Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3863332 A
Publication typeGrant
Publication dateFeb 4, 1975
Filing dateJun 28, 1973
Priority dateJun 28, 1973
Publication numberUS 3863332 A, US 3863332A, US-A-3863332, US3863332 A, US3863332A
InventorsDill Hans G, Leupp Alex M
Original AssigneeHughes Aircraft Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of fabricating back panel for liquid crystal display
US 3863332 A
Abstract
In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are successively deposited on the surface of a semiconducting substrate having an array of electrodes thereon. Openings are then formed through the insulating material and the aluminum layer to expose the electrodes, thereby defining a spacer lattice which is integral with the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the front and back panels of the liquid crystal display.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

XE? 3 a 863 9 332 f W V r Unlted states 11 3,863,332

Leupp et al.- I Feb.'4, 1975 I METHOItOF FABRICATING BACK PANEL 3,716,290 2/ 973 BOICI .Q 350/160 12c FOR LIQUID CRYSTAL DISpLAY 3,756,924 9/1973 Collins 204/38 A 1 3,759,798 9/1973 Graff....'.. 204/58 [75] Inventors: Alex'M. Leupp, Newport Beach;

. galn? G. DI, Costa Mesa, both of Primary Exammer Roy Lake a1 Assistant Examiner-W. C. Tupman [731- Assignee: Hughes Aircraft Company, Culver- Attorney, Agent, or Firm-W. l-I. MacAllister; E.

City, Calif.- 7 Szabo [22] Filed: June 28, 1973 1211 Appl. No.: 374,444- [57] ABSTRACT In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are suc- [52] 29/580 350/160 56/17 cessively deposited on the surface ofa semiconducting I 204/331 204/38 29/5921 5 substrate having an array of electrodes thereon. Open- ]IIL Cl..... B01] i gs are then formed through the insulating material [58] Field of Search 29/578,580, 590, 591, the aluminum layer p086 the electrodes 592;:3550/160 204/33 A158; thereby defining a spacer lattice which is integral with v 156/17,, the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the [56] Rderences Cited v "front and back panels of the liquid crystal display.

UNITED STATES PATENTS i w I 3,481,777 12/1969" Spannhake 29/625 13 F'gures I5 25 l I l 1 I I I I *:1' v I a; 2| j \r 1 1 1 1 PATENTED FEB 4|975 SHEU 10F 4 Fig. 2. I PRIOR ART Fig. 1. PRIOR ART PATENTEDFEB 4.1915 3.863.332

SHEET 3!]? 4 PATENTEBFEB M975 3 86'3,332

SHEET UF 4 Fig. 12.

Fig. 13.

METHOD OF FABRICATING BACK PANEL FOR LIQUID CRYSTAL DISPLAY BACKGROUND OF THE INVENTION The present invention relates generally to liquid crystal displays and more particularly to a method for fabricating the backplate for such displays having thereon spacers to maintain the thickness of the liquid crystal display uniform throughout.

In copending application Ser. No. 352,397 filed by Hans G. Dill, et al, on Apr. 18, 1973, and entitled Liquid Crystal Display System with Integrated Signal Storage Circuitry, there is described a liquid crystal display panel having a plurality of spacers between the back and front panels of the liquid crystal display. The purpose of these spacers is to maintain auniform spacing between the front and back panels of the liquid crystal display. One of the features of the invention described in the referenced application is the provision of addressing circuitry which is fabricated in the back panel of the display, which for this purpose is a semiconducting wafer.

It is a principal object of the present invention to provide a method for the fabrication of spacers of the type disclosed in the referenced patent application which method is compatible with the steps required to fabricate liquid display panels of the type therein described.

It is a related object of the invention to provide a method for the fabrication of back panels for liquid crystal displays with spacers which are accurately located with respect to an array of electrodes, also on the back panel.

A further object of the present invention is to provide a method for fabricating liquid crystal display back panels with integral spacers thereon wherein the spacers are resistant to attack by the liquid crystal material, and may serve to shield electrically conductors that run to the electrodes.

