Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3863630 A
Publication typeGrant
Publication dateFeb 4, 1975
Filing dateNov 7, 1972
Priority dateNov 10, 1971
Also published asCA974428A1, DE2254650A1
Publication numberUS 3863630 A, US 3863630A, US-A-3863630, US3863630 A, US3863630A
InventorsCavallo Roger Paul Charles
Original AssigneeSynthelabo
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Respiratory apparatus
US 3863630 A
Abstract
Respiratory apparatus comprising a multistage air displacing turbine driven by an electric motor and whose output is fed to a mouthpiece by way of an electromagnetically operated valve that is open and shut at a predetermined rate or as determined by the respiration rate of a patient using the apparatus. A source of oxygen may be provided for adding oxygen to the air supplied by the turbine. The apparatus incorporates a safety device for connecting the mouthpiece to the atmosphere in the event of pressure drop at the turbine output.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Cavallo 1 RESPIRATORY APPARATUS [75] Inventor: Roger Paul Charles Cavallo,

Bourg-la-Reine, France [73] Assignee: Synthelabo, Paris, France [22] Filed: Nov. 7, 1972 [21] Appl. No.: 304,486

[30] Foreign Application Priority Data Nov. 10, 1971 France 71.40291 Oct. 11, 1972 France 72.35928 [52] U.S. Cl 128/1456, 128/197, 128/210 [51] Int. Cl A61m 16/00 [58] Field of Search 128/1456, 145.5, 145.7, 128/1458,142,142.2,142.4,188,191,195, 201,202,192, 193, 194, DIG. 17,196, 197,

[56] References Cited UNITED STATES PATENTS 3,319,627 5/1967 Windsor 128/1456 [451 Feb.4, 1975 Bird et a1. 128/1456 3,460,532 8/1969 3,486,502 12/1969 Wilson 128/1458 3,515,135 6/1970 Flower et a1 128/1456 3,515,163 6/1970 Freeman 137/102 3,515,163 6/1970 Freeman 251/65 FOREIGN PATENTS OR APPLICATIONS 562,641 11/1956 Italy 128/193 Primary Examiner-Richard A. Gaudet Assistant Examiner-Henry J. Recla Attorney, Agent, or Firm-Karl F. Ross; Herbert Dubno [57] ABSTRACT Respiratory apparatus comprising a multistage air displacing turbine driven by an electric motor and whose 'output is fed to a mouthpiece by way of an electromagnetically operated valve that is open and shut at a predetermined rate or as determined by the respiration rate of a patient using the apparatus. A source of oxygen may be provided for adding oxygen to the air supplied by the turbine. The apparatus incorporates a safety device for connecting the mouthpiece to the atmosphere in the event of pressure drop at the turbine output.

6 Claims, 3 Drawing Figures PATENTEUFEB. 4W5 3,863,630

SHEET 10F 2 PATENTEU EB 15115 ,SHEET 2 BF 2 RESPIRATORY APPARATUS This invention relates to respiratory apparatus and has particular reference to such apparatus that is readily mobile and can be used at a patients home.

It is known that some patients suffering from pulmonary deficiency require the assistance of a respiratory apparatus several times in the course of a day and sometimes for relatively long periods. Known forms of respiratory apparatus are somewhat cumbersome and not readily transportable from one location to another and are not suitable for use at a patients home.

Accordingly it is an object of the present invention to provide an improved respiratory apparatus which is readily transportable, easy to use and operable from a home power supply.

According to the present invention, a respiratory apparatus comprises a multistage air turbine pump, an electric motor for driving the pump, a mouthpiece, a pipe interconnecting the pump output and the mouthpiece, including an adjustable throttling valve and upstream of the latter a flow control valve and means for periodically opening and shutting the flow control valve.

Use of a multistage turbine pump for supplying air to the patient provides the following advantages. The flow of air with a low output pressure is important and, with a turbine and open or closed control valve said pressure is substantially constant. Moreover as explained below when oxygen is added to air, the turbine acts as a gas holder when the said control valve is closed.

In the case of certain deep respiratory deficiencies, it is desirable to add oxygen to the air output of the turbine, the oxygen being supplied from cylinders via a further pipe connected to the first mentioned pipe upstream of said control valve, said further pipe including a further adjustable throttling device.

Owing to the first adjustable throttling device, the output of the pump is maintained at a constant pressure slightly in excess of atmospheric pressure evenwhen the control valve is open, oxygen being supplied through a throttling device at a pressure above said output pressure into said first pipe. When the flow control valve is open, oxygen passes directly into the air stream through the valve but, when the latter is shut, oxygen accumulates in the turbine and is drawn out when the valve next opens.

