Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3866800 A
Publication typeGrant
Publication dateFeb 18, 1975
Filing dateFeb 12, 1969
Priority dateFeb 12, 1969
Publication numberUS 3866800 A, US 3866800A, US-A-3866800, US3866800 A, US3866800A
InventorsWilliam H Schmitt
Original AssigneeAlberto Culver Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Non-pressurized package containing self-heating products
US 3866800 A
Abstract
A non-pressurized package containing a product, especially a cosmetic product selected from the class consisting of those to be applied to skin and hair, said product comprising two separate compositions which are adapted to be mixed together to form a final heated composition which is dispensed from said package, said package having two separate compartments for separate storage of said two compositions, one of said compartments containing a composition comprising an oxidant in an aqueous medium, and the other of said compartments containing a substantially anhydrous composition which includes a reductant, a water-soluble organic solvent, a compressible gas which is substantially water-insoluble but which is soluble in said organic solvent, said compressible gas existing as a gas at a temperature in the range of ambient temperature to about 70 DEG C. and existing as a liquid at said temperature under superatmospheric pressure, the aforesaid two separate compositions, when admixed, resulting in the release of said compressible gas by reason of the insolubility of said gas in the solution of said organic solvent and said water.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Ilited States Patent [191 Schmitt 1 1 NON-PRESSURIZED PACKAGE CONTAINING SELF-HEATING PRODUCTS William H. Schmitt,'Elmhurst, Ill.

[73] Assignee: Alberto Culver Company, Melrose Park, Ill.

[22] Filed: Feb. 12, 1969 [21] Appl. No.: 798,628

[75] Inventor:

[58] Field of Search 222/94, 136, 145; 424/40, 424/44, 45, 47; 252/305, 188.3

[56] References Cited UNITED STATES PATENTS 2,674,619 4/1954 Lundsted 260/485 2,677,700 5/1954 Jackson ct a1.. 260/488 2,995,521 8/1961 Jacques 252/90 3,055,834 9/1962 Charle et a1. 252/90 3,105,615 10/1963 Koga 222/94 3,131,153 4/1964 Klausner 252/305 3,240,396 3/1966 Friedenberg.... 222/146 3,325,056 6/1967 Lewis 222/94 3,326,416 6/1967 Hayes 222/4 3,341,418 9/1967 Moses et al..... 167/85 3,372,839 3/1968 Hayes 222/94 OTHER PUBLICATIONS The Merck Index of Chemicals and Drugs, 7th Ed., (1960), p.664. Giese et al., (1), Journal of the American Pharmaceutical Assoc, Vol. 39, pp. 3036, (1950).

[451 Feb. 18, 1975 Giese et al., (ll), Journal of the American Pharmaceutical Assoc, Vol. 34, pp. 208-212, (1945).

Primary Examiner-Albert T. Meyers Assistant ExaminerAllen .1. Robinson Attorney, Agent, or Firm-Wallenstein, Spangenberg, Hattis & Strampel [57] ABSTRACT A non-pressurized package containing a product, especially a cosmetic product selected from the class consisting of those to be applied to skin and hair, said product comprising two separate compositions which are adapted to be mixed together to form a final heated composition which is dispensed from said package, said package having twoseparate compartments for separate storage of said two compositions, one of said compartments containing a composition comprising an oxidant in an aqueous medium, and the other of said compartments containing a substantially anhydrous composition which includes a reductant. a water-soluble organic solvent, 21 compressible gas which is substantially water-insoluble but which is soluble in said organic solvent, said compressible gas existing as a gas at a temperature in the range of ambient temperature to about 70C. and existing as a liquid at said temperature under superatmospheric pressure, the aforesaid two separate compositions, when admixed, resulting in the release of said compressible gas by reason of the insolubility of said gas in the solution of said organic solvent and said water.

12 Claims, 11 Drawing Figures NON-PRESSURIZED PACKAGE CONTAINING SELF-HEATING PRODUCTS This invention relates to novel self-heating products, especially cosmetic products of the type which are applied to skin and hair, and which are in the form of two separate compositions which are packaged in a nonpressurized package or container and which are adapted to be mixed together to form a final heated composition which is dispensed from said package for use. The invention is especially applicable to the production of self-heating shaving creams, but it is also useful in other self-heating products, particularly cosmetic products which are intended for application to the skin and hair and where enhancement of the utility of said products results from heat and the evolution of a gas or, in certain instances, the production of a foam. Illustrative of such other products are topical medicaments, liniments, cleaners for household or other applications, after-shave products or lotions, cleansing creams, astringent lotions, hair dyes, hair dye removers, hair bleaches, hair rinses, hair shampoos, hair conditioners, hair dressings, body and underarm deodorants, and other toiletries. The invention will be described below in connection with cosmetic products where it appears to have its greatest utility but it will be understood that it is not so limited.

Selfheating cosmetic products, notably shaving creams or'shaving preparations have heretofore been known. Illustrative of such products are those shown in U.S. Pat. No. 3,341,418. These comprise two-part compositions which are adapted to be mixed together, the two different parts being packaged in a single package having two compartments for separate storage of the two parts of the compositions, one of said parts containing an oxidant and the other containing a reductant, said two parts being adapted to be dispensed simultaneously with mixing whereby, on being admixed, an exothermic reaction occurs. Each of the two-part compositions contains various ingredients, in addition to their respective oxidant and reductant, including substantial proportions of water. The packages or containers in which said two-part compositions are packaged and from which they are dispensed and pressurized with a liquefied gaseous propellant. Other illustrative self-heating preparations and pressurized containers or aerosol dispensers in which they are packaged are shown in U.S. Pat. Nos. 3,240,396; 3,325,056; 3,326,416 and 3,372,839.

The product compositions and the non-pressurized packages containing the same of my present invention are radically different from those of the previously known types referred to above and operate on an entirely unrelated principle of gas formation and evolution or the production of foam. While they employ separate compositions, one of which contains an oxidant and the other of which contains a reductant, and which separate compositions when admixed together evolve heat and give offa gas or form a foam, they achieve this result in an entirely different way from heretofore known practices and procedures, and which enables packaging in non-pressurized packaging, thereby avoiding problems and hazards which are associated with pressurized packaging or aerosol dispensers.

Briefly speaking, the non-pressurized package of my present invention which contains a cosmetic product of the type which is intended for application to the skin and hair, and wherein said cosmetic product comprises two separate compositions which are adapted to be mixed together to form a final heated composition which is dispensed from said package, and wherein said package has two separate compartments for separate storage of said two compositions, houses in one of said compartments a composition comprising an oxidant in an aqueous medium. In the other of said compartments there is housed a substantially anhydrous composition which includes a reductant, a water-soluble organic solvent, a compressible gas which is substantially waterinsoluble but which is soluble in said organic solvent, said compressible gas being of that type which exists as a gas at a temperature in the range of ambient temperature to about 70C. and exists as a liquid at said temperature under superatmospheric pressure. The aforesaid two separate compositions, when admixed, become heated and, in addition, cause the: release of said compressible gas by reason of the insolubility of said gas in the solution of said organic solvent and said water. Thus, in addition to the generation of heat and the resulting formation ofa warm or hot shaving or other cosmetic product for application to the skin or hair, the evolution of gas which also occurs causes a mechanical action leading, in certain cases, to foam formation and spreading. Quite high temperatures can be reached upon admixture of the two separate compositions as, for instance, of the order of 70C., depending upon a number of factors including the selection of particular oxidants and reductants.