In accordance with the invention the above and other objects are accomplished by first forming an array of relective electrodes in spaced apart columns and rows on a surface of a substrate panel which is preferably a semiconducting wafer. This step may be preceded by several steps directed to the formation of a plurality of switching devices in the surface of the semiconducting substrate as described in the referenced patent application. Following the formation of the reflective electrodes there is deposited a layer of insulating material, preferably oxide, on top of the substrate surface and over the electrodes, after which an additional layer, preferably of aluminum, is deposited over the layer of insulating material. A two-layered spacer lattice is formed from the successively deposited layers by removing those portions of the layers which are over the central portions of the electrodes. Preferably, so much of the layers is removed as to expose all but the extreme perimeters of the array of electrodes, thereby providing a slight overlap of the two-layered lattice over the electrodes. The resulting structure, .comprising the back panel having a plurality-of electrodes on its surface and a spacer lattice extending integrally from that surface, may then be used to complete the fabrication ofa liquid crystal display by adding a front transparent panel having a transparent electrode thereon and placing a nematic liquid crystal material between the front and back. panels. Further objects and features of the invention will become apparent from the following description and drawings in which:

FIG. 1 is a perspective view of a liquid crystal display having a less desirable peripheral spacer between the front and back panels thereon;

FIG. 2 is a cross section through the display illustrated in FIG. 1;

FIG. 3 is a diagrammatic perspective view of a liquid crystal display incorporating the spacer lattice configurationproduced in accordance with the present invention;

FIG. 4 is a cross section through the display illustrated in FIG. 3', and

FIGS. 5-13 are a series of plan views and cross sections therethrough illustrating a back panel fabricated in accordancewith the present invention at successive stages of such fabrication. 1

Referring now to the figures, a liquid crystal display of conventional construction is illustrated in FIGS. 1 and 2. A nematic liquid crystal material 11 is confined between back and front plates 13 and 15 by a peripherally extending spacer 17. An array of electrodes 19 is disposed on the surface of the backplate l3 and a transparent common electrode (not shown) is disposed on the inside surface of the transparent front plate 15. Desired images may be displayed by the selective actuation of desired ones of the array of electrodes 19 so as to establish an electric field between them and the front electrode across the liquid crystal material 11 lying between them. The particular theory of operation of liquid crystal displays is not of concern in this application but may be gleaned from the above referenced application which is hereby incorporated by reference.

It is an inherent disadvantage of the peripheral spacer 17 that it permits the bowing of the front electrode carrying plate 15, thereby causing uneven electric fields to be applied across the width and length of the display. As a result, different field strengths will exist across the liquid crystal material'when various ones of the back electrodes 19 are energized, causing uneven changes in the appearance of the liquid crystal material across the display.

The above shortcomings are minimized by the provision of a spacer lattice in the liquid crystal display illustrated schematically in FIGS. 3 and 4. The latter liquid crystal display is shown with the same components as those illustrated in FIGS. 1 and 2 except that in place of the peripherally extending spacer 17 there is provided a lattice whose walls crisscross the surface of the back panel 13 between the individual electrodes 19. As best seen in FIG. 4, the individual walls of the spacer lattice 21 include a base 23 which rises above the surfaces of the electrodes 19'and a top portion 25 whose heights are uniform relative to the surface of the backplate 13. Preferably, the bases 23 are formed of an oxide layer which is particularly convenient to produce on top of the backplate 13 when that plate is made of silicon which is a preferable material for the backplate of the type disclosed in the above-referenced patent application. Because of the limitations which exist in the thickness to which such an oxide layer can be grown, it is preferable that the top portions of the walls of the lattice 21 be formed of a different material and aluminum which is already used in the process of fabricating Turning now to FIGS. -13, there will be next explained a method for fabricating the spacer lattice of FIGS. 3 and 4 in accordance with the present invention.

