Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3867041 A
Publication typeGrant
Publication dateFeb 18, 1975
Filing dateDec 3, 1973
Priority dateDec 3, 1973
Publication numberUS 3867041 A, US 3867041A, US-A-3867041, US3867041 A, US3867041A
InventorsBrown Galen K, Segerlind Larry J
Original AssigneeUs Agriculture
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for detecting bruises in fruit
US 3867041 A
Abstract
Detection of bruises in several genera of fruit including apples, peaches, and pears has been accomplished by measuring the reflectance of near infrared light from the fruit surface. The method is particularly adaptable to automation.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 [111 3,867,041 Brown et a1. Feb. 18, 1975 METHOD FOR DETECTING BRUISES IN 3,765,775 10/1973 Ganssele FRUIT OTHER PUBLICATIONS M. Ingle and J. F. Hyde The Effect Of Bruising On Discoloration And Concentration Of Phenolic Compounds In Apple Tissue-Proc. Amer. Soc. Hort. Sci.-

Attorney, Agent, or FirmM. Howard Silverstein; Max

ABSTRACT Detection of bruises in several genera of fruit including apples, peaches, and pears has been accomplished by measuring the reflectance of near infrared light from the fruit surface. The method is particularly 6 Claims, 17 Drawing Figures [75] Inventors: Galen K. Brown, Ashley, Ohio;

Larry J. Segerlind, East Lansing, Mich.

[73] Assignee: The United States of America as pp. 3

represented by the Secretary of Ag g n, DC Primary Examiner-Michael J. Lynch [22] Filed: 3, 1973 Assistant Examiner-1. N. Anagnos [21] Appl. No.: 421,379 D. Hensley; David G. McConnell [52] US. Cl 356/209, 356/212, 250/341 [57] [51] Int. Cl. G0lj 3/48 [58] Field of Search 356/51, 209, 212, 237; 250/341; 209/111.7, 111.6

[56] References Cited adaptable to automation.

UNITED STATES PATENTS 3,393,800 7/1968 Durand 209/1l1.7

1.0 P U RED GLOBE PEACH U 08 ZHPSAFTER BRUISING 30,000 g.-cm. IMPACT 0.6 L) 5 0.4 CON TROL & BRUISE O: 0.2

WAVELENGTH, NANOMETERS PATENTEU 3.867. 041

sum 1 {If 5 RED GLOBE PEACH 2HFS. AFTERBRU|S|NGV 30,000 g.cm. IMPACT FLEC TANCE b ow CONTROL WAVELENGTH, N'ANOMETERS RED GLOBE PEACH 4 DAYS AFTER BRUISE I 30,000 g.cm. IMPACT g 0 G O CONTROL LLI E 02 I I 0.0 I

WAVE LENGTH, NANOMETERS 1,0 BARTLETT PEAR m MDAYS AFTER BRUISE g) 0.8

30,000 g.Cm.H |PACT 0.6 CONTROL REFLECTAN' WAVELENGTH, NA NOMETERS PATENTED v 3.867.041

SHEET 20F e 1 MCINTOSH APPLE 'IDAYAFTER BRUISING m 0.8 10,000 g.-cm.|M FACT 2 0.6 CONTROL E BRUISE WAVELENG TH, NANOMETERS 1.0 MCINTOSH APPLE LN 42 DAYS AFTER BRUISING 0.8 10,000 g.cm.|MFACT 3 0.6 5 1 0.4

WAVELENGTH,NANOMETERS JONATHAN APPLE 1DAY AFTER BRUISING 8 Q8 10,000 g.-cm. IMPACT z E 0.6 CONTROL B 0.4

1 LB 02- Tr I I l W VELENGTH, NANOMETERS FIGS PATENIEBFEB! 81975 REFLEC TANCE REFLECTANCE -REFLEX: TANCE SHEET 38F 6 JONATHAN APPLE 28 DAYS AFTER BRUISING 10,000 g.cm. IMPACT 0.6

WAVELENGTH, NANOMETERS 1.0 GOLDEN DELICIOUS APPLE 08 10M AFTER BRUISING 10,000 g.-cm. IMPACT 0.6 CONTROL v WAVELENGTH, NANOMETERS 1.0 GOLDEN DELICIOUS APPLE O 8 28 DAYS AFTER BRUISING 10,000 g.-cm.1MPACT Q6 CONTROL BRUISE O l I l WAVELENGTH, NANOMETERS PATENTEB EB 8191s 3 as T. 041