The means for opening and shutting the valve may include a multivibrator of variable frequency output. The frequency may be preset or it may be determined by the demand of a patient using the apparatus.

The apparatus may include a humidifier. Air leaving the turbine is normally at a temperature above ambient, so preferably the apparatus also includes means for reducing the temperature to an acceptable value. Such means may comprise a heat exchanger in the form of telescopically engaged lengths of pipe forming part of the pipe conveying gas to the mouthpiece.

Advantageously, the apparatus also includes a safety valve which operates to connect the mouthpiece to atmosphere in the event of a predetermined reduction in pressure at the output of the pump.

An embodiment of the invention will now be described in greater detail with reference to the accompanying drawing'in which:

' FIG. 1 shows the embodiment in diagrammatic form only;

FIG. 2 is a section on the line I-I-II of FIG. 1; and,

FIG. 3 is a section of one of the components of the embodiment of FIG. 1.

The embodiment shown in FIG. 1 comprises a transportable frame (not shown) in which is mounted an A.C. motor 1 driving a multistage air turbine via a driving belt 3. The turbine 2 draws in air via a filter 4 and the output of the turbine consisting of warmed, compressed air is delivered to pipe 5. Flow of compressed air along pipe 5 is controlled by an electromagneticallyoperated valve 6 having an energizing winding 7 and also by a throttling device 8 adjustable to permit a predetermined flow of air along the pipe 5 or, if necessary, to stop the flow altogether.

Upstream of the valve 6, pipe 5 is joined to a second pipe 9 through which oxygen from cylinders 10 is conveyed to pipe 5. The pressure of oxygen from the cylinders 10 is regulated by a pressure reducer valve 11 while the flow of oxygen is controlled by throttling valve 14. The system so far described operates under substantially constant pressure so that valves 8 and 14 are calibrated in flow rates, e.g., liters per minute. Located in pipe 9 between valves 11 and 14 is an electromagnetic valve 12 whose energizing coil 13 is directly connected across the electric power input terminals as shown and shuts automatically when the apparatus is disconnected from the supply source.

The frame mentioned above has provision for mounting the cylinders 10 but this is not essential. To lighten the frame and make it more readily transportable the cylinders may be carried separately and placed at the side of the frame. In that case, the pipe 9 includes a flexible portion with suitable connectors to facilitate connection to the cylinders.

The embodiment shown a humidifier l5 5 to which pipe 5 is attached as shown. Humidifier 15 contains water 16 and an immersion heater 17. The output of the humidifier 17, which might be air or an air/oxygen mixture, enters pipe 18, one part of the length of which comprises telescopically engaged portions 18a, 18b which may be of metal. That part forms a heat exchanger in which gas passing along the pipe 18 is cooled to an extent dependingupon the length of the portion. The gas passing along the pipe 18 is sometimes hotter than is desirable and can be cooled as it passes through the parts 18a, 18b.

Joined to pipe 18 is a mouthpiece 19 shown in more detail in FIG. 2 and which includes means for separating inhaled and exhaled gas flows. The mouthpiece includes a conduit 45, normally connected to pipe 18, is flattened and contoured to form the rigid mouthpiece l9 and is formed with apertures 46 in its side walls. The apertures are normally closed by meansof flap valves 48. Within the conduit 45 is a valve 47 shaped rather like a ducks bill with flexible jaws able to flex between the closed, solid line position and the open, dot-dash position shown in FIG. 2. When a patient using the apparatus inhales, valve 47 opens into the dot-dash position shown and in so doing closes the apertures 46. When the patient exhales, valve 47 closes but flap valves 48 open so permitting exhaled air to pass into the atmosphere.

Joined to the part 18b of the telescopic portion of the pipe 18 is a pressure detector 20 which'is responsive to the pressure within the pipe 18 and thus within the conduit 45. When the patent inhales, valve 47 opens and the detector 20 is exposed to the reduced pressure then existing in pipe 18.

In the embodiment shown in the drawings, throttling valve 8 regulates the total gaseous flow to the patient while throttling valve 14 regulates the flow of oxygen. Pipe 9 discharges into a chamber of practically constant pressure-the air turbine 214 and so valve 14 can be calibrated directly in units indicating volume of oxygen supplied per unit time. Thus the volume of oxygen supplied to the patient can be accurately determined.