Prior to the fabrication of the spacer lattice, there is first formed on a suitable backplate 13 an array of electrodes 19. As described in the above-referenced patent application, the backplate I3 is preferably formed of a silicon substrate, typically in the form of a wafer about two inches in diameter. Alternatively, of course, the wafer may be square rather than circular in outline. In addition to forming an array of electrodes 19, arranged in columns and rows as shown in FIGS. 5 and 6, there are also formed on the backplate 13 X and Y buslines or conductors 22 and 24. The purpose of the respective X bulines 22 is to conditionally enable all of the electrodes 19 in a row associated with a particular busline. Similarly, it is the purpose of the respective Y buslines 24 to conditionally enable all of the electrodes 19 in a particular column associated with a particular y busline. Thus, when a particular pair of X and Y buslines 22 and 24 is energized, this will cause a unique one of the electrodes 19 to be actuated. This is accomplished by providing a switching transistor 26 for each electrode 19. Since each of the transistors 26 functions as an AND gate, it is represented by the conventional symbol for such a gate in FIG. 5. The switching transistors 26 may be formed in the manner described in detail in the referenced patent application in the body of the silicon backplate l3 and, since their fabrication is not a part of the present invention, it will not be described in detail herein. Briefly, however, the process described in the referenced patent application produces field effect transistors in the surface of the backplate 13, each of these transistors having a source connected to its associated electrode 19, a drain connected to one of the X and Y buslines 22 and 24, and a gate connected to the other one of the buslines 22 and 24. Thus, by energizing a particular pair of buslines 22 and 24, the necessary connections are made to the gate and drain of a particular transistor 26 to complete a circuit through that transistor to the electrode 19 with which it is associated.

The transistors 26 are shown only schematically in FIG. 5 and are not shown physically either in that Figure or in FIG. 6, which is a cross section therethrough. It will be understood, however, that the switching transistors 26 are physically located in the surface of the backplate 13. Also disclosed in the referenced patent application is a technique for providing cross-under connections in the surface of the backplate 13 for either the X or the Y buslines 22 and 24. Thus, assuming that it is the X buslines 22 which are provided with such cross-under connections, a doped region is formed by conventional semiconductor doping techniques in the surface of the substrate 13 under those regions of the Y buslines 24 where they intersect 'the X buslines 22. Each of the X buslines 22 makes contact with the doped cross-under connection on both sides of the Y buslines to establish a continuous X bus conductor. Since the deposition of the aluminum conductors and electrodes 22, 24 and 19 are preceded by the formation of an oxide layer (not shown) in the process of forming the doped regions in the substrate which comprise the cross-under connectors, as well as the field effect transistors, the cross-under connections are prevented from directly connecting the X conductors 22 to the Y conductors 24. Contact between the X conductors 22 and their respective doped cross-under connections is established by etching through the oxide layer above these doped cross-under connections so that when the metal layers, including the bus conductors 22 are formed, they extend down to the cross-under connectors to establish contact with them.

Returning now to the description of the present invention, after the formation of the display electrodes 19 and their associated buslines 22 and 24, an insulating layer is deposited over the surface of the substrate 13 so as to cover both the surface and the electrodes 19. Preferably the insulating layer is a silicon dioxide film doped with phosphorus to effect a more uniform deposition. A thickness of 1.5 microns can be readily achieved in a horizontal resistance heated furnace at 450C, maintained for 30 minutes. The doped silicon dioxide layer is formed in the furnace by the decomposition of the SiH4 and doping of the oxide can be achieved by adding phosphine gas Other means of depositing the insulating layer, such as sputtering and evaporating, may also be employed.

