JPS4954517A (en) 1974-05-27
FR2182880B1 (en) 1976-04-09
IL41767A0 (en) 1973-05-31
AU472255B2 (en) 1976-05-20
JPS5328971B2 (en) 1978-08-17
AU5337573A (en) 1974-09-19
IT989625B (en) 1975-06-10
IL41767A (en) 1976-06-30
NL7303842A (en) 1973-09-24
BE796962A (en) 1973-09-19

Similar Documents

Publication Publication Date Title
US3863004A (en) Denatured macroprotein with divalent tin for tagging with technetium-99m and method of preparation
US3663687A (en) Biodegradable parenteral microspherules
Jones et al. A method of distributing beta-radiation to the reticulo-endothelial system and adjacent tissues
Zolle et al. Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation
EP0111415B1 (en) Process for making lyophilized radiographic imaging kit
US20070253898A1 (en) Polymer based radionuclide containing particulate material
US4094965A (en) Diagnostic agents containing albumin and method for making same
US4500507A (en) Diagnostic composition for radiologic imaging of neoplasms in the body and method of preparation
US3872226A (en) Tc{14 99m albumin aggregates with stannous tin and denatured albumin
US3992513A (en) Labelled phospholipid material colloidially dispersed and sized to localize at preselected organs
US4062933A (en) Colloidal compositions with protective agents suitable for radioactive labeling
US3663686A (en) Biodegradable radioactive particles
JPS61501321A (en) Technetium-99m composition for labeling protein-like substances and method of using the same
US4024233A (en) 99M-technetium labeled macroaggregated human serum albumin pharmaceutical
US4187285A (en) Microaggregated albumin
US3812264A (en) Method of producing a carrier for a scintigraphic preparation and scintigraphic preparations including said carrier
US3875299A (en) Technetium labeled tin colloid radiopharmaceuticals
AU2020201295A1 (en) Polymer Based Radionuclide Containing Particulate Material
Saad et al. Effects of therapeutic ultrasound on the activity of the mononuclear phagocyte system in vivo
Bruno et al. Technetium-99m albumin aggregates
US3743712A (en) Macroaggregates of copper-64 and gelatin,application and method of preparation of same
AU2010201992A1 (en) Polymer Based Radionuclide Containing Particulate Material
Ergun et al. Evaluation of 99mTc labelled poly lactic acid microspheres for diagnostic radioembolization
Kruse et al. Stability of erythrocyte ghosts: a gamma-ray perturbed angular correlation study.
Hungate et al. Preliminary data on 253Es and 249Bk metabolism in rats

Legal Events

Date Code Title Description
AS Assignment

Owner name: MALLINCKRODT, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:MALCO, INC.;REEL/FRAME:004572/0403

Effective date: 19860101

AS Assignment

Owner name: MALLINCKRODT MEDICAL, INC., 675 MCDONNELL BOULEVAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MALLINCKRODT, INC., A CORP. OF DE;REEL/FRAME:005635/0379

Effective date: 19910227