When valve 6 is open, oxygen passes directly into the stream of air emerging from the pump 2. When the valve 6 is closed, oxygen still flows into pipe but passes into the turbine and is pumped out when the valve 6 next opens.

The apparatus is energized via a flexible connector 21 which can be plugged into an electricity supply point. Immersion heater 17 is supplied via conductors 22 which include a control switch as shown, while motor 1 is supplied via conductors 23 which include a double pole control switch. Also energized from the supply is a rectifier 24 supplying a device 25 described in more detail in the Specification of concurrently filed co-pending Pat. application entiled Improvements in or relating to control devices for respiratory apparatus Ser. No. 304,487 Diagrammatic switch 26 allows operation of the apparatus either at a frequency determined by the respiratory rhythm of the patient or at some predetermined frequency. Further details of the way in which this is achieved are found in the Specification just mentioned.

The embodiment shown in FIG. 1 also includes a safety valve 50 mounted on the pipe 5 adjacent the humidifier. This valve is controlled by the output pressure of the turbine 2 to which the valve is exposed via pipe 51.

Pipe 5 is joined to the safety valve 50 via a branch pipe 52 which is connected via an aperture 53 to the interior of a casing 54 at least the base 54a of which is of ferro-magnetic material. Movable within the casing 54 is a disc 55 of magnetic rubber, e.g., an elastomer containing aligned, magneticed particles. Bolted to the casing 54 is a plate 57 of non-magnetic material in which, in addition to the aperture 53, there is a second aperture 56.

In the absence of pressure in the pipe 51, the disc 55, which, in effect, constitutes a flap valve, is held against the base 54a so that the branch 52 is in communication with the atmosphere via apertures 53 and 56. However, when the pump 2 is in operation pressure in pipe 51 forces the disc 55 against the plate 57 so closing apertures 53 and 56.

Thus, as long as pressure exists in pipe 5 upstream of valve 6, air, air/oxygen mixture or oxygen can be supplied to the patient. Lack ofpressure at the location described in effect, opens pipe 18 to atmosphere and enables the patient to breathe atmospheric air via apertures 53 and 56.

In one particular embodiment of the invention, pump 2 is an axial flow pump with six stages and operates at a pressure of l00l20 cm W.G. The pump has an output of 250 liters/minute. Although an output of 25-30 liters/minute is normally sufficient, the output must almost instantaneously reach 75-100 liters/minute when valve 6 opens.

Air leaving the pump is normally at a temperature of from 60-70C and is saturated with water vapor by the humidifier l5 and at the same time its temperature is reduced to 30-35C.

For human use, the frequency of operation of the valve 6 is set to from 10-60 exhalations and inhalations per minute. However, for veterinary use a wider range may be necessary depending upon the animal being treated. In practice, a range of l-l00 is satisfactory for most purposes.

The embodiment may be used to treat patients demanding the use of a respirator and is especially suitable for treating at home patients with chronic respiratory deficiency.

I claim:

1. A respiration apparatus comprising:

a multistage air-displacement turbine pump having a discharge side;

an electric motor connected to said pump for driving same;

a first pipe connected to said discharge side of said a mouthpiece connected to said first pipe and receiving air from said pump through said first pipe;

an adjustable first throttle valve along said first pipe between said discharge side of said pump and said mouthpiece for controlling the airflow to said mouthpiece;

an electromagnetic flow-control valve along said first pipe between said discharge side and said throttle valve for selectively passing and blocking flow of air to said mouthpiece from said turbine pump;

means for periodically opening and shutting said flow-control valve;

a safety valve communicating with said first pipe for connecting said mouthpiece to the atmosphere upon pressure in said first pipe upstream of said flow-control valve falling below a predetermined level and indicating a failure at said pump;

another pipe connected to a source of oxygen under pressure and communicating with the firstmentioned pipe between said flow-control valve and said discharge side of said turbine pump; and

a further throttle valve in said other pipe between said source and said first pipe, said electromagnetic valve constituting the sole valve for flocking and unblocking flow of air and oxygen to a patient.

2. The apparatus defined in claim 1 wherein said other pipe is provided with an electromagnetic valve operatively connected with said motor and open upon operation thereof.

3. The apparatus defined in claim 1 wherein said first pipe has a plurality of telescopically engaged parts forming a heat exchanger between the air traversing said first pipe and the ambient atmosphere.

4. The apparatus defined in claim 1, further comprising a humidifier in said first pipe between said flowcontrol valve and said mouthpiece.