There is next evaporated a layer of aluminum 27 on top of the doped oxide layer 25.-As will become apparent shortly, it is the total thickness of the two layers 25 and 27 which ultimately determines the total thickness of the liquid crystal display device in which the fabricated assembly will be incorporated. The optimum cell thickness and therefore the optimum spacing between the back electrodes 19 and the electrode carried by the front plate 15 depends on the particular application for which the display device is to be used. One of the advantages of the present invention is that whatever is the desired thickness it can be readily achieved by varying the thickness of the aluminum layer 27, since the evaporation process can be controlled within the required tolerances without difficulty. since front to back spacing of 6 to 10 microns is typical, the usual thickness of the aluminum layer will be about four to eight microns, which with the L5 micron oxide layer 25 results in a total spacer height of5.5 to 9.5 microns. In comparison a typical spacing between adjacent walls of the spacer will be about 10 mils, or about 25 times the height of the spacer walls.

Windows 29 are next opened to the reflective back electrodes 19. For this purpose, a photoresist layer is applied on top of the aluminum layer 27 and a suitable pattern in the photoresist layer is exposed after which the photoresist is developed, the exposed portions are removed, thereby exposing through openings 31 in the photoresist layer portions of the aluminum layer 27 corresponding to the windows 29 which are to be formed therethrough. The masked aluminum layer 27 is then exposed to an aluminum etchant which removes the exposed portions of the aluminum layer down to the bottom oxide-layer 25.

Next the remainder of the photoresist mask is removed and the remaining aluminum pattern 33 is anodized so as to minimize any possible subsequent interaction between the aluminum pattern 33 and the liquid crystal material with which it will interface. Anodization is suitably performed electrolytically in a solution of tartaric acid (concentration 3% Ph adjusted to 5.5 Application of volts between the aluminum structure 33 and a negative electrode, both submerged in the tartaric acid solution, will result in an anodized layer of 2,100 angstroms.

Finally, using the anodized aluminum layer 35 as a mask, the exposed portions of the underlying oxide layer 25 are etched away in a solution of buffered hydrofluoric acid. This etchant will expose the central portion of each of the electrodes '19. In other words, the spacer lattice at its base overlaps the edges of the electrodes 19. v

This completes the fabrication'of the backplate and its integrated spacer lattice. Liquid crystal material may now be placed on the backplate in the interstices of the spacer lattice, after which the top plate is secured in place.

What has been described in a-preferred method for fabricating an integrated spacer lattice for the backplate of a liquid crystal cell; Modifications of the invention will readily occur to those skilled in the art having the benefit of the above description. For example, other materials may be used in place of those given above for the two layers 25 and 27. Moreover, a single layer of an insulating material which can be grown to satisfy the heightrequirements for the spacer lattice can be used. -Such a material might, for example, be polycrystalline silicon. Moreover, whereas there have been shown an array of electrodes arranged on the backplate of a liquid crystal cell in columns and rows, it is apparent that the method of the presentinvention for fabricating a spacer lattice structure for such a backplate could be employed with-equal benefits with a different arrangement of such electrodes. Generally, it will be true that such a spacer lattice and method disclosed therefor'will be found useful wherever there are a plurality of electrodes spaced from one anotheron the backplate of the liquid crystal cell regardless of the geometrical configuration into which its distribution may fall.

We claim:

l. A method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:

a. forming an array of reflective electrodes in spaced apart columns and rows on a surface of a substrate,

b. depositing an oxide layer on said surface and over said electrodes,

c. depositing an aluminum layer over said oxide layer, and

d. forming a two-layered lattice extending from the spaces between said columnsand rows of electrodes by removing those portions of said layers which are over the central portions of said electrodes and anodizing the aluminum portions of said two-layered lattice prior to removing the portions of the oxide layer.

2. The method of claim 1 characterized further in that said step of forming a lattice includes the steps of:

a. forming a grid-shaped mask upon said aluminum layer, said mask covering the aluminum layer above thespaces between said columns and rows of electrodes and exposing the aluminum layer above at least the central portion of said electrodes,

b. etching away the exposed portions of said aluminum layer with an etchant which does not attack said oxide layer, thereby exposing those portions of said oxide layer which lie aboveat least the central portion of said electrodes,

c. anodizing the remaining portions of said aluminum layer, and

d. using said anodized aluminum portions as a mask, etching away the exposed portions of said oxide layer with an etchant which does not attack anodized aluminum.