The oxidant-containing composition which, for convenience, may be called the A composition, may comprise simply an aqueous solution of an oxidizing agent, or a mixture of oxidizing agents, as, for instance, a l to 20 percent aqueous solution of hydrogen peroxide. While aqueous solutions of other oxidizing agents can be employed, such must be reasonably stable. The oxidizing agents can be used with or without stabilizers such as are shown, for example, in U.S. Pat. No. 3,341,418. It is particularly preferred, however, to employ aqueous solutions of hydrogen peroxide as the oxidant, aqueous solutions containing from about 5 to 10 percent hydrogen peroxide being very satisfactory in most cases.

The oxidant-containing composition can, if desired, include other ingredients, depending, for instance, on

the nature of the particular cosmetic product which it is desired to produce. Among such other ingredients are thickeners, illustrative of which is polyethylene glycol 300 monostearate and amine oxides such as dimethylalkylamine oxides (e.g., Standamox-Ol, Standard Chemical Products, Hoboken, N.J.); surfactants such as those referred to below; sodium silicate or other alkali metal silicates or other non-reactive inorganic salts or compounds; hydrogenated castor oil; sodium hexametaphosphate, trisodium phosphate, and sodium tripolyphosphates.

The reductant-containing composition which, for convenience, may be called the B composition, will generally contain the reductant (or reducing agent) in proper amount to react with the quantity of oxidant in the A composition. Various reductants can be employed such as sodium or potassium salts of sulfurous acid or thiosulfuric acid as, for instance, sodium sulfite or potassium thiosulfate. Other reductants which can be utilized are shown, for example, in the aforementioned patents. it is particularly preferred to use sodium sulfite.

The proportions of the oxidant and reductant, in relation to each other, are variableand will depend, of course, upon the particular oxidants and reductants utilized, generally being employed in approximately the proper stoichiometric proportions to achieve the exothermic reaction. In the case of the use of hydrogen peroxide as the oxidant and sodium sulfite as the reductant, 1 mol of hydrogen peroxide is desirably used with about 3.7 mol of sodium sulfite on the anhydrousbasis.

V 7 in addition to the reductant, or mixtures of reduc; tants, the B composition will also contain a nonaqueous organic solvent in which the reductant is soluble or dispersible or suspendable, and in which organic solvent compressed or compressible gas or gases are dissolved whereby to lower the vapor pressure of the resultant solution to a point at which said solution can be maintained at ambient temperatures in nonpressurized containers.

The organic solvent, which is used in the B composition, must be water-soluble, and must also be a solvent for the compressed gas which is to be dissolved therein. Illustrative examples of such organic solvents, which generally are liquidsat normal or ambient temperatures, are saturated aliphatic monohydric alcohols containing one to three carbon atoms such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; and di-alkyl ketones in which the alkyl groups contain one to three carbonvatoms, such as acetone and methyl ethyl ketone. It is, however, especially desirable to utilize normally liquid water-soluble polyethylene glycols such as polyethylene glycol 200, 400, 600, 800, 1,000, 1,450, and-higher polyethylene glycols. Various aliphatic polyhydric alcohols such as glycerol, monoalkylene and polyoxyalkylene glycols in which the alkylene groups contain from two to four carbon atoms, such as ethylene glycol, propylene glycol, dipropylene glycol, 1,3- butylene glycol, hexylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol and somewhat higher polyethylene glycols, such as those mentioned above, can be used. In certain cases, the organic solvent can be in the form of one or more normally liquid organic surface active agents or surfactants, of nonionic, anionic,.cationic or amphoteric character. Illustrative of such nonionic surfactants are alkylene oxide, particularly ethylene oxide, adducts of fatty or aliphatic long chain (straight or branched) alcohols, or fatforming fatty acids, or alkyl phenols as, for example, 8 to 20 mol ethylene oxide adducts of octyl alcohol,

decyl alcohol, dodecyl alcohol, tridecyl alcohol, oxoalcohols such as oxo-tridecyl alcohol, oleic acid, palmitic acid, diamylphenol, nonylphenol, dinonylphenol, and the like. Other normally liquid nonionic surfactants, for example, those sold under the designation Pluronics, are condensates or adducts of ethylene oxide with polyoxypropylene glycols of molecular weight 1,200 or higher. They are disclosed, for example, in U.S. Pat. Nos. 2,674,619 and 2,677,700. Normally liquid anionic surfactants are commonly in the form of sulfates, sulfonates and phosphates and are well known in the art, and the situation is the same in regard to the cationic surfactants and amphoteric surfactants of which there is an extensive literature. Mixtures of two or more organic solvents can be utilized and, where the mixtures of organic solvents comprise a liquid at ambient temperatures, to the extent that one or more of them is a surfactant, said surfactant, per se, need not be a liquid at ambient temperatures. The organic surfactants may, per se, be solids or liquids at ambient temperatures. While, as stated above, the anionic, cationic and amphoteric surfactants are well known, illustrative examples are sulfated fatty alcohols and sulfated derivatives of fatty alcohols, and sulfonated long chain alkyl benzenes or toluenes, advantageously in the form of their salts, typical of which are sodium lauryl sulfate, sodium myristyl ether sulfates, dodecylbenzene sodium sulfonate and octadecylbenzene sodium sulfonate, and thecorresponding sulfates in the form of their amine salts such as the ethanolamine, diethanolamine, triethanolamine and isopropylamine and isopropanolamine salts; quaternary ammonium compounds such as lauryldimethylbenzylammonium chloride, cetylpyridinium chloride, and lauric acid ester of colaminoformylmethyl pyridinium chloride; and dodecyl betaalanine, sulfated imidazolines, and reaction products of dodecyl taurine with hydrophobic tertiary amines. The proportions of the organic solvent, or solvent mixtures, utilized in the B compositions are variable but will, in general, lie in the range of about 20 to about 90 percent by weight, or somewhat more or less, usually about 25 to about 40 percent.

Any volatile organic material which exists as a gas at room temperatures, or use temperatures, namely, the temperatures which are produced by the interaction of the oxidant and the reductant when the A and B compositions are mixed together (at ambient or atmospheric pressure) and which exists as a liquid at the same temperatures under superatmospheric pressures, and is soluble in the organic solvent (or mixtures thereof) utilized, and is substantially insoluble in water, can be used as the gas-producing agent. Especially suitable are the C -C aliphatic hydrocarbons, namely, liquefied propane, n-butane, isobutane, isobutylene, npentane, isopentane, n-hexane, and hexene-2; and halogenated aliphatic hydrocarbons which contain from 1 to 2 carbon atoms and include, by way of example, ethyl chloride, chloroform, trichloroethylene, methylene chloride, dichlorodifluoromethane, monochlorodifluoromethane, dichlorotetrafluoroethane, trichlorofluoromethane, trichlorofluoroethane, difluoroethane, difluoromonochloroethane, trichlorotrifluoroethane, and mixtures of two or more thereof, most desirably the saturated hydrocarbons and halogenated saturated aliphatic hydrocarbons. The boiling points of said aliphatic hydrocarbons and halogenated aliphatic hydrocarbons should fall within the range of about 30C. to about C. at atmospheric pressure, preferably about 3C. to about 37C. The proportions thereof in the B compositions of the present invention will, in general,

range from about 1 to about 20 percent, by weight,

preferably about 5 to about 10 percent. The vapor pressure of the B compositions is, in general, in the range of from 0 to 10 psig at 25C. and not greater than about 15 psig at 50C. The selection of the compressed gas is dependent, among other considerations, upon the amount of gas production of foam production desired, as the case may be, and the vapor pressure that is desired in the solution of the compressed gas in the organic solvent in the B composition.