5. The apparatus defined in claim 1 wherein said mouthpiece is provided with valve means defining separate inhaled and exhaled gas flow paths, said exhaled flow paths comprising apparatus sealable by said valve means.

6. The apparatus defined in claim I wherein said safety valve comprises a closure member of elastomeric magnetized material, a housing enclosing said closure member and including a base portion of ferro magnetic material, means forming a flow path normally closed by the closure member, and a conduit connecting said housing to said first pipe.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2581450 *Feb 26, 1951Jan 8, 1952Henry SeelerResuscitator
US2830579 *Oct 21, 1952Apr 15, 1958Meyer SakladHigh altitude respiration
US2830580 *Oct 21, 1952Apr 15, 1958Meyer SakladElectronically controlled respiratory apparatus
US3319627 *Feb 20, 1964May 16, 1967Mine Safety Appliances CoIntermittent positive pressure breathing apparatus
US3460532 *Aug 6, 1965Aug 12, 1969Bird F MPulmonary therapy respirator
US3486502 *Sep 9, 1966Dec 30, 1969Dynasciences CorpPositive pressure flow cut-off respiration system
US3515135 *May 22, 1968Jun 2, 1970Flower Henry CPortable resuscitator unit
US3515163 *Feb 26, 1968Jun 2, 1970East & Co Ltd H GRespiratory apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3924619 *Dec 28, 1973Dec 9, 1975Taylor Diving & Salvage CoClosed circuit, free-flow, underwater breathing system
US4186737 *Nov 10, 1977Feb 5, 1980Airco, Inc.Drug nebulizing system for medical ventilators of the volume-limited type
US4197842 *Mar 7, 1978Apr 15, 1980Anderson Edmund MPortable pulmonary respirator, intermittent positive pressure breathing machine and emergency oxygen equipment
US4279250 *Sep 14, 1979Jul 21, 1981Airco, Inc.Drug nebulizing system for medical ventilators of the volume-limited type
US4301793 *Nov 13, 1979Nov 24, 1981Thompson Harris SSigh producing mechanism for positive pressure respirator
US4314138 *Jun 18, 1979Feb 2, 1982Akira ItohApparatus for applying a mixture of air and vapor to the face or hair
US4430995 *May 24, 1982Feb 14, 1984Hilton Joseph RPower assisted air-purifying respirators
US4462398 *Dec 3, 1982Jul 31, 1984Kircaldie, Randal and McNab, TrusteeRespirating gas supply method and apparatus therefor
US4466433 *Dec 4, 1981Aug 21, 1984Minnesota Mining And Manufacturing CompanyInfant ventilator including a gas delivery system
US4506667 *Apr 6, 1983Mar 26, 1985Figgie Int IncSelf-contained ventilator/resuscitator
US4519387 *Jun 22, 1984May 28, 1985Kircaldie, Randall And Mcnab, TrusteeRespirating gas supply method and apparatus therefor
US4657008 *Jun 25, 1985Apr 14, 1987Gambro Engstrom AbAnesthesia and/or respirator apparatus having a moistening and/or gasification chamber
US4660547 *Mar 7, 1986Apr 28, 1987Mallinckrodt, Inc.Method and apparatus for the diagnosis of respiratory diseases and allergies
US4747403 *Jan 27, 1986May 31, 1988Advanced Pulmonary Technologies, Inc.Multi-frequency jet ventilation technique and apparatus
US4803977 *Mar 27, 1987Feb 14, 1989Mallinckrodt, Inc.Method and apparatus for the diagnosis of respiratory diseases and allergies
US4832012 *Jul 8, 1987May 23, 1989Vortran Medical Technology, Inc.Intermittent signal actuated nebulizer
US4836242 *May 12, 1988Jun 6, 1989L'air LiquidePressure reducer for pure gases
US4953546 *Jan 10, 1989Sep 4, 1990Transpirator Technologies, Inc.Method and apparatus for pulmonary and cariovascular conditioning of the young of large animals
US4955372 *Nov 13, 1989Sep 11, 1990Transpirator Technologies, Inc.Method and apparatus for pulmonary and cardiovascular conditioning of racehorses and competition animals
US5080093 *Sep 20, 1990Jan 14, 1992Vortran Medical Technology, Inc.Intermittant signal actuated nebulizer
US5099837 *Sep 28, 1990Mar 31, 1992Russel Sr Larry LInhalation-based control of medical gas
