Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3864771 A
Publication typeGrant
Publication dateFeb 11, 1975
Filing dateAug 21, 1972
Priority dateAug 21, 1972
Publication numberUS 3864771 A, US 3864771A, US-A-3864771, US3864771 A, US3864771A
InventorsBauer William H
Original AssigneeTextron Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Deployable load buoyancy support container or shelter system
US 3864771 A
Abstract
A storable (when in folded/compacted condition) capsule-like device adapted to be deployed to provide for example an improved surface or underwater load-buoyancy system; or a low-cost shelter for instruments and/or personnel during lunar or space explorations. More specifically, a device of the invention may comprise an improved sonobuoy adapted to be lowered into ship harbors from surface craft or dropped into the sea from aircraft, for carrying and supporting harbor surveillance instruments or the like at preferred surface or subsurface levels. In another form devices of the invention are adapted to be carried (while in compactly infolded condition) into space, for subsequent deployment into enlarged shelter-providing condition.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Bauer et al.

1451 Feb. 11,1975

[ 1 DEPLOYABLE LOAD BUOYANCY 3,659,108 4/1972 Ouase 220/8 x SUPPORT CONTAINER 0R SHELTER FOREIGN PATENTS OR APPLICATIONS SYSTEM 726,991 9/1942 Germany 220/8 [76] Inventors: William H. Bauer. Grand Island,

N.Y.; Textron Inc., Prov1dence, R I. Primary E.\-aminerMilton Buchler Assistant E.\'an11'nerGregory W. OConnor [22] Flled' 1972 Attorney, Agent, or Firm-Bean & Bean l2l] Appl. No.: 282,370

[57] ABSTRACT [52 us. Cl. 9/8 R, 220/8 A Smrable (when in folded/compacted condition) p- [51] Int. Cl B63b 21/52 sule'like device adapted to be deployed PTm/ide for [58] Field of Search 9/8 R; 114/241; 220/8, example an improved surface or underwater 220/ 5 3; 150 05 buoyancy system; or a low-cost shelter for instruments and/or personnel during lunar or space explorations.

[5 References Cited More specifically, a device of the invention may com- UNITED STATES PATENTS prise an improved sonobuoy adapted to be lowered 770 621 9 904 into ship harbors from surface craft or dropped into I 207582 1: ggg the sea from aircraft, for carrying and supporting harg 3/195] 'g' x bor surveillance instruments or the like at preferred 2:7]8:0|6 9/1955 9/8 R surface or subsurface levels. In another form devices 2327094 3/1958 Luce et a] v of the invention are adapted to be carried (while in 2,880,902 4/1959 Owsen 220/8 compactly infolded on) into space. for subse- 3,220,544 1l/1965 Loue1l.... 220/8 X quent deployment into enlarged shelter-providing con- 3,266,068 8/1966 High 9/8 R dition.

3,586,084 6 I971 R d d 150 .5

l 8 mon 12 Claims, 5 Drawing Figures A t i ii i 1 1 t 11 11 :1 1 1: E: l l I l .1 I2 11 11 :5 :1: I: ll 1 l1 l3 1 11 .8 1-v 19 0 w 11 El 1 l: u s I:

1 1 ll l: 12 1: i 1: ii :1:

k \H j PATENIED FEB] I I975 SHEET 2 [IF 2 DEPLOYABLE LOAD BUOYANCY SUPPORT CONTAINER OR SHELTER SYSTEM DESCRIPTION OF THE INVENTION The deployable device ofthe present invention is described by way of several examples of application thereof to specific problems, as illustrated by the accompanying drawing wherein:

THE DRAWINGS FIG. 1 is a vertical sectional view of an improved sonobuoy type underwater-moored buoyancy device of the invention for support of surveillance instruments or the like; said device being shown in its folded/compacted condition;

FIG. 2 is a reduced scale vertical sectional view corresponding to FIG. 1 but showing the device in its deployed/operative condition;

FIG. 3 is a composite solid-line and broken-line showing corresponding to FIGS. 1, 2; but illustrates application of the invention to the problem of providing an improved self-erecting silo or hostile environment shelter:

FIG. 4 is a showing of the type of FIG. 3, illustrating application of the invention to the problem of providing an improved emergency shelter useful in connection with space expeditions or the like; and

FIG. 5 is a perspective view showing the device of FIG. 4 in its expanded/deployed condition.