The B compositions will also contain a foaming agent or agents, independently of considerations of solvency characteristics or properties thereof in relation to the compressed gas. Such foaming agents are surfactants which may, in certain instances, impart detergency and thickening properties to the B compositions. Such surfactants may be various soaps as, for instance, alkanolamine soaps of fat-forming fatty acids such asdiethanolamine, triethanolamine and diisopropanolamine soaps of coco or coconut oil fatty acids or special cuts or fractions thereof such as those containing mainly lauric acid or myristic acid, and said soaps of such other fatty acids as palmitic acid, oleic acid, stearic acid, and mixtures thereof. Others of such surfactants, which may be of anionic, nonionic or amphoteric character, include, by way of illustration, sodium lauryl sulfate, dioctyl sodium sulfosuccinate, nonyl phenoxy polyethyleneoxyethanol, disodium N-lauryl beta iminodipropionate, and others such as have been mentioned above. 'The B compositions may also contain other agents such as thickening agents, suspending agents, foam stabilizers such as lauryl alcohol or other known foam stabilizers, perfumes, dyes and the like, certain of which are employed simply to impart cosmetic elegance to the system. While, in general, it is desirable to incorporate such agents into the B compositions, it should be understood that, where compatible, such agents can be incorporated into the A compositions or into both the A and B compositions.

The A composition may be liquid, or a solid, such as a paste (or cream) or a gel; and the B composition may be a liquid or a solid, such as a paste (or cream) or a gel.

The following examples are illustrative of self-heating products made in accordance with my invention. It will be understood that numerous other self-heating products can readily be made in the light of the guiding principles and teachings of the present invention disclosed above. The examples given are, therefore, by way of illustration and not by way of limitation. All parts listed are in terms of weight EXAMPLE 1 A Composition 6% Water Solution of Hydrogen Peroxide 97 Dimethylalkylamine Oxide- (Standamox-O l Standard Chemical Products, Hoboken, NJ.) 3

B Composition Stearic Acid (Triple Pressed) 12.6 Coconut Oil Mixed Fatty Acids 3 Diethanolamine 10.4 Polyethylene Glycol 400 32 Cetyl Alcohol 10 Polyethylene Glycol 400 Monostearate 5 Sodium Sulfite 2L5 isopentane 5 Perfume 0.5

All of the ingredients of the B composition, other than the perfume and the isopentane, are melted together at about 60C. and stirred and then, while continuing the stirring and while cooling, the perfume is added and then the isopentane is added. The resulting A and B compositions are placed in separate compartments of a non-pressurized package. On admixing said A and B composition, a relatively thick warm to hot foam or lather results which is applied to the skin to facilitate shaving.

EXAMPLE 2 A Composition Hydrogen Peroxide 6 Polyethylene Glycol 300 Monostearate 2 Deionized Water 92 B Composition Igepal CA 630" (Octylphenoxypolyethyleneoxyethanol 40 Sodium Sulfite (Anhydrous) 22 Sodium Lauryl Sulfate l7 Lauryl Alcohol l l Trichlorofluoromethane (Propellant ll) 10 The A and B compositions are each somewhat viscous fluids. They are packaged in separate compartments in a non-pressurized package. On being admixed and dispensed therefrom, a stiff hot shaving lather results. The temperature of the lather reaches about 55C. quite quickly and has the appearance of giving off steam.

A suitable non-pressurized package or container for the packaging, admixing and dispensing of the A and B or two-part cosmetic products of the present invention includes two flexible or collapsible compartments, one for holding the oxidant-containing composition and the other for holding the reductant-containing composition, the construction being such that, when the package or container is squeezed in the hand, substantially equal internal pressures are created in both compartments. Separate ports are provided for each compartment at the outlet end of the container and outlet check valves control the outflow through these ports. A dispenser cap is received over the outlet end of the container enclosing the ports and valve means. The cap provides an intermixing passage communicating with both the port means at its inner end when the valves are open and its outer end with a dispensing outlet; and, intermediately, means are preferably provided for promoting thorough intermixing of the two fluids being dispensed; While various package constructions can be utilized, a particularly suitable one is of the type which is shown in the application of John A. Cella, Ser. No. 774,803 filed Nov. 12, 1968, now US. Pat. No. 3,581,940, for Dispensing Container, and assigned to the assignee of the present application.

As set forth in said application, an illustrative embodiment of a non-pressurized package or dispenser container is shown in the accompanying drawings in which:

FIG. 1 is a perspective view of the dispenser container, the container being shown in use position with the hand ofa user in a suitable position for dispensing a proportioned, interacted mixture of the A and B compositions;

FIG. 2 is a view similar to FIG. 1 with the cap and dispensing end portion of the container broken away to show the internal construction, the appearance of the container when full being indicated by the broken lines, while the solid lines show the container in partially dispensed condition;

FIG. 3 is an enlarged sectional detail view of the dispensing end of the dispenser container of FIGS. 1 and 2, as the compositions A and B would appear for dispensing of the two intermixed compositions;

FIG. 4 is a view similar to FIG. 3, except that the compositions A and B are shown in the relation that they would have when the container is not being used for dispensing;

FIG.. is an exploded perspective view of the components of the dispensing end of the container;

FIG. 6 is a transverse sectional view taken on line 6-6 of FIG. 1 and looking toward the dispensing end of the container;

FIG. 7 is a reduced scale elevational view of the twocompartment tube;

FIG. 8 is a sectional view of the tube taken on line 8-8 of FIG. 7;

FIG. 9 is a transverse sectional view of the twocompartment container taken on Iine.9-9 of FIG. 2 showing the compartments in partially collapsed condition;

FIG. 10 is a fragmentary sectional view of the closure end of the two-compartment container taken on line 10-10 of FIG. 7; and

FIG. 11 is a fragmentary detailed view of the dispensing end of the two-compartment container looking in the direction indicated by the line 11-11 in FIG. 7.

Looking first at FIGS. 1 and 2, the dispenser container, which is capable of providing on demand substantially uniform dispensing of both the A and B compositions in any desired increments, and dispensing the resulting heated product as a proportioned reacting mixture, while avoiding back-flow and reacting of the compositions A and B within the storage compartments of the container, includes an elongated tube or tubular container means designated generally by the number 10. Container means-l0 is formed of flexible material such as plastic or'a plastic laminate and provides opposite outer walls 11 and 12. Central wall means 13, 14 divide the container 10 into two longitudinallyextending compartments 15'and 16, which, preferably, and in the embodiments shown, are of substantially equal volume.

The dual compartmented container tube 10 is dimensioned to be grasped by one hand, for example, as shown in FIG. 1, for simultaneously and substantially uniformly collapsing the outer walls 11, 12 and the central wall means 13, 14 toward a central longitudinal plane substantially bisecting the container, as indicated by a linex-x in FIG. 1. With this construction, upon the squeezing pressure being applied to the outer walls l1, 12 when the container is grasped by the hand, for example, between the palm and fingers, the volume of the compartments l5 and 16 can be correspondingly reduced to achieve substantially uniform dispensing of both compositions A and B.

As shown more clearly in FIG. 2, the tubular container 10 has an outlet end and a closure end, the 010- sure end being shown at the top and the outlet end at the bottom, as the unit is preferably held for dispensing. It will also be noted, as shown in both FIGS. 1 and 2, that the container means 10 tapers from the lower or outlet end toward the upper or closure end so that the compartments 15, 16 progressively reduce in crosssection toward the closure end, or, stated otherwise, progressively enlarge in cross-section toward the outlet end.