US5134995 *Dec 21, 1990Aug 4, 1992Puritan-Bennett CorporationInspiratory airway pressure system with admittance determining apparatus and method
US5172687 *Oct 30, 1990Dec 22, 1992Messer Griesheim GmbhTreatment chamber for performing therapeutic procedures
US5245995 *May 27, 1992Sep 21, 1993Rescare LimitedDevice and method for monitoring breathing during sleep, control of CPAP treatment, and preventing of apnea
US5322057 *Jan 24, 1991Jun 21, 1994Vortran Medical Technology, Inc.Intermittent signal actuated nebulizer synchronized to operate in the exhalation phase, and its method of use
US5522382 *Jan 10, 1995Jun 4, 1996Rescare LimitedDevice and method for treating obstructed breathing having a delay/ramp feature
US5740795 *Dec 2, 1994Apr 21, 1998Resmed Limited, An Australian CompanyEstimation of flow and detection of breathing in CPAP treatment
US5823186 *Feb 6, 1997Oct 20, 1998Dragerwerk AgRespirator
US5927274 *Feb 3, 1997Jul 27, 1999Healthdyne Technologies, Inc.Pressure support ventilatory assist system
US6119723 *Feb 13, 1998Sep 19, 2000Resmed Limited,Apparatus for varying the flow area of a conduit
US6237592 *Jul 3, 1996May 29, 2001Resmed LimitedAuto-calibration of pressure transducer offset
US6240921Apr 22, 1997Jun 5, 2001Resmed, Ltd.Automated stop/start control in the administration of CPAP treatment
US6253764May 7, 1997Jul 3, 2001Resmed, Ltd.Control of delivery pressure in CPAP treatment or assisted respiration
US6443146 *Feb 24, 2000Sep 3, 2002Ponwell Enterprises LimitedPiezo inhaler
US6532957Sep 23, 1997Mar 18, 2003Resmed LimitedAssisted ventilation to match patient respiratory need
US6635021Sep 19, 1997Oct 21, 2003Resmed LimitedMethod and apparatus useful in the diagnosis of obstructive sleep apnea of a patient
US6688307Mar 12, 2002Feb 10, 2004Resmed LimitedMethods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support
US6705315Jun 6, 2001Mar 16, 2004Resmed LimitedDevice for monitoring breathing during sleep and ramped control of CPAP treatment
US6770037Mar 4, 2002Aug 3, 2004Resmed LimitedMethod and apparatus useful in the diagnosis of obstructive sleep apnea of a patient
US6810876Jul 3, 2002Nov 2, 2004Resmed Ltd.Assisted ventilation to match patient respiratory need
US7004908Jan 18, 2002Feb 28, 2006Resmed LimitedMethod and apparatus useful in the diagnosis of obstructive sleep apnea of a patient
US7137389Mar 15, 2004Nov 21, 2006Resmed LimitedMethod and apparatus for determining instantaneous inspired volume of a subject during ventilatory assistance
US7141021Jul 21, 2005Nov 28, 2006Resmed LimitedMethod and apparatus useful in the diagnosis of obstructive sleep apnea of a patient
US7644713Mar 8, 2006Jan 12, 2010Resmed LimitedMethod and apparatus for determining instantaneous leak during ventilatory assistance
US8051853Nov 19, 2009Nov 8, 2011Resmed LimitedMethod and apparatus for providing ventilatory assistance
US8333194 *Dec 14, 2006Dec 18, 2012Mergenet Medical, Inc.High flow therapy device utilizing a non-sealing respiratory interface and related methods
US8733351Sep 21, 2011May 27, 2014Resmed LimitedMethod and apparatus for providing ventilatory assistance
US8733353 *Jun 29, 2006May 27, 2014Fisher & Paykel Healthcare LimitedBreathing assistance apparatus with a manifold to add auxiliary gases to ambient gases
US20130032148 *Jan 23, 2012Feb 7, 2013Neely Travis RayOxygen delivery apparatus, system, and method
EP1302666A1 *Sep 26, 2002Apr 16, 2003TaemaTwo stage blower in particular for breathing aid apparatus
WO1984002080A1 *Dec 2, 1983Jun 7, 1984Tritec Ind IncRespirating gas supply method and apparatus therefor
WO1990014121A1 *May 21, 1990Nov 20, 1990Puritan Bennett CorpInspiratory airway pressure system
Classifications
U.S. Classification128/203.27, 128/204.21, 128/207.16
International ClassificationA61M16/12, A61M16/20, A61M16/10, A61M16/00
Cooperative ClassificationA61M16/0066, A61M2016/202, A61M16/00, A61M16/12, A61M2016/0021
European ClassificationA61M16/00