FIGS. 1-2 illustrate an improved water buoy system of the invention; having particular adaptation to sonobuoy type harbor surveillance systems. As shown at FIG. 1, the device is furnished for transport to the site of its intended use in compacted non-buoyant condition, for subsequent activation (such as by remote control means) into expanded/deployed buoyant condition. A preferred form of construction for this specific purpose comprises a centrally disposed mounting ring at opposite sides of which are mounted as by welding as indicated at 11-11 in back-to-back relation thereon a pair of mirror-image type shell members each comprising successively smaller diameter cylindrical wall portions 12 which are enjoined by annular fold portions 13, 13a, 13b and 13c. Thus, the center ring 10 provides a common base support for the shell members.

The structure shown at FIG. 1 may be fabricated by radially deforming a pair of seamless tube sections constructed as shown for example in US. Pats. Nos. 3,2 22,905 and 3,470,725 ofa suitably ductile sheet material; by employing either a high hydraulic pressure forming operation or a rolling operation, so that each section will assume a stepped cylindrical configuration such as is shown at FIG. 2 herewith. Then, upon application of suitable axially-directed compression forces against opposite ends of the sections they will be rolled and compacted into the convoluted form shown in FIG. 1, whereby the fabrication is telescoped into a greatly reduced length and space-saving configuration. The convoluted cylinders are then welded to the ring 10 and end closures 14-14 are welded to the outer ends of the shells.

Prior to welding the end closures upon the cylindrical sections a bottle of compressed gas as shown at 16 (or any other suitable device such as a solid propellant type gas generator) may be installed within the interior of the structure, for subsequently supplying a source of fluid under pressure. Or, in lieu thereof arrangement may be provided for connection to an externally located compressed gas supply, as may be preferred. For example as indicated at 19, an inlet port may be provided through the ring 10 for connection to an external pressure supply source and/or leakage test devices. Also, instruments or other equipment desired to be stored within the device as indicated at 18, may be installed at this stage. As indicated at 20, a remotely controllable pressure release valve may be provided in conjunction with the pressure tank 16; it being understood that the release valve 20 may be radio-controlled from any suitable remotely located control station.

Thus, it will be appreciated that the device of FIG. I may be fabricated of extremely lightweight materials and compactly stowed within a submarine, aircraft, or the like, for delivery for example into an enemy harbor and for subsequent deployment into the expanded buoyant condition as illustrated at FIG. 2. Upon release of pressured air or other gas into the interior of the device, such as by opening of the valve 20, the structure will simply unroll from the condition shown in FIG. I and into the condition shown in FIG. 2. The action occurs sequentially, from the largest diameter convolute which unrolls in such manner that annular fold 1321 progresses outwardly until the first convolute is fully extended into a substantially constant diameter cylindrical form; and thenceforth in like manner throughout the successively smaller diameter convolutes until attaining the configuration of FIG. 2. Note that during the extension operation the intermediate convolute sections simply translate axially. Unrolling of the structure is continuous until all radii of component sections are fully developed and the structure has been fully extended to the stepped preform configuration as shown in FIG. 2. Incidental to the extension process the annular fold portions 13 simply unfold and assume the substantially conical stepped shapes as shown in FIG. 2. Thus, there is provided a low-cost expandable capsule which is airtight and adapted to buoyantly support the payload l8 (i.e., sonar receptor and ratio relay instruments or the like) at the desired level relative to the water surface. A mooring loop as indicated at 22 may be provided to suspend the device below an identification float or the like.

The invention is illustrated at FIG. 3 as being applied to the problem of providing an improved self-erecting silo or shelter device for equipment or personnel in any hostile environment; such as for example in conjunction with desert, or lunar, or outer space expeditions or where protection is required from harmful radiations and/or micro-meteorites or the like. As shown herein, the device of the invention may comprise a base pad 30 upon which is mounted in air-sealed relation one end portion of a generally cylindrical-shaped sheet metal structure 32 having an integral end closure portion 34. As explained in connection with the description of FIGS. I-2 of the drawing herewith, the device is adapted to be compacted into a form as illustrated by solid lines in FIG. 3. The broken line illustration thereof depicts the deployed configuration into which the structure expands upon introduction of pressured gas, as upon opening of the pressure supply device as explained hereinabove.

The structure of FIG. 3 may be fabricated as explained hereinabove in connection with FIGS. l-2, or alternatively it may be fabricated (as illustrated at FIG.

3) to initially comprise a plurality of different diameter cylindrical sleeves 35 shaped and welded together at adjacent ends as shown at 36. In any case there is thus provided a convoluted structure which is adapted to unroll and deploy into the broken line configuration thereof shown in FIG. 3. The invention therefore provides an improved means which is adapted for use as a self-erecting silo or shelter for instruments, personnel, or the like; against a hostile environment. As indicated at 38, a doorway or the like may be either initially provided for or subsequently cut into a side wall portion thereof.