The tapering and cross-sectional shape of the tube elements which provide the compartments or chambers 15, 16 can be seen more clearly by comparing the closure end. As can be seen, the compartments l5, 16 have approximate cross-sections of. half ellipses, the outer walls 11, 12, respectively, forming the outer boundary of each half of the ellipse, while the inner walls 13, 14, generally coincide with the major axes of the ellipse. When considered from this standpoint, it can be seen that the minor axes, or, more accurately, the half of the minor axes within each of the compartments (15, 16), progressively shortens from the outlet end to the closure end of the compartments, the half minor axes becoming zero at the sealing juncture 17. The arcuate outer walls 11, 12 are readily collapsible against the relatively straight or flat inner walls 13, 14. Thus, this particular cross-sectional shape and the tapering of the generally ellipsoidal two-compartment container contributes to the desired unformity of collapsing, creating essentially equal pressures within each of the compartments (15, 16), as well as essentially equal reductions in compartment volumes. Both of the tube elements can be simultaneously compressed by the grasp of a single hand, as shown in FIG. 1. When substantially fully collapsed, the outer walls 11, 12 closely approach the inner walls 13, Hand become substantially parallel thereto, as shown more clearly in FIG. 9.

At the closure end, the outer walls 11, 12 and the collapse as the container is squeezed. A rotation of the closure line 17 is less desirable. If the closure line 17 is perpendicular to the plane xx toward which the walls l1, l2 collapse, there is much greater likelihood of the dispensing from the respective compartment 15, 16 being unequal and variable. In general, therefore, closure line 17 is oriented so as to be generally parallel to the central longitudinal plane of the container toward which the outer walls arecollapsed.

As indicated in FIG. 2, and shown more clearly in FIGS. 3 and 4, the outlet end of the container provides outlet port or port means 18, 19 which separately co mmunicate with the compartments, the port 18 communicating with the compartment 15, and the port 19 communicating with the compartment 16. Outlet check valve means, designated generally by the numbers 20 and 21, are associated with each of the port means. The check valve means 20 controls the port 18 and includes spring means for biasing the valve to close the port when the container 10 is under ordinary atmospheric pressure while permitting the ports to open when the compartment 15 is exposed to pressure by the grasp of a hand. The outlet check valve 21 is of similar construction and similarly controls the port 19 for compartment 16. The design of the check valves 21 is not critical, provided they perform their intended function of permitting dispensing of the compositions A and 8 under pressure, while effectively precluding back-flow.

A dispenser cap or cap means, designated generally by the number 22, is received on the outlet end of the tubular container 10 enclosing the port means 18, 19

and the valve means 20, 21. The cap 22 provides a common passage or passage means 23 communicating at its inner end (the upper end as shown in FIG. 2) with both of the port means 18, 19 when they are opened by the valve means 20, 21. As will subsequently be explained in greater detail, the passage means 23 includes flow-interrupting means, such as baffle or orifice means, for promoting intermixing of the two fluids, the object being to achieve a turbulent, intermixing type of flow, rather than a smooth or laminar flow.

The entire tubular container 10 is desirably formed as an integral unit from a thermoplastic material such as polyethylene or polypropylene. The container 10 is advantageously formed by blow-molding with the closure ends of the compartments being left open. The appearance of the container at this stage is shown more clearly in FIG. 6. As there shown, the outlet end of the container is closed by a horizontally-extending disk portion 24, which provides the outlet ports 18 and 19. The compartment is provided between the arcuate or semicircular wall 12 and the central generally straight wall portion 14. Similarly, the compartment 16 is defined by the outer curved wall 11 and the inner relatively straight wall 13. The walls 13 and 14 near their transverse center are connected by an integral rib 25, which facilitates the blow molding of the dual compartment container. The adjacent surfaces of the central Wall means 13, 14 can be partially or completely united to define a composite central wall. With other types of molding, such as extrusion molding, the container 10 may be formed with the central wall means comprising a single integral partition.

The groove-like openings 26 and 27 between the walls 13, 14 can be reduced in size and partially closed when the closure end of the tube is sealed. This is the construction shown in FIGS. 1 and 2 where the closure line 17 is formed by a heat seal, which fuses and unites the portions of walls 11, 12, 13 and 14 immediately adjacent the closure end of the container. Typically, the closure line 17 will extend along a straight transverse line, as shown in FIG. 7. FIG. 7 differs from the construction of FIGS. 1 and 2, however, in that the outer corners, respectively between the walls 12, 14 and 11, 13 are brought together and heat sealed or fused to form the longitudinally-extending flanges 28, 29, as shown in FIGS. 7 and 8, said heat seals 28, 29 being preferably utilized to improve the appearance of the container. With the construction of FIGS. 7 and 8, the central wall members l3, 14, are, in effect, one unitary partition wall, but, with either the construction of FIGS. 7 and 8 or that of FIGS. 1 and 2, there is provided central wall means which divide the container into the two compartments l5 and 16, and the outer and central walls are collapsible toward the longitudinal central plane, such as the plane xx.

Referring, now to FIGS. 3, 4 and 5, which show more clearly the individual components which provide the outlet check valve 20, 21, the cap 22, and the passage 23, the components of the cap assembly, as shown in the exploded view of FIG. 5, can be molded from a suitable plastic, such as a polyvinyl plastic or a vinylacetate copolymer plastic. This includes the valve housing insert 30, the cooperating spring retainer 31, the cover 32, and the outlet spout 33. The ball valves 34 and the springs 35 can be formed of metal, such as steel. The assembly of these components is shown more clearly in FIGS. 3 and 4.

The member 30 provides two tubular extensions 30a, 30b which extend through the ports l8, l9, and provide housings for the balls and springs 35. The horizontal disk portion 300 fits against the container disk portion 24, these parts being held together by a press fit.

The member 31 includes a horizontal disk portion 31a from which project pin portions 31b, 31c, which retain the springs 35 in the assembly, as shown in FIGS. 3 and 4. Pin portion 31b, 310, which retain the springs 35 in the assembly, as shown in FIGS. 3 and 4. Pin portions 31b, 31c are provided, respectively, withchannels or grooves 31d, 31e which communicate, respectively, with cross channels 31f, 31g. In the center of disk por tion 31a is provided an opening 31h the side walls of which are in communication with the cross channels 31f and 31g. The disk portions 30c and 310 can be sealed together by heat fusion, or can be connected by a press fit.

In the embodiment shown, the cover 32 is provided with internal threads 32a which cooperate with the external threads 36 on neck portion. 37 of the container. However, cover 32 can be permanently attached to the container, with the other components assembled substantially as shown in FIGS. 3 and 4, or can be attached in other suitable ways. Cover 32 also provides a spout portion 32b, which slidably receives the tubular portion 33a of spout member 33, the intermediate portion of the spout providing an annular boss or lug 33b, which can be snapped into spout portion 32b over the annular ledge 32c, while thereafter being retained therein for movement between the open position shown in FIG. 3 and the closed position shown in FIG. 4. The purpose of this operation will be subsequently explained.

The disk portion 300 provides :a circular recess 30d for receiving the inner end of tubular section 33a, as shown in FIG. 4. In this position, the inner end portion of spout section 33a closes and effectively seals the cross-flow channels 31f and 31g.

