Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3866366 A
Publication typeGrant
Publication dateFeb 18, 1975
Filing dateAug 7, 1973
Priority dateAug 7, 1973
Also published asCA1009426A1
Publication numberUS 3866366 A, US 3866366A, US-A-3866366, US3866366 A, US3866366A
InventorsFuller Richard Buckminster
Original AssigneeFuller Richard Buckminster
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Non-symmetrical tension-integrity structures
US 3866366 A
Abstract
A building structure composed of column-like discontinuous compression members held by a plurality of tension elements, the column-like compression members being held in spaced relation by tension elements attached adjacent the ends of the column-like compression members. In the form shown, there are what can be termed two substructures, one at the top and one at the bottom, each substructure having pentagonal configurations of parallel lesser circles formed by column-like members and tension elements at its base, said pentagonal configurations being twisted relative to each other so as to provide rectangular openings therebetween. There are column-like compression members between the substructures held in spaced relation to each other and to the substructures by tension elements. The entire combination produces a generally spherical-like building structure.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Fuller Feb. 18, 1975 NON-SYMMETRICAL TENSION-INTEGRITY STRUCTURES [76] Inventor: Richard Buckminster Fuller, 200

Locust St., Philadelphia, Pa. 19106 [22] Filed: Aug. 7, 1973 [21] Appl. No.: 386,302

[52] US. Cl. 52/81, 52/648 [51] Int. Cl E04b 1/32 [58] Field of Search 52/81, 648

[56] References Cited OTHER PUBLICATIONS The Dymaxion World of Buckminster Fuller, Robert Marks, 1960, Reinhold Pub. Corp., pp. 160-16l, FIG. k1 1.

Primary Examiner-Ernest R. Purser Assistant Examiner-Carl D. Friedman Attorney, Agent, or FirmSmythe & Moore [57] ABSTRACT A building structure composed of column-like discon tinuous compression members held by a plurality of tension elements, the column-like compression members being held in spaced relation by tension elements attached adjacent the ends of the column-like compression members. In the form shown, there are what can be termed two substructures, one at the top and one at the bottom, each substructure having pentagonal configurations of parallel lesser circles formed by column-like members and tension elements at its base, said pentagonal configurations being twisted relative to each other so as to provide rectangular openings therebetween. There are column-like compression members between the substructures held in spaced relation to each other and to the substructures by tension elements. The entire combination produces a generally spherical-like building structure.

7 Claims, 12 rawing Figures PATENTEDFEBIBWS 3.666666 SHEET 5 OF 5 TOP TIER OR PENTAGON STRUCTURE THIROTIER) v 43 BOTTOM TIER OR PENTAGON STRUCTURE NON-SYMMETRICAL TENSION-INTEGRITY STRUCTURES This invention relates to building structures and particularly to one of the tension-integrity type of structure.

The present invention is an improvement on and a variation of tension-integrity structures, such as shown in prior U.S. Pat. No. 3,063,521, Nov. 13, I962. The structures involved are known generally as geodesictype dome structures. The tension-integrity structure is one that is of generally spherical form having discontinuous compression columns joined with tension elements in a manner to provide the aspect of discontinuous compression and continuous tension sometimes re ferred to as Tensegrity structures. In some instances, it has been found desirable in a structure of the type involved herein to have rectangular-like areas or zones for windows, walls, doors, or the like.

One of the objects of the present invention is to provide an improved tension-integrity type structure having zones of rectangular-like configuration.

Another of the objects of the invention is to provide a tension-integrity type of structure wherein a portion can be prefabricated.

In one aspect of the invention and in the form shown, the generally spherical-like building structure can have a substructure at the top and a substructure at the bottom, the bases of the substructures being spaced from each other, the bases being of pentagonal configuration which are twisted relative to each other in a manner to provide rectangular-like facets therebetween. The substructures and spacing of the pentagonal configuration, which are lesser circles as compared with great circles, are formed by a plurality of column-like compression members joined by a plurality of tension elements, such as wire or rope, the column-like members being axially spaced relative to each other by the tension elements which are attached near the ends of spaced column-like members. The pentagon of the top substructure above tha aforementioned lesser circle has five column-like members forming a generally pentagonal configuration. The bottom substructure has five column-like members in a pentagonal configuration and below its lesser circle which is the reverse of the top pentagon. Column-like members extend between the two substructures and are joined thereto with tension elements, the reversal of the top and bottom pentagons resulting in the twisting of the lesser circle pentagons relative to each other. It is to be understood that various frequencies can be used and varioustypes of enclosures or panels employed.

Other objects, advantages and features of the present invention will become apparent from the accompanying description and drawings, which are merely exemplary.