SHEET U 0F 6 JONATHAN APPLE 1 DAY AFTER BRUISING 5,000 g .-m IMPACT CON TROL REFLEC TANCE 800 1200 1600 2000 WAVELENGTH NA NOM E TERS JONATHAN APPLE 28 DAYS AFTER BRUISING 5,000 g.cm.|MPACT CON TROL WAVE LENGTH, NANOMETERS F I G .I l

1.0 JONATHAN APPLE L 1 DAY AFTER BRUISING 0.8 2,500 g.cm.|MPACT g CONTROL 8 1 0.4 b BRUISE 0: 0.2

WAVELENGTH, NANOMETERS FIG-J2 PATENTED FEB! 8 I975 REFLEC TANCE REFLECTANCE SHEET 50! 6 JON A THAN APPLE 0.8 STORED 4 MONTHS 7 DAYS AFTER BRUISING O;6 10,000 g.Cm. IMPACT O 4 CONTROL WAVELENGTH, NANOMETERS Fl G16 OOLDEN DELICIOUS APPLE 1 O STORED 4 MONTHS 7 DAYS AFTER BRUISING 0,8 10,000 g.cm. IMPACT 00 CONTROL Fl G/I 7 METHOD FOR DETECTING BRUISES IN FRUIT BACKGROUND OF THE INVENTION This invention relates to a method of detecting bruises in fruit which will lend itself to automation.

Bruises on fruits such as applies, peaches, pears, and cherries result in grade defects, higher grading cost, and the necessity for hand trimming or alternate uses of the fruit. Studies of hand fruit harvests have shown that bruises occur in as high as 16 percent of the applies, 24 percent of the peaches, and 6 percent of the pears. Increased use of mechanical pickers will increase the number of bruises and other surface defects. Most of the grading of fruit is a visual-hand operation despite the fact that much research has been done in an effort to find an automatic method of grading.

T. L. Stiefvater (M. S. Thesis, Cornell Univ. Agr. Eng. Dept., 1970) reviewed the literature for suitable methods of detecting bruises in apples and set forth three primary criteria. A suitable method must be:

1. based on reliably identifiable bruise effects;

2. nondestructive; and

3. adaptable to high-speed sorting.

For bruise detection to be nondestructive, an apparatus used for this purpose must necessarily perform its task from outside the fruit without undue manipulation. X-ray techniques reportedly have been quite successful in detecting flaws in fruits (Diener, et al., ASAE Paper No. 69-380, 1969; and Ziegler et al., ASAE Paper No. 70-553, 1970), but X-rays have the inherent problems of expense and safety.

Rehkugler, et al., (Transactions of the ASAE l4: 1 189-1 194, 1971) describe a method of bruise detection in apples which relies on the fact that most bruises leave a dent such that a discontinuity is formed on the surface (i.e., skin) of the fruit. A ray of visible light reflecting from the surface is sufficiently deflected by the discontinuity to be detected.

lngle and Hyde (Proc. Amer. Soc. Hort. Sci. 93: 738-745, 1968) determined differences in light reflectance at 600 nanometers (nm.) between bruised and unbruised apple pulp. However, this required slicing the apple to obtain samples to be tested. There have been several publications describing surface reflectance of light in the region of 400 to 2,100 nm. R. V. Lott (Proc. Amer. Soc. Hort. Sci. 43: 59-62, 1943; and ibid., 44: 157-171. 1944) and Bittner and Norris (Transactions of the ASAE 11: 534-536, 1968) recorded spectral data from reflectance measurements of several varieties of apples, peaches, and pears and related the data to maturation. However, all of these studies were silent as to the reflectance measurements of bruises. We were surprised, therefore, when we discovered a significant difference between the reflectance measurements from the unbroken surfaces of bruised and unbruised portions of fruit.