When the elements are in open position, as shown in FIG. 3, the inner end 330 of spout 33a projects into the cross-flow passages 31f, 31g, thereby tending to interrupt the flow and forcing the compositions A and B to enter the recess 33d, reverse direction and intermix, and then flow outwardly through the passage 23, as indicated by the arrows in FIG. 3. A turbulent intermixing type of flow is desirable to promote through intermixing of the compositions A and B being dispensed, and therefore it is desirable to provide flowinterrupting or baffle means for promoting the intermixing.

In the operation of the dispenser container, compositions A and B are filled into their respective compartments, such as the compartment 16 for the reductantcontaining composition before the end closure 17 is formed, and compartment 15 for oxidant-containing composition. The heat sealed end closure is then formed, as previously described, so that the compartments decrease in cross-section from the outlet end of the closure end, and the closure line extends in a plane, which preferably is approximately the same as the plane centrally bisecting the container between the compartments and running generally parallel to the inner compartment walls, 14, 15. The rib 25, which connects the walls 13, 14 along the longitudinal center line of the container, preferably terminates at a spaced distance from the transverse union line 17, leaving a space 28, as shown more clearly in FIG. 10. The rib connection 25 can extend continuously from space 28 up to and into the neck portion 38, as shown in FIG. 11.

For shipment and storage, manually-operable means is provided for selectively preventing accidental opening of the outlet check valves. As shown in FIGS. 3 and 4, the inner end of the common passage 23 through the outlet spout 33 communicates with the port means 18, 19 through separate passage extensions 31f, 31a and 31g, 3le. Manually-operable means, comprising the slidable spout member 33, is provided for selectively closing the outer ends of the passage extensions, namely, the cross-flow passages 31 f, 31 g. As shown, the inner end of spout portion 31g can be moved across the passages 31f, 31g and inserted into the recess 30d, thereby effectively closing the cross-flow passages and preventing communication between the compartments 15, 16 and the outflow passage 23.

Ifreparatory to dispensing operation, spout 33 can be I grasped by the button end portion 33d and pulled outwardly to the position shown in FIG. 3, which opens the passage 23 to cross-flow channels 31]", 31g. The dispenser container is then inverted so that, for instance, if the compositions A and B in the compartments l5 and 16 are liquid or flowable, they will run down toward the outlet end. In this position, the container tube can be grasped with one hand, for example in the manner indicated in FIG. 1, and substantially equal force applied to squeeze the outer walls l1, 12 toward the inner walls 13, 14, and toward the center line xx. The result of this squeezing action is to simultaneously open the outlet check valves 20, 21 by depression of the balls 34 against the ,springs 35, as shown more clearly in FIG. 3. This permits the two fluids to flow downwardly and merge in the common passage 23, as indicated by the outflow arrows in FIG. 3. As previously explained, the inner end portion 330 of outlet spout 33 serves as a flow-interrupting or baffle means, which directs the compositions A and B into the recess 30d, thereby causing them to intermix and reverse direction before flowing outwardly through the passage 23. As soon as the squeezing pressure is relaxed, the balls 34 will return to their seated positions as shown in FIG. 4, closing the valve ports 30e, 30f, and preventing any back-flow which might contaminate the composition within one of the compartments 15, 16.

The dispensing operation is assisted where the dispensing end of the container provides a relatively rigid neck portion 37 surrounding the port means 20, 21, and it is also desirable that neck portion 37 be connected to tube 10 by anoutwardly extending annular shoulder or shoulder means 38. Shoulder portion 38 enlarges the compartments at the dispensing end of the container and tends to prevent the outer walls 11, 12

from collapsing against the central wall means 13, 14

adjacent the port means 20, 21.

With the construction shown, the compartments 15, 16 are completely sealed by the container means 10 except for the port means 18 and 19. The operation of the outlet check valves 20, 21, which close as soon as a squeezing pressure is discontinued against the walls 11, I2, is such as to maintain a partial vacuum within the compartments l5 and 16 between incremental dispensing of the compositions A and B. This can cause the outer walls 11, 12 to be held in partially depressed or collapsed condition against the remaining composition in each compartment.

In FIG. 1, compartments l5, 16 are shown approximately half filled with the compositions A and B, indicating that a portion of the compositions has previously been dispensed. When fully charged as in the initial formation of the package, the outermost portions of outer walls 11, 12 may occupy positions somewhat as shown in the dotted lines of FIG. 2. As the dispensing continues, they will tend to press in against the remaining composition, as indicated by the solid lines in FIG. 2, where the compositions A and B have been reduced to about one-third the maximum volume of the compartments 15, 16. In the section of FIG. 9, the appearance of the compartment walls when substantially fully collapsed is indicated, the level of the compositions A and B being below the section line 9-9 as shown in FIG. 2.

The shoulder portion 36 holds the dispensing end of the compartments open for drainage collection of the 7 last portions of the compositions, where the latter are 7 7 7 liquids or are flowable, while the container can be milked downwardly by hand pressure to dispense the last increments of the compositions while still maintaining relatively uniform intermixing.

I am aware that it has heretofore been disclosed to prepare self-foaming or gas-releasable compositions, which are adapted to be packaged in non-pressure containers, such as collapsible or squeezable metallic tubes, plastic containers, and the like and which, when spread out in a thin layer, foam spontaneously. Such compositions, which are disclosed in US. Pat. No. 2,995,521, and may be in the form of shaving creams, comprise a mixture of (a) at least one substance of the class of C to C saturated aliphatic hydrocarbons and various Freons, which may be jellified with aluminum octoate, and (b) a mixture of a plurality of ingredients comprising, in the case ofa shave cream, vegetable oils, stearic acid, potassium hydroxide, glycerine, lauryl sulfonate and a substantial content of water, the water constitutingabout 37 percent of the (b) mixture and about 30 percent of the shaving cream as a whole. The

gas is suspended in a metastable state in the examples as described in the above patent, and the release of the gas is effected by the spreading out of the compositions in a thin layer. The non-pressurized packaged cosmetic products of my invention are sharply distinguishable therefrom in a number of particulars in that,-for instance, my products are self-heating and the B compositions thereof are anhydrous or substantially anhydrous, and the gas-producing agent or agents are in solution in an organic solvent and are displaced or released from said solution when contacted with water and issue as a gas at the temperatures encountered in the environment of their use.

I am also aware that it has been suggested to prepare gas-releasable or foam-producing compositions for dispensing from aerosol containers, as disclosed, for instance, in US. Pat. Nos. 3,055,834 and 3,131,153, the compositions of said latter patent containing (a) an alcohol or dialkyl ketone, (b) glycerol or an alkylene glycol such as polyoxyethylene glycol 200, 400, 600, etc., (c) a surface active agent, and (d) a propellant in the form of a liquified normally gaseous aliphatic hydrocarbon or halogenated aliphatic hydrocarbon such as butanes or pentanes or dichlorodifluoromethane or dichlorotetrafluoroethane. Such gas-releasable or foamproducing compositions are suggested for use as preelectric shave lotions, after-shave lotions, astringents, colognes, sun tan lotions, hair-coloring tints, hair dressings, etc. The said compositions are dispensed by means of conventional aerosol propellants and contained in conventional pressurized containers or aerosol packaging. Again, my non-pressurized packaged cosmetic products are sharply distinguishable from the disclosures and teachings in said patents is readily apparent from the foregoing detailed disclosures and teachings. My packaged products are not only selfheating and not only are packaged in non-pressurized containers, but, indeed, if even the B composition were simply placed as such, and without more, in an aerosol container, it would not be dispensable therefrom.

l claim:

1. A non-pressurized packaged product comprising two separate compositions which are adapted to be mixed together to form a final heated composition which is dispensed from said package, said package having two separate compartments for separate storage of said two compositions, one of said compartments containing a composition comprising an oxidant in an aqueous medium, and the other of said compartments containing a substantially anhydrous composition which includes a reductant, a water-soluble organic sol vent, a compressible gas which is substantially waterinsoluble but which is soluble in said organic solvent, said compressible gas existing as a gas at a temperature in the range of ambient temperature to about 70C. and existing as a liquid at said temperature under superatmospheric pressure, the aforesaid two separate compositions, when admixed, resulting in the release of said compressible gas by reason of the insolubility of said gas in the solution of said organic solvent and said water.