In the drawings:

FIG. 1 represents four tiers, the top two representing the top substructure and the lower two representing the lower substructure; I

FIG. 2 is a fragmentary perspective of a column-like member with four tension elements attached adjacent the ends thereof for attachment to other column-like members;

FIG. 3 is a schematic representation of the relationship of the column-like members of the top pentagonal configuration;

FIG. 4 is a schematic representation of the upper substructure pentagonal lesser circle or base;

FIG. 5 is a schematic representation of the lower substructure pentagonal lesser circle or base showing the same in its rotated position relative to the lesser circle pentagon of FIG. 4;

FIG. 6 is a schematic representation of the columnlike members of the bottom pentagonal configuration which is similar to FIG. 3 but is in a reversed relationship; FIG. 7 is a top view showing generally the manner in which the column-like members appear;

FIG. 8 is a top view generally similar to FIG. 7 but showing the tension elements between the column-like members;

FIG. 9 is a perspective side view of FIG. 8 taken in the general direction 9-9 of FIG. 8;

FIG. 10 is an enlarged fragmentary view of the upper and lower vertical columns together with related columns and tension elements, there being five of each around the periphery;

FIG. 11 is a fragmentary view of the top substructure looking generally in the direction 1 l-l1 of FIG. 8; and

FIG. 12 is a fragmentary view of the lower substructure looking generally in the direction 12-12 of FIG. 8.

Proceeding next to the drawings wherein like reference symbols indicate the same parts throughout the various views, a specific embodiment of the present invention will be described in detail. In the interest of simplicity, reference symbols have not been included in all of the figures.

The column-like members can be made of wood, aluminum, plastic or any suitable material. The ends of the column-like members can be notched or otherwise fitted to hold the tension elements or wires at the ends of said column-like members. Each column-like member will have four tension elements emanating from each end thereof as shown in FIGS. 2 and 10.

In FIGS. 3, 4, 5, and 6, for purposes of description, the general relation of the column-like members before they are joined together with the tension elements is shown. As can be seen, the top pentagonal configuration, illustrated in FIG. 3, is oriented in a clockwise configuration as compared with the counterclockwise configuration of the bottom pentagonal configuration shown in FIG. 6. As will be explained hereafter, the upper substructure base lesser circle pentagon Configuration of FIG. 4 is twisted in the final assembled structure relative to the lower base lesser circle pentagon configuration of FIG. 5.

FIG. 7 illustrates the relation of the members in the final assembled structure, the elements of FIGS. 3 to 6 being combined therein.

Referring now particularly to FIGS. 8 and 9, the top pentagonal configuration will be described. Columnlike members 20, 21, 22, 23 and 24 are attached or supported by tension elements 'to other of the column-like members so as to be axially spaced therefrom. For example, column-like member 20 has a tension element 20A-64A-20B leading from end 20A to an end 64A of vertical column-like member 64 (FIG. 9) and thence to end 203. Additionally, a tension element 30A-2- 0A-30B from end 20A to end 30A and end 30B of the column-like member 30 of the lesser circle pentagon of the top substructure.

Vertically extending column-like members 60, 61, 62, 63, 64 extend between tension elements fastened to 3 the column-like members 40, 41, 42, 43 and 44 of the lower substructure lesser circle pentagon and tension members between their opposite ends and column-like members of the top pentagon configuration columnlike members 20, 21, 22, 23, 24.

Similarly, vertically extending column-like members 70, 71, 72, 73, 74 extend from tension elements attached to the ends of the upper lesser circle pentagon members 30, 31, 32, 33, 34 and tension members attached to column-like members 50, 51, 52, 53 and 54 of the lower pentagonal configuration.

The lower pentagonal configuration is similar to the top configuration except that it is reversed, as can be seen in FIGS. 3 and 6.

In FIG. 10, the column-like members are numbered so as to agree with FIGS. 8 and 9. One set of members will be described, the others being similar thereto. Upwardly extending member 64 has end 643 connected to member 44 of the lower lesser circle pentagon by tension element 44A-64B-44B. End 64B of member 64 is also connected to end 308 of upper lesser circle pentagon member 30 and end 64A by tension element 64B-30B-64A as well as to lesser circle member 34 by tension elemment 64B-30B-64A. The upper end 64A of 64 also is connected to the ends of the upper pentagonal configuration member 20 by tension element 20A-64A-20B. The end 508 of member 50 connects to member 44 by tension element 44A-50B-44B. There are five lower and five upper vertical columnlike members repeated in a similar manner. The term vertical means generally vertical when the structure is oriented as shown.

' It can be seen that the column-like compression members are held in axially spaced relation to each other by the tension elements.

As a result of the combination of column-like elements and tension elements shown and described, there will be rectangular-like facets such as depicted at A (FIG. 10) between the upper lesser circle including elements 30, 31, 32, 33, 34 and the lower lesser circle formed by elements 40, 41, 42, 43, 44. I

FIGS. 11 and 12 show the relation of 3 of the elements of the top tier and of the bottom tier.

As seen in FIG. 2, a loose connecting wire or elements 80 can be used so as to limit outward movement.

Merely by way of example, the structure of the present invention can be formed of thirty aluminum struts or column-like members, each 36% inches long and 1 inch outside diameter with one-fourth inch slots formed in each end thereof for receiving the tension elements. The tension elements can be made of synthetic fiber linehaving a length of about 37% inches between bination. It is understood that these dimensions will vary according to material of the line or rope and other dimensions of the structure. Also, the tension elements combination can be prefabricated and the column-like members inserted therein when and where the structure is to be erected.