FIGS. 4, 5, illustrate another form of extendible container of the invention wherein the structure comprises initially an integrally formed and generally cylindrically-shaped section 40 of thin sheet metal, having either initially or subsequently formed thereon (so as to be functionally intergral therewith) end closure portions 4242. The structure is fabricated as shown in FIG. 5, and may be described as comprising in addition to the end portions 4242 a centrally located ring portion 44 which is subtended at opposite sides thereof by progressively smaller-diameter cylindrical wall portions 46-46 terminating in connection with the end closure portions 4242. The entire fabrication is of thin sheet metal, and may readily be formed by either pressforming a suitable workpiece into the desired configuration, or by welding together suitably shaped component parts thereof.

In any case, the fabrication will be initially either in the configuration shown in FIG. 5 and subsequently subjected to the end-to-end or axially directed compression loading such as will be sufficient to cause the component sections thereof to roll into the compacted convoluted configuration which is illustrated by the solid line showing in FIG. 4; or, alternatively may be fabricated initially in the solid-line configuration shown at FIG.-4 by welding together suitably shaped components. In any case as explained hereinabove in connection with the invention of FIGS. 1-2, the device is thereupon adapted to be transported in compacted condition for delivery to the site of its intended operation whereupon it may be deployed into its operative configuration as shown at FIG. 5. The sheet metal material may be of stainless steel or any other suitably ductile material, as dictated by the usage environment.

THEORY OF OPERATION The depolyment sequence is started by pressurization of the container by gas as explained hereinabove. As the internal pressure rises to the required value, the operation commences with the rolling of the outer convolution around its rolling radius (i.e., the radius of the annular fold facing away from the interior of the container) to the larger cylindrical diameter. When rollthrough of the outer convoluted section is complete, the next inner convolution rolls out around its rolling radius in a like manner and so on until the structure is fully deployed. If one side ofa convolution rolls before the other, the cylindrical cross section must be forced out of round. However, the hoop tensile force, the magnitude of which is determined by the rolling pressure, provides a stabilizing or counterbalancing effect which resists ovaling. Hence, the structure is self-aligning during deployment.

The extendible structure, upon deployment, becomes a conventional, unsupported, rigid, sheet metal container that can be designed to any required wall thickness. In this way, structural stability can be assured, and maximum operating reliability can be achieved. Thus, an improved high deployment reliability is available through use of a simple extension technique actuated by internal pressurization. The invention features in addition to an improved extension facility a very lightweight and overall low cost system. Other advantages include non-deterioration and non-permeation characteristics in comparison for example to buoys made of rubber or other organic materials.

Thus, it will be appreciated that the thin-metalwalled device of the invention provides a space-saving, low-cost, and structurally simplified improvement over prior devices for such purposes, and a primary advantage of the device of the invention over conventional type metal tanks or the like is that of space-savings during transportation by spacecraft, aircraft, submarine or surface vessels.

1 claim: I

l. A buoy transportable in compacted small volume form and adapted to be subsequently extended into large volume condition, said sonobuoy comprising:

a base member of ring-like form subtended at opposite sides thereof by wall members, each said wall members being formed of a plurality of internested ductile sheet material cylindrically shaped straight wall components of different diameters disposed concentrically about a common extension axis and interconnected by annular fold components and having an end closure component functionally integral therewith at opposite ends thereof,

said straight wall components and said annular fold components being formed of the same material and being of substantially equal wall thickness throughout; and either the largest or smallest diameter wall component of said plurality being affixed to said base member;

and means for causing said sonobuoy to unroll in the direction of said extension axis and to extend into a single generally cylindrical configuration closed at all side wall and end portions thereof.

2. A buoy as set forth in claim 1 wherein said means for causing said buoy to unroll comprises a source of pressurized gas delivering into the interior thereof.

3. A buoy as set forth in claim 1 wherein said sheet material is a metal.

4. A buoy as set forth in claim 1 wherein said straight wall and annular fold components and said end closure components are successively integral extensions of single sheet metal stockpieces.

5. A buoy as set forth in claim I wherein said straight wall and said annular fold components are initially separately fabricated and subsequently structurally integrated.

6. A buoy as set forth in claim 1 wherein said straight wall and annular fold components are successively integral extensions of a single sheet metal stockpiece.

7. A buoy transportable in compacted small volume form and adapted to be subsequently extended into large volume condition, said buoy comprising:

a wall member formed of a plurality of internested ductile sheet material cylindrically shaped straight wall components of different diameters disposed concentrically about a common cylindrical axis and interconnected by annular fold components and end closure components functionally integral therewith at the opposite ends thereof;

said straight wall components and said annular fold components being formed of the same material and being of substantially equal wall thicknesses throughout;

and means for causing said buoy to unroll in the direction of said cylindrical axis and to extend into a single generally cylindrical configuration closed at all side wall and end portions thereof.