2. A non-pressurized package containing a cosmetic product selected from the class consisting of those to be applied to skin and hair, said cosmetic product comprising two separate compositions which are adapted to be mixed together to form a final heated composition which is dispensed from said package, said package having two separate compartments for separate storage of said two compositions, one of said compartments containing a composition comprising a peroxide oxidant in an aqueous medium, and the other of said compartments containing a substantially anhydrous composition which includes a sodium or potassium salt of sulfurous or thiosulfuric acid as a reductant, a watersoluble organic solvent, a compressible gas which is substantially water-insoluble but which is soluble in said organic solvent, said compressible gas existing as a gas at a temperature in the range of ambient temperature to about C. and existing as a liquid at said temperature under superatmospheric pressure, the aforesaid two separate compositions, when admixed, resulting in the release of said compressible gas by reason of the insolubility of said gas in the solution of said organic solvent and said water.

3. The package of claim 2, in which the oxidant is hydrogen peroxide.

4. The package of claim 2, in which the reductant is sodium sulfite.

5. The package of claim 2, in which the oxidant is a l to 20 percent aqueous solution of hydrogen peroxide, and in which the reductant is sodium sulfite.

6. The package of claim 2, in which the cosmetic is a shave cream.

7. The package of claim 6, in which the reductantcontaining composition includes stearic acid, coconut oil fatty acids, diethanolamine, a. water-soluble alkylene glycol, cetyl alcohol, and a polyethylene glycol monostearate.

8. The package of claim 3, in which the vapor pressure of the reductant-containing composition is in the range of from O'to 10 psig at 25C. and not greater than about 15 psig at 50C.

9. The package of claim 8, in which the compressible gas is at least one member selected from the group consisting of C to C aliphatic hydrocarbons and halogenated C to C aliphatic hydrocarbons.

l0. Thepackage of claim 9, in which the compressible gas is a chlorofluoro C to C saturated aliphatic hydrocarbon.

11. The package of claim 10, in which the organic solvent in said reductant-containing composition comprises a water-soluble alkylene glycol.