It will be understood that various details of construction and arrangement of parts may be changed without departing from the spririt of the invention except as defined in the appended claims.

What is claimed is:

1. In a generally spherical-like building structure, the combination including a like pair of substructures, each being comprised of a plurality of column-like compression members and a plurality of tension elements, the column-like members being held in axially spaced relationship to one another by the tension elements being attached adjacent the ends of spaced column-like members, pentagon lesser circle configurations at the base of each substructure, and a plurality of columnlike members between said substructures and extending directly therebetween and holding said substructures in spaced relation, said column-like members being held in axially spaced relation thereto by tension elements so that pentagon lesser circle configurations are displaced relative to each other.

2. Ina building structure as claimed in claim 1 wherein there is a top and bottom substructure, each substructure having a pentagonal-like configuration of column-like compression members located outside of said lesser circle configurations, said pentagonal-like configuration being reversed in the top substructure in relation to the bottom substructure.

3. In a building structure as claimed in claim 1 wherein there are rectangular-like apertures between said substructures.

4. In a building structure as claimed in claim 2 wherein there are rectangular-like facets between the substructures.

5. In a building structure as claimed in claim 1 wherein each of the column-like members between the substructures has tension elements connecting one of the ends thereof to pentagon lesser circle configurations at the base of a first substructure and the other end thereof connected to a pentagonal-like configuratuion of column-like members outside of said lesser circle of the substructure other than said first substructure.

6. In a building structure as claimed in claim 5 wherein the pentagonal-like compression members located outside of said lesser circle configurations are reversed relative to each other.

7. In a building structure as claimed in claim 1 wherein the tension elements are prefabricated and the column-like elements inserted therein thereafter.

Non-Patent Citations
Reference
1 *The Dymaxion World of Buckminster Fuller, Robert Marks, 1960, Reinhold Pub. Corp., pp. 160-161, Fig. k11.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4148520 *Feb 4, 1977Apr 10, 1979Miller Ross MPiece of furniture
US4233656 *Oct 12, 1978Nov 11, 1980Shemsafe IncorporatedAssemblable lamp shade and structures
US4340217 *Dec 22, 1980Jul 20, 1982Gillis Robert EMonkey maze
US4548004 *Aug 8, 1983Oct 22, 1985Chastain Lemuel JSpace frame construction with mutually dependent surfaces
US4583956 *Nov 2, 1984Apr 22, 1986Nelson William ARigid and telescoping strut members connected by flexible tendons
US4614502 *Mar 11, 1985Sep 30, 1986Nelson William ATelescoping strut members and tendons for constructing tensile integrity structures
US4844213 *Sep 29, 1987Jul 4, 1989Travis William BEnergy absorption system
US6868640 *Mar 20, 2003Mar 22, 2005Tom Barber Design, Inc.Structures composed of compression and tensile members
US6901714May 29, 2002Jun 7, 2005Board Of Regents, The University Of Texas SystemsTensegrity unit, structure and method for construction
US7013608 *Jun 28, 2001Mar 21, 2006Dennis John NewlandSelf-guyed structures
US7452578Sep 1, 2004Nov 18, 2008Lanahan Samuel JStructural fabrics employing icosahedral elements and uses thereof
US7578307 *Mar 19, 2003Aug 25, 2009Dana Macy UngPortable, collapsible shelters
US7694463Jul 18, 2008Apr 13, 2010Lanahan Samuel JStructured polyhedroid arrays and ring-based polyhedroid elements
US8388401May 7, 2010Mar 5, 2013Samuel LanahanStructured arrays and elements for forming the same
US8616328 *Feb 21, 2013Dec 31, 2013California Institute Of TechnologyMethod and apparatus for wave generation and detection using tensegrity structures
US20130220729 *Feb 21, 2013Aug 29, 2013California Institute Of TechnologyMethod and apparatus for wave generation and detection using tensegrity structures
US20140237914 *Sep 18, 2012Aug 28, 2014Mca Tecnologia De Estruturas LtdaWindbreak supporting tower for reducing the speed of natural wind on open-air ore stacks
WO2002097211A2 *May 29, 2002Dec 5, 2002Univ TexasTensegrity unit, structure and method for construction
WO2003083231A1 *Mar 25, 2003Oct 9, 2003Tat LlcStructures composed of compression and tensile members
WO2013056324A1 *Sep 18, 2012Apr 25, 2013Metalvix Engenharia E Consultoria LtdaWindbreak supporting tower for reducing the speed of natural wind on open-air ore stacks
Classifications
U.S. Classification52/81.2, 482/36, 52/653.1
International ClassificationE04B1/32, E04B1/19
Cooperative ClassificationE04B2001/1981, E04B2001/1945, E04B1/19, E04B2001/3241, E04B2001/1996, E04B2001/1927, E04B1/3211
European ClassificationE04B1/32C, E04B1/19