Bruises on apples, peaches, pears, and the like can be easily detected by the following steps: I

a. illuminating a fruit surface with diffuse light at wavelengths of from 700 to 2,200 nm.;

b. detecting the light reflected from the surface with a photoemissive detector;

c. determining the amount of light reflected from the surface of an unbruised portion of the fruit;

d. determining the amount of light reflected from each portion of the entire fruit surface having an area equal to the area of the portion disclosed in (c);

e. comparing the amount of light determined in (c) to the amount of light determined in'(d); and

f. detecting a bruise in the fruit when the amount of light determined in (d) is significantly lower than the amount of light determined in (c).

The drawings consist of 17 figures which depict graphs comparing wavelength versus reflectance measurements of bruised and unbruised portions of peaches, pears, and several varieties of apples.

DETAILED DESCRIPTION OF THE INVENTION In order to accomplish its object, the invention relies on the discovery that the dry surfaces over bruised portions of certain fleshy fruits (e.g., apples, peaches, pears, and cherries) reflect less infrared light than the surfaces of unbruised portions. The object of the invention is the provision of a quick, reliable method of detecting bruises so that bruised fruit can be sorted from unbruised fruit, preferably by automated mechanical means.

Sorting methods of the type in which the invention is used begin by positioning the fruit in front of the infrared light source and detector. This can be done by hand or by a suitable mechanical means. The light source is such that the portion of the fruit surface to be measured is evenly illuminated with diffuse light having wavelengths of at least from 700 to 2,200 nm., and the photoemissive detector is positioned so that it measures light reflected from the specified portions of the fruit surface. It is first necessary to measure the light reflected from a portion of fruit surface which is known to be free of any sort of bruise or other impairment. This is used as the control. Since at any given wavelength the unbruised surface of each member of a speciflc fruit variety at the same level of maturity reflects essentially the same amount of light, the control measurement need only be taken once for each batch of fruit to be tested. However, it is preferred that the control measurement be rechecked at frequent intervals. After the control measurement has been established, reflectance measurements are taken over the entire surface of each fruit to be inspected in the same manner as the control. Changes in position of the fruit in relation to the detector port can be accomplished by hand or by some suitable mechanical means. All reflectance measurements subsequent to the control measurement are then compared to the control. A reflectance measurement which is significantly lower than the control indicates a bruise or other similar damage. Bruises inflicted on the fruit in the examples consistently had reflectance measurements which were from 0.02 to 0.32 reflectance units lower than the controls.

' Reflectance units are expressed as percent of the total amount of light reflected from a white standard. Measurements taken a few seconds after bruising showed that reflectance is lowered at the instant the bruise was made. At most wavelengths, more than half of the decrease in bruise reflectance for apples occurred within the first day of the 28- to 42-day test period.

Output of photoemissive detectors is an electric current so that reflectance can be read directly from an ammeter calibrated to read bruised and unbruised or the like. An operator is then able to reject the bruised fruit either by hand or by some suitable mechanical means. The electric output of the detector is also useful for activating mechanical rejection devices in completely automated systems.

For optimum measurement accuracy it is preferred that the diffuse infrared light evenly illuminate that portion of the fruit surface from which the measurement is being taken and that the detection area be the same for all measurements including those taken for controls. It is preferred that the detection area be equal to or less than the bruises to be measured. It is also preferred that the range of wavelengths being detected at any one time be relatively narrow. This range of wavelength or band width can be controlled by use of a narl0 eters of slit width, band width, detection area, methods orchards at East Lansing, the peaches, grown in Pennsylvania, were purchased in East Lansing supermarket, and the pears were picked from a commercial orchard near Fennville, Mich. All fruit were 2 /2-inch diameter minimum.

Flesh firmness values were determined using a Chatillon motorized universal test stand (model HCTM) at a rate of IS cm. per minute, with appropriate Magness- Taylor probe. Six readings were taken on unbruised portions of each of six fruit for apples and pears, see Table l. v

Three fruit of each type were selected randomly for the reflectance measurements which were averaged and R'calculated as above and plotted against wavelength (see FIG. l-l7). A uniform bruise was produced on each fruit by dropping a 263-g. flat steel plate on the fruit as it rested on a flat steel Table l Num- Number Impact Avg. energy. Test her of Force. of energy. diameter. period. Fruit fruit lb. fruit g.-cm. mm. days Red (llobe peach 3 30000 32 4 Bartlett pear 6 18.4 i l.5 3 30000 IX McIntosh apple 6 13.9 10.6 3 10000 26 42 Jonathan apple (a 14.4 :t 1.0 3 H1000 2o 28 3 5000 22 2X 3 2500 l8 2X (iolden Delicious (a 16.8 l.4 3 |0000 24 2K apple 3 2500 16 2X Stored 4 months McIntosh apple l l0000 25 7 Jonathan apple I 10000 27 7 Golden Delicious I 10000 28 7 apple Mean force l standard deviation for all measurements. Pears: S/Ih diameter probe. lruit skin removed. Apples: 7/lh diameter prohe. l'ruit skin removed.