12. The package of claim 6, in which the compressible gas constitutes from about 1 to about 20 percent, by weight, of the solution thereof in said organic sol-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2674619 *Oct 19, 1953Apr 6, 1954Wyandotte Chemicals CorpPolyoxyalkylene compounds
US2677700 *May 31, 1951May 4, 1954Wyandotte Chemicals CorpPolyoxyalkylene surface active agents
US2995521 *May 20, 1957Aug 8, 1961Estignard-Bluard Jean JacquesFoam producing compositions
US3055834 *Jun 2, 1958Sep 25, 1962OrealAnhydrous anion-active detergents in the form of aerosols
US3105615 *Jul 10, 1961Oct 1, 1963Motoyuki KogaLid means including a mixing chamber for a container with plural spaced outlets
US3131153 *Oct 25, 1961Apr 28, 1964Allied ChemFoam producing compositions
US3240396 *Jun 11, 1963Mar 15, 1966Robert M FriedenbergAerosol dispenser
US3325056 *Feb 23, 1966Jun 13, 1967Du PontApparatus for codispensing a plurality of liquids
US3326416 *Jan 14, 1966Jun 20, 1967Du PontApparatus for codispensing a plurality of liquids
US3341418 *Mar 3, 1965Sep 12, 1967Gillette CoSelf-heating shaving preparation composition
US3372839 *Oct 31, 1966Mar 12, 1968Du PontDispenser with means to prevent bursting of the container
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4042520 *Feb 5, 1976Aug 16, 1977Imc Chemical Group, Inc.Thermogenic system
US4804115 *Apr 29, 1988Feb 14, 1989Metal Box P.L.C.Pump chamber dispenser
US4839081 *Jun 7, 1988Jun 13, 1989Colgate-Palmolive CompanyAutogenously heated liquid soap composition
US4952068 *Mar 21, 1989Aug 28, 1990Flint Theodore RStatic mixing device and container
US4961517 *Dec 5, 1985Oct 9, 1990Angela TkacDecorating cakes
US5030385 *Sep 18, 1989Jul 9, 1991E. I. Du Pont De Nemours And CompanyProcess of inhibiting corrosion
US5082651 *Apr 25, 1990Jan 21, 1992Smith Kline & French Laboratories LimitedPharmaceutical compositions
US5152432 *Sep 27, 1990Oct 6, 1992L'orealDispensing device comprising at least one bottle with a frangible end fitting
US5154917 *Sep 11, 1990Oct 13, 1992Beecham Inc.Color change mouthrinse
US5223245 *Aug 11, 1992Jun 29, 1993Beecham Inc.Color change mouthrinse
US5252312 *Sep 30, 1992Oct 12, 1993Chesebrough-Pond's Usa Co., Division Of Conopco, Inc.Package effervescible composition
US5516209 *Nov 15, 1994May 14, 1996Flint; Theodore R.Disposable static mixing device with a reusable housing
US5653361 *Aug 4, 1995Aug 5, 1997Lir FranceDouble dispensing receptacle with deformable walls
US5702033 *Jun 7, 1995Dec 30, 1997Continental Plastic Containers, Inc.Adjoined dual-tube dispenser
US5848730 *Jan 30, 1997Dec 15, 1998Kao CorporationDischarge bottle for jetting two agents simultaneously
US5865345 *Dec 31, 1996Feb 2, 1999Lawson Mardon Wheaton Inc.Container for dispensing two substances
US5928681 *Apr 8, 1997Jul 27, 1999Crown Cork & Seal Technologies CorporationMulti-chambered container production mold
US6063223 *Aug 5, 1998May 16, 2000Owens-Brockway Plastic Products Inc.Dual chamber flexible tube dispensing package and method of making
US6216915 *Aug 24, 1999Apr 17, 2001Owens-Brockway Plastic Products Inc.Dual chamber package
US6250346 *May 28, 1999Jun 26, 2001James Anzai CastilloDevice for maintaining separate ingredients in liquid food products
US6363978 *Feb 21, 2001Apr 2, 2002James A. CastilloCan container device for maintaining separate ingredients in liquid food products
US6390324May 18, 1999May 21, 2002Crown Cork & Seal Technologies CorporationMulti-chambered container
US6484514Oct 10, 2000Nov 26, 2002The Procter & Gamble CompanyProduct dispenser having internal temperature changing element
US6547063Oct 10, 2000Apr 15, 2003The Procter & Gamble CompanyArticle for the delivery of foam products
US6583103Aug 9, 2002Jun 24, 2003S.C. Johnson & Son, Inc.Two part cleaning formula resulting in an effervescent liquid
US6645423Mar 25, 2002Nov 11, 2003Constar International, Inc.Multi-chambered container production process
US6929116 *Apr 22, 2002Aug 16, 2005Contour Optik, Inc.Visual display of container contents
US7188739Feb 6, 2003Mar 13, 2007Sun Optics, Inc.Eyewear case and display method
US7846462Dec 7, 2010Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Personal care implement containing a stable reactive skin care and cleansing composition
US7854349 *Nov 25, 2003Dec 21, 2010The Gillette CompanyShave gel products
US7882838Feb 8, 2011Blaise Harrison, LlcExothermic condom packaging
US7906473 *Aug 15, 2003Mar 15, 2011Bissell Homecare, Inc.Manual spray cleaner
US7967220Dec 30, 2008Jun 28, 2011Bissell Homecare, Inc.Manual sprayer with dual bag-on-valve assembly
US8114385Dec 26, 2006Feb 14, 2012Foamix Ltd.Oleaginous pharmaceutical and cosmetic foam
US8119106Jul 8, 2009Feb 21, 2012Foamix LtdFoamable iodine compositions
US8119109Mar 13, 2007Feb 21, 2012Foamix Ltd.Foamable compositions, kits and methods for hyperhidrosis
US8119150Jul 6, 2006Feb 21, 2012Foamix Ltd.Non-flammable insecticide composition and uses thereof
US8328118Dec 11, 2012Bissell Homecare, Inc.Manual sprayer with dual bag-on-valve assembly
US8338354Feb 23, 2011Dec 25, 2012Bissell Homecare, Inc.Manual spray cleaner and protectants
US8343945Jun 7, 2010Jan 1, 2013Foamix Ltd.Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US8357383Jan 22, 2013Conopco, Inc.Personal care implement containing a stable reactive skin care and cleansing composition
US8362091Jan 29, 2013Foamix Ltd.Foamable vehicle and pharmaceutical compositions thereof
US8435498May 7, 2013Foamix Ltd.Penetrating pharmaceutical foam
US8486374Jan 14, 2008Jul 16, 2013Foamix Ltd.Hydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US8486375Feb 20, 2012Jul 16, 2013Foamix Ltd.Foamable compositions
US8486376Apr 6, 2005Jul 16, 2013Foamix Ltd.Moisturizing foam containing lanolin
US8512718Feb 12, 2010Aug 20, 2013Foamix Ltd.Pharmaceutical composition for topical application
US8518376Oct 6, 2009Aug 27, 2013Foamix Ltd.Oil-based foamable carriers and formulations
US8518378Sep 14, 2010Aug 27, 2013Foamix Ltd.Oleaginous pharmaceutical and cosmetic foam
US8586017Aug 9, 2004Nov 19, 2013The Gillette CompanySelf-heating non-aerosol shave product
US8618081May 4, 2011Dec 31, 2013Foamix Ltd.Compositions, gels and foams with rheology modulators and uses thereof
US8636982Aug 7, 2008Jan 28, 2014Foamix Ltd.Wax foamable vehicle and pharmaceutical compositions thereof
US8703105Mar 11, 2013Apr 22, 2014Foamix Ltd.Oleaginous pharmaceutical and cosmetic foam
US8709385Jul 14, 2010Apr 29, 2014Foamix Ltd.Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US8722021Mar 6, 2013May 13, 2014Foamix Ltd.Foamable carriers
US8741265Mar 4, 2013Jun 3, 2014Foamix Ltd.Penetrating pharmaceutical foam
US8760906Nov 1, 2013Jun 24, 2014Micron Technology, Inc.Techniques for reducing disturbance in a semiconductor memory device
US8784504Nov 20, 2012Jul 22, 2014Bissell Homecare, Inc.Carpet cleaning method
US8795635May 12, 2010Aug 5, 2014Foamix Ltd.Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US8795693Nov 29, 2007Aug 5, 2014Foamix Ltd.Compositions with modulating agents
US8840869Apr 28, 2005Sep 23, 2014Foamix Ltd.Body cavity foams
US8857664Nov 9, 2012Oct 14, 2014Ampac Holdings LlcTube with gussets
US8865139Jul 9, 2014Oct 21, 2014Foamix Pharmaceuticals Ltd.Topical tetracycline compositions
US8871184Oct 1, 2010Oct 28, 2014Foamix Ltd.Topical tetracycline compositions
US8900553Jun 7, 2010Dec 2, 2014Foamix Pharmaceuticals Ltd.Oil and liquid silicone foamable carriers and formulations
US8900554Feb 20, 2012Dec 2, 2014Foamix Pharmaceuticals Ltd.Foamable composition and uses thereof
US8945516Oct 1, 2010Feb 3, 2015Foamix Pharmaceuticals Ltd.Surfactant-free water-free foamable compositions, breakable foams and gels and their uses
US8986721Dec 14, 2012Mar 24, 2015Unilever Home & Personal Care Usa Division Of Conopco, Inc.Personal care implement containing a stable reactive skin care and cleansing composition
US8992896Aug 27, 2014Mar 31, 2015Foamix Pharmaceuticals Ltd.Topical tetracycline compositions
US9050253Apr 7, 2014Jun 9, 2015Foamix Pharmaceuticals Ltd.Oleaginous pharmaceutical and cosmetic foam