3. A method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:

a. forming a plurality of electrodes on a surface of a substrate by depositing aluminum upon said substrate and etching away portions thereof,

b. forming a multi-layer on said substrate and over said electrodes by successively forming an oxide layer and an aluminum layer on said substrate, and

c. converting said multi-layer into a plurality of spaced apart walls of equal height by successively etching through said aluminum layer and said oxide layer so as to expose said central portions of said plurality of electrodes, said aluminum layer being anodized after it has been etched but prior to the etching of said oxide layer, so as to make said aluminum layer resistant to attack by nematic liquid crystal material.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3481777 *Feb 17, 1967Dec 2, 1969IbmElectroless coating method for making printed circuits
US3716290 *Oct 18, 1971Feb 13, 1973Commissariat Energie AtomiqueLiquid-crystal display device
US3756924 *Apr 1, 1971Sep 4, 1973Texas Instruments IncMethod of fabricating a semiconductor device
US3759798 *Jan 28, 1970Sep 18, 1973H GrafeMethod of producing electrically insulated aluminum contacts
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4097121 *Sep 14, 1976Jun 27, 1978Siemens AktiengesellschaftLiquid-crystal display with bistable cholesteric liquid-crystal layer and method of making the same
US4148128 *Aug 15, 1977Apr 10, 1979Bernard FeldmanLiquid crystal display device and method of fabrication
US4256382 *May 3, 1979Mar 17, 1981Hughes Aircraft CompanyLiquid crystal devices having uniform thermal expansion coefficient components
US4448491 *Aug 5, 1980May 15, 1984Canon Kabushiki KaishaImage display apparatus
US4470667 *Oct 31, 1983Sep 11, 1984Canon Kabushiki KaishaDisplay process and apparatus thereof incorporating overlapping of color filters
US4538884 *Jul 7, 1982Sep 3, 1985Canon Kabushiki KaishaElectro-optical device and method of operating same
US4653858 *Mar 31, 1986Mar 31, 1987Thomson-CsfMethod of fabrication of diode-type control matrices for a flat electrooptical display screen and a flat screen constructed in accordance with said method
US4763995 *Dec 11, 1986Aug 16, 1988Canon Kabushiki KaishaOptical modulation device
US4834505 *Feb 13, 1987May 30, 1989The General Electric Company, P.L.C.Matrix addressable displays
US4838656 *Jun 21, 1988Jun 13, 1989Andus CorporationTransparent electrode fabrication
US4859623 *Feb 4, 1988Aug 22, 1989Amoco CorporationMethod of forming vertical gate thin film transistors in liquid crystal array
US4874461 *Jul 21, 1988Oct 17, 1989Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing liquid crystal device with spacers formed by photolithography
US5005951 *Jun 8, 1988Apr 9, 1991U.S. Philips CorporationLiquid crystal display device
US5238435 *Jul 2, 1992Aug 24, 1993U.S. Philips CorporationLiquid crystal display device and method of manufacturing such a display device
US5268782 *Jan 16, 1992Dec 7, 1993Minnesota Mining And Manufacturing CompanyMicro-ridged, polymeric liquid crystal display substrate and display device
US5504601 *Jul 14, 1993Apr 2, 1996Kabushiki Kaisha ToshibaLiquid crystal dispaly apparatus with gap adjusting layers located between the display region and driver circuits
US5515191 *May 31, 1994May 7, 1996Motorola, Inc.Liquid crystal display having enhanced conductors and adhesive spacers
US5545280 *Jun 7, 1995Aug 13, 1996Minnesota Mining And Manufacturing CompanyApplying epoxy adhesive to the polyimide carrier, drying adhesive layer, pressing microstructured substrate, separating carrier and substrate, tacking off adhesive layers and attaching to top of protrusion