of illumination, etc., may vary with each different manufacturer. Therefore, it will be further understood that 0 the instant invention should not be limited to the exact parameters described above or in the following examples.

GENERAL PROCEDURE integrating sphere reflectance accessory with a 20-mm.

sample port in front of which each fruit was positioned by hand. A constant 0.2-mm. slit width was used resulting in a spectral band width of 20 to 40 nm. depending on wavelength. Because this is a single-beam instrument with a constant long-term drift, it was necessary to record calibration spectra of black and white standards both before and after fruit spectra in order to obtain corrected fruit spectra. Reflectance was calculated with the aid of a computer using the relation R b)/( w b) where R is the fruit reflectance, R, the recorded fruit reflectance, and R and R are the corrected reflectances of the white and black standards, respectively. Fruit and Test Conditions ntree varieties of apple, one variety of peach, and one variety of pear were included in the tests. The apples were picked from the Michigan State Universitytable. The drop height was varied to give different impact energies,see Table 1. These energies generally produced a bruise larger than the sample port ofthe integrating sphere.

The first reflectance measurements were taken within 2 hours after bruising, then the fruit were placed in cold storage at recommended conditions of temperature and relative humidity (Wright, US. Dept. Agr., Agriculture Handbook No. 66, 77 pp., 1954).

EXAMPLE 1 A single variety of peach was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising and 4 days after bruising; R was calculated and plotted against wavelength, FIGS. 1 and 2. Standard deviation of reflectance was 0.02 and 0.09 for the bruise compared with 0.03 and 0.03 for the control at 800 and 1,200 nm., respectively.

After the reflectance measurements were taken on the 4th day, fruit firmness was determined (Table l) and each fruit was cut open to observe the nature of the bruise. A shatter cone (V shape) bruise and Va-inch layer of unbruised flesh just beneath the skin, previously reported by Fridley and Adrian (Transactions of the ASAE 9: -138, 142, 1966), were observed.

EXAMPLE 2 A single variety of pear was selected and treated as described above. Reflectance measurements were taken at 2 hours after bruising, 14 days after bruising (before the fruit was ripened), and 18 days after bruising (after the fruit was ripened). Reflectance, R, was calculated and plotted against wavelength. The reflectance curves were similar at 2 hours after bruising, 14 days after bruising, or 18 days after bruising. In FIG. 3 are shown reflectance at 14 days.

After the reflectance readings were taken on the 18th day, fruit firmness was determined (Table 1), and each fruit was cut open to observe the nature of the bruise. Bruises were of similar size, and a shatter cone bruise and /a-inch layer of unbruised flesh just beneath the skin were observed.

EXAMPLE 3 Three varieties of apple were selected and treated as described above. Reflectance measurements were taken and R calculated and plotted against wavelength for McIntosh, Jonathan, and Golden Delicious apples having 10,000 g.-cm. impact bruises 1 day after bruising (FIGS. 4, 6, and 8), 28 or 42 days after bruising (FIGS. 5, 7, and 9), and 7 days after bruising of apples held 4 months in storage (FIGS. 15, 16, and 17).Jonathan apples were also bruised with 5,000 and 2,500 g.- cm. impacts and the reflectance of the bruises measured at 1 and 28 days after bruising (FIGS. 10, ll, 12, and 13). Reflectance measurements of 2,500 g.-cm. impact bruises were taken from Golden Delicious variety apples at 1 day after bruising, FIG. 14. In the wavelength regions of 800, 1,200, and 1,700 nm. the standard deviation of reflectance for the controls were 0.01, 0.02, and 0.02 nm., respectively; and for the bruises were 0.02, 0.03, and 0.02, respectively. After reflectance measurements were taken, each fruit was cut open to observe the nature of the bruise. The

bruises for a given variety and impact energy were of similar size, no shatter cone was evident, and the bruises began just under the skin.