US9072667Jan 27, 2012Jul 7, 2015Foamix Pharmaceuticals Ltd.Non surface active agent non polymeric agent hydro-alcoholic foamable compositions, breakable foams and their uses
US9101662Oct 3, 2013Aug 11, 2015Foamix Pharmaceuticals Ltd.Compositions with modulating agents
US9161916Dec 31, 2012Oct 20, 2015Foamix Pharmaceuticals Ltd.Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US9167813Jan 27, 2012Oct 27, 2015Foamix Pharmaceuticals Ltd.Non surfactant hydro-alcoholic foamable compositions, breakable foams and their uses
US9211259Jun 7, 2006Dec 15, 2015Foamix Pharmaceuticals Ltd.Antibiotic kit and composition and uses thereof
US9265725Jul 5, 2007Feb 23, 2016Foamix Pharmaceuticals Ltd.Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US9320705Jan 8, 2009Apr 26, 2016Foamix Pharmaceuticals Ltd.Sensation modifying topical composition foam
US9359585Dec 8, 2003Jun 7, 2016Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Stable nonaqueous reactive skin care and cleansing compositions having a continuous and a discontinuous phase
US9439857Dec 1, 2008Sep 13, 2016Foamix Pharmaceuticals Ltd.Foam containing benzoyl peroxide
US20040063600 *Aug 15, 2003Apr 1, 2004Bissell Homecare, Inc.Manual spray cleaner
US20040122638 *Dec 9, 2003Jun 24, 2004Burker Biospin GmbhMethod for calculating the conductor path of a superconductor from the coil body to the joint and associated devices
US20040166085 *Feb 21, 2003Aug 26, 2004Gurusamy ManivannanShave gel compositions
US20040166086 *Nov 25, 2003Aug 26, 2004Gurusamy ManivannanShave gel products
US20040211681 *Apr 22, 2002Oct 28, 2004David ChaoVisual display of container contents
US20050069566 *Aug 4, 2004Mar 31, 2005Foamix Ltd.Foam carrier containing amphiphilic copolymeric gelling agent
US20050075407 *Aug 20, 2004Apr 7, 2005Foamix Ltd.Foam incorporating eutetic mixture
US20050123487 *Dec 8, 2003Jun 9, 2005Spadini Alessandro L.Stable nonaqueous liquid reactive skin care and cleansing packaged product
US20050123573 *Dec 8, 2003Jun 9, 2005Spadini Alessandro L.Stable nonaqueous reactive skin care and cleansing compositions having a continuous and a discontinuous phase
US20050136098 *Dec 22, 2003Jun 23, 2005Spadini Alessandro L.Personal care implement containing a stable reactive skin care and cleansing composition
US20050186142 *Jan 24, 2005Aug 25, 2005Foamix Ltd.Kit and composition of imidazole with enhanced bioavailability
US20050186147 *Feb 4, 2005Aug 25, 2005Foamix Ltd.Cosmetic and pharmaceutical foam with solid matter
US20050205086 *Mar 11, 2005Sep 22, 2005Foamix Ltd.Retinoid immunomodulating kit and composition and uses thereof
US20050244342 *Apr 6, 2005Nov 3, 2005Foamix Ltd.Moisturizing foam containing lanolin
US20050271596 *May 9, 2005Dec 8, 2005Foamix Ltd.Vasoactive kit and composition and uses thereof
US20050271598 *Apr 28, 2005Dec 8, 2005Foamix Ltd.Body cavity foams
US20060029565 *Aug 9, 2004Feb 9, 2006The Gillette CompanySelf-heating shave foam product
US20060029566 *Aug 9, 2004Feb 9, 2006The Gillette CompanySelf-heating non-aerosol shave product
US20060140984 *Oct 24, 2003Jun 29, 2006Foamix Ltd.Cosmetic and pharmaceutical foam
US20060193789 *Jan 23, 2006Aug 31, 2006Foamix Ltd.Film forming foamable composition
US20060233721 *Mar 27, 2006Oct 19, 2006Foamix Ltd.Foam containing unique oil globules
US20060269485 *Jun 7, 2006Nov 30, 2006Foamix Ltd.Antibiotic kit and composition and uses thereof
US20070253911 *Mar 13, 2007Nov 1, 2007Foamix Ltd.Foamable compositions, kits and methods for hyperhidrosis
US20070292355 *Apr 4, 2007Dec 20, 2007Foamix Ltd.Anti-infection augmentation foamable compositions and kit and uses thereof
US20070292359 *Jun 7, 2007Dec 20, 2007Foamix Ltd.Polypropylene glycol foamable vehicle and pharmaceutical compositions thereof
US20080044444 *Jul 5, 2007Feb 21, 2008Foamix Ltd.Dicarboxylic acid foamable vehicle and pharmaceutical compositions thereof
US20080069779 *Sep 10, 2007Mar 20, 2008Foamix Ltd.Foamable vehicle and vitamin and flavonoid pharmaceutical compositions thereof
US20080118417 *Oct 19, 2007May 22, 2008Blaise Harrison, LlcExothermic Personal Lubricant
US20080138293 *Aug 20, 2007Jun 12, 2008Foamix LtdCosmetic and pharmaceutical foam
US20080166303 *Sep 10, 2007Jul 10, 2008Dov TamarkinColored or colorable foamable composition and foam
US20080206161 *Jan 25, 2008Aug 28, 2008Dov TamarkinQuiescent foamable compositions, steroids, kits and uses thereof
US20080210579 *Mar 3, 2008Sep 4, 2008Blaise Harrison, LlcExothermic Condom Packaging
US20080253973 *Jan 8, 2008Oct 16, 2008Foamix Ltd.Sensation modifying topical composition foam
US20080260655 *Feb 4, 2008Oct 23, 2008Dov TamarkinSubstantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses
US20080292560 *Mar 14, 2008Nov 27, 2008Dov TamarkinSilicone in glycol pharmaceutical and cosmetic compositions with accommodating agent
US20080299220 *Jan 14, 2008Dec 4, 2008Dov TamarkinHydrophilic, non-aqueous pharmaceutical carriers and compositions and uses
US20090108021 *Dec 30, 2008Apr 30, 2009Bissell Homecare, Inc.Manual sprayer with dual bag-on-valve assembly
US20090130029 *Nov 21, 2008May 21, 2009Foamix Ltd.Glycerol ethers vehicle and pharmaceutical compositions thereof
US20090175799 *Jan 8, 2009Jul 9, 2009Dov TamarkinColored or colorable topical composition foam
US20090176738 *Dec 9, 2008Jul 9, 2009Leonard MacklesDermal medicament delivery system
US20090180970 *Jan 8, 2009Jul 16, 2009Foamix Ltd.Foamable composition combining a polar solvent and a hydrophobic carrier
US20090317338 *Dec 24, 2009Foamix Ltd.Foamable iodine compositions
US20100266510 *Apr 26, 2010Oct 21, 2010Foamix Ltd.Foamable Vehicle and Pharmaceutical Compositions Thereof
US20100284938 *Apr 1, 2010Nov 11, 2010Foamix Ltd.Penetrating pharmaceutical foam
US20100310476 *Dec 9, 2010Foamix Ltd.Carriers, formulations, methods for formulating unstable active agents for external application and uses thereof
US20110002857 *Sep 14, 2010Jan 6, 2011Foamix Ltd.Oleaginous pharmaceutical and cosmetic foam
US20110008266 *Jul 14, 2010Jan 13, 2011Foamix Ltd.Poloxamer foamable pharmaceutical compositions with active agents and/or therapeutic cells and uses
US20110014253 *Jan 20, 2011Unilever Home & Personal Care Usa, Division Of Conopco, Inc.Personal care implement containing a stable reactive skin care and cleansing composition
US20110097279 *Apr 28, 2011Foamix Ltd.Stable non-alcoholic foamable pharmaceutical emulsion compositions with an unctuous emollient and their uses
US20110139180 *Jun 16, 2011Bissell Homecare, Inc.Manual spray cleaner and protectants
US20110212033 *Jun 7, 2010Sep 1, 2011Foamix Ltd.Oil and liquid silicone foamable carriers and formulations
US20110215113 *Sep 8, 2011Bissell Homecare, Inc.Manual sprayer with dual bag-on-valve assembly
US20110237674 *Oct 15, 2009Sep 29, 2011Novartis AgTopical nsaid compositions having sensate component
US20140113971 *Dec 23, 2013Apr 24, 2014Joanna ZhangTopical NSAID Compositions Having Sensate Component
USD414104Apr 29, 1997Sep 21, 1999Owens-Brockway Plastic Products Inc.Dual tube assembly
USD615774Jul 31, 2009May 18, 2010Sun Optics, Inc.Eyeglass display stand
USD617097Sep 15, 2009Jun 8, 2010Sun Optics, Inc.Eyeglass case
USD617554Sep 15, 2009Jun 15, 2010Sun Optics, Inc.Eyeglass case
USD623407Sep 14, 2010Sun Optics, Inc.Eyeglass case
USD663971Jul 24, 2012Sun Optics, Inc.Eyeglass display
DE10237738A1 *Aug 17, 2002Feb 26, 2004Beiersdorf AgSelf-heating composition, especially for skin cleansing or care, comprises two components stored in a package with one or two exit openings
EP0695696A1 *Jul 31, 1995Feb 7, 1996Société dite: LIR FRANCE(S.A.)Flexibly walled double cavity dispenser
WO1994019251A1 *Dec 13, 1993Sep 1, 1994Norden Pac Development AbMulti-tube packaging container and method for its production
WO1995001287A1 *Jun 23, 1994Jan 12, 1995Unilever PlcDual chamber dispenser
WO2005058272A1 *Nov 30, 2004Jun 30, 2005Unilever PlcStable non-aqueous liquid reactive skin care and cleansing packaged product
WO2013071221A1 *Nov 12, 2012May 16, 2013Ampac Holdings LlcTube with gussets
Classifications
U.S. Classification222/94, 252/183.14, 424/45, 424/47
International ClassificationB65D35/22
Cooperative ClassificationA61K2201/052, A61K2800/242, B65D35/22
European ClassificationB65D35/22