US5556530 *Jun 5, 1995Sep 17, 1996Walter J. FinklesteinFlat panel display having improved electrode array
US5729319 *Apr 1, 1996Mar 17, 1998Sharp Kabushiki KaishaLiquid crystal display device and method for fabricating the same
US5751382 *May 25, 1995May 12, 1998Sharp Kabushiki KaishaLiquid crystal display input/output device
US5766694 *May 29, 1997Jun 16, 1998Univ Kent State OhioMethod for forming uniformly-spaced plastic substrate liquid crystal displays
US5774107 *Oct 17, 1996Jun 30, 1998Sharp Kabushiki KaishaDisplay apparatus with input-functions
US5929960 *Oct 17, 1997Jul 27, 1999Kent State UniversityMethod for forming liquid crystal display cell walls using a patterned electric field
US5952676 *Jun 6, 1997Sep 14, 1999Semiconductor Energy Laboratory Co., Ltd.Spacers between liquid crystal layers of photocurable resin;photolithography
US5963288 *Jun 6, 1995Oct 5, 1999Semiconductor Energy Laboratory Co., Ltd.Liquid crystal device having sealant and spacers made from the same material
US5978063 *Apr 15, 1997Nov 2, 1999Xerox CorporationSmart spacers for active matrix liquid crystal projection light valves
US6067134 *Mar 18, 1998May 23, 2000Kabushiki Kaisha ToshibaStacked cell liquid crystal display device with connectors piercing though upper cells
US6154267 *Apr 4, 1997Nov 28, 2000Sharp Kabushiki KaishaMethod of fabricating a liquid crystal display device including a liquid crystal region surrounded by a polymer material
US6166797 *Aug 8, 1997Dec 26, 20003M Innovative Properties CompanyDiffusion barrier layers with microstructured spacing members for liquid crystal display panel substrates
US6351027 *Feb 29, 2000Feb 26, 2002Agilent Technologies, Inc.Chip-mounted enclosure
US6356248Sep 12, 1994Mar 12, 2002Tektronix, Inc.Spacers for use in an electro-optical addressing structure
US6493057Jul 2, 1999Dec 10, 2002Semiconductor Energy Laboratory Co., Ltd.Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US6853431Nov 27, 2002Feb 8, 2005Semiconductor Energy Laboratory Co., Ltd.Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US6923701 *Nov 14, 2002Aug 2, 2005Polydisplay AsaDisplay with micro pockets
US6980272 *Nov 21, 2000Dec 27, 2005Sarnoff CorporationElectrode structure which supports self alignment of liquid deposition of materials
US8339551Nov 28, 2005Dec 25, 2012Transpacific Infinity, LlcElectrode structure which supports self alignment of liquid deposition of materials
US8431182Aug 27, 2008Apr 30, 2013Seiko Epson CorporationMatrix type display device and manufacturing method thereof
US8580333Nov 9, 2009Nov 12, 2013Seiko Epson CorporationMatrix type display device with optical material at predetermined positions and manufacturing method thereof
US8593604Sep 14, 2012Nov 26, 2013Transpacific Infinity, LlcElectrode structure which supports self alignment of liquid deposition of materials
USRE36161 *Jul 7, 1997Mar 23, 1999Canon Kabushiki KaishaDisplay process and apparatus thereof incorporating overlapping of color filters
DE3113041A1 *Apr 1, 1981Jan 28, 1982Canon KkVerfahren und vorrichtung zur anzeige von informationen
WO2002042833A2 *Nov 21, 2001May 30, 2002Sarnoff CorpElectrode structure which supports self alignment of liquid deposition of materials
Classifications
U.S. Classification438/27, 445/24, 349/143, 205/157, 438/30, 349/156, 216/23, 29/592.1, 216/51, 438/587, 349/187
International ClassificationG02F1/13, G02F1/1343, G02F1/1339
Cooperative ClassificationG02F1/13392, G02F1/13394, G02F1/13439
European ClassificationG02F1/1343B, G02F1/1339B