8. A buoy as set forth in claim 7 wherein said means for causing said buoy to unroll comprises a source of pressurized gas delivering into the interior thereof.

9. A buoy as set forth in claim 7 wherein said straight integral extensions of a single sheet stockpiece.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3286L|W771 Dated February 975 Inventor(s) William H. Bauer It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2, line A2, "ratio" should be radio Column line 2h, "sonobuoy" should be buoy Column line +0, "sonobuoy" should be buoy Signed and sealed this 22nd day of April 1975.

(SEAL) Attest:

C. MARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks FORM PC3-1050 (IO-69) USCOMM-DC scan-P09 us covzmmsm rnnmus omcz; 930

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US770621 *Mar 31, 1904Sep 20, 1904 Beige sydney whyte
US1202582 *Nov 20, 1914Oct 24, 1916Cloyd C PolingCollapsible container.
US2546956 *Oct 6, 1944Mar 27, 1951Martha F WattsSubmersible buoy
US2718016 *Sep 29, 1952Sep 20, 1955Joseph L SwitzerDan buoy
US2827004 *Jun 21, 1955Mar 18, 1958Luce Clayton SPortable a-bomb shelter
US2880902 *Jun 3, 1957Apr 7, 1959Peter OwsenCollapsible article
US3220544 *Apr 26, 1963Nov 30, 1965Walter C LovellPackaging and novel container employed therewith
US3266068 *Oct 30, 1964Aug 16, 1966Msl Ind IncBuoy
US3586084 *Dec 5, 1969Jun 22, 1971Redmond SanfordPlastic blank for making a container
US3659108 *Feb 7, 1969Apr 25, 1972Underwater Storage IncCollapsible floatable submergible and towable containers with resistant layers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4114137 *Dec 19, 1974Sep 12, 1978The United States Of America As Represented By The Secretary Of The NavyDirectional sonobuoy
US4562979 *Mar 21, 1983Jan 7, 1986AeritaliaExpandable spacecraft
US4930644 *Dec 22, 1988Jun 5, 1990Robbins Edward S IiiThin film container with removable lid and related process
US5073136 *Mar 29, 1990Dec 17, 1991Magnavox Government And Industrial Electronics CompanyCollapsible sonobuoy floatation device
US5224613 *Aug 31, 1990Jul 6, 1993Robbins Edward S IiiCollapsible container
US5226551 *Nov 12, 1991Jul 13, 1993Robbins Edward S IiiReusable and re-collapsible container
US5384138 *Jun 26, 1991Jan 24, 1995Edward S. Robbins, IIICollapsible containers
US5392941 *Apr 14, 1994Feb 28, 1995Robbins, Iii; Edward S.Reusable and re-collapsible container and associated cap
US5417337 *Apr 16, 1993May 23, 1995Robbins, Iii; Edward S.Reusable and re-collapsible container and associated cap
US5549213 *Oct 12, 1993Aug 27, 1996Edward S. Robbins, IIIReusable re-collapsible container and resealable cap
US5575398 *Dec 28, 1994Nov 19, 1996Robbins, Iii; Edward S.Reusable and re-collapsible container and associated cap
US5632406 *Oct 11, 1995May 27, 1997Robbins, Iii; Edward S.Side wall construction for collapsible containers
US5711445 *May 16, 1994Jan 27, 1998Robbins, Iii; Edward S.Collapsible urine container
US5860556 *Oct 20, 1997Jan 19, 1999Robbins, Iii; Edward S.Collapsible storage container
US8695285 *Oct 13, 2011Apr 15, 2014Strata Products Worldwide, LlcTelescoping modular shelter and method
US20130091783 *Oct 13, 2011Apr 18, 2013Strata Products (Usa), Inc.Modular shelter and method
EP0449371A1 *Mar 25, 1991Oct 2, 1991Magnavox Electronic Systems CompanyCollapsible sonobuoy floatation device
WO1994016957A1 *Jan 21, 1993Aug 4, 1994Edward S Robbins IiiReusable and re-collapsible container and associated cap
Classifications
U.S. Classification441/30, 220/8
International ClassificationB64G1/22, B63B22/00, B64G1/60, E04H15/22, B63B22/22, E04H15/20, B64G99/00
Cooperative ClassificationB63B22/22, E04H15/22, B64G9/00, B64G1/60
European ClassificationB64G9/00, E04H15/22, B63B22/22, B64G1/60