We claim:

1. A method of detecting bruises in apples, peaches, pears, and the like comprising the steps of:

a. illuminating the outer surface of a fruit, said surface being unbroken, with diffuse light at wavelengths of from 700 to 2,200 nm.;

b. detecting the light reflected from the fruit surface with a photoemissive detector;

c. determining the amount of light reflected from the surface of an unbruised portion of said fruit;

d. determining the amount of light reflected from each portion of the entire fruit surface having an area equal to the area of the portion disclosed in e. comparing the amount of light determined in (c) to the amount of light determined in (d); and

f. detecting a bruise in the fruit when the amount of light determined in (d) is significantly lower than the amount of light determined in (c).

2. The method described in claim 1 wherein the area of the portions of fruit surface disclosed in (c) and (d) is equal to or less than the area of each bruise to be detected.

3. The method described in claim 1 wherein the amount of light determined in (d) is from 0.02 to 0.32 reflectance units lower than the amount of light determined in (c).

4. The method described in claim 1 wherein the fruit are apples.

5. The method described in claim 1 wherein the fruit are peaches.

6. The method described in claim 1 wherein the fruit

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3393800 *Oct 21, 1965Jul 23, 1968Fred A. Durand Jr.Method and apparatus for measuring light
US3765775 *Mar 15, 1972Oct 16, 1973Neotec CorpOptical internal quality analyzer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4741042 *Dec 16, 1986Apr 26, 1988Cornell Research Foundation, Inc.Image processing system for detecting bruises on fruit
US5526119 *Apr 16, 1993Jun 11, 1996Elop Electro-Optics Industries, Ltd.Apparatus & method for inspecting articles such as agricultural produce
US5732147 *Jun 7, 1995Mar 24, 1998Agri-Tech, Inc.Defective object inspection and separation system using image analysis and curvature transformation
US5751833 *May 29, 1996May 12, 1998Elop Electro-Optics Industries, Ltd.Apparatus and method for inspecting articles such as agricultural produce
US5757001 *May 1, 1996May 26, 1998The Regents Of The University Of Calif.Detection of counterfeit currency
US5825498 *Feb 5, 1996Oct 20, 1998Micron Technology, Inc.Ultraviolet light reflectance method for evaluating the surface characteristics of opaque materials
US5960098 *Nov 14, 1997Sep 28, 1999Agri-Tech, Inc.Defective object inspection and removal systems and methods for identifying and removing defective objects
US6195163Oct 19, 1998Feb 27, 2001Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US6275292Mar 2, 2000Aug 14, 2001Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US6327040 *Feb 26, 2001Dec 4, 2001Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US6363366 *Aug 31, 1998Mar 26, 2002David L. HentyProduce identification and pricing system for checkouts
US6417928Feb 26, 2001Jul 9, 2002Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US6452678Aug 10, 2001Sep 17, 2002Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US6594013Oct 29, 2001Jul 15, 2003Micron Technology, Inc.Reflectance method for evaluating the surface characteristics of opaque materials
US7806335Oct 30, 2007Oct 5, 2010Metrologic Instruments, Inc.Digital image capturing and processing system for automatically recognizing objects in a POS environment
US7841533Dec 12, 2007Nov 30, 2010Metrologic Instruments, Inc.Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7845559Dec 21, 2007Dec 7, 2010Metrologic Instruments, Inc.Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system
US7845561Dec 21, 2007Dec 7, 2010Metrologic Instruments, Inc.Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination
US7900839Dec 28, 2007Mar 8, 2011Metrologic Instruments, Inc.Hand-supportable digital image capture and processing system having a printed circuit board with a light transmission aperture, through which the field of view (FOV) of the image detection array and visible targeting illumination beam are projected using a FOV-folding mirror
US7922089Dec 21, 2007Apr 12, 2011Metrologic Instruments, Inc.Hand-supportable digital image capture and processing system employing automatic object presence detection to control automatic generation of a linear targeting illumination beam within the field of view (FOV), and manual trigger switching to initiate illumination
US7967209Jan 31, 2008Jun 28, 2011Metrologic Instruments, Inc.Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station
US7980471Dec 21, 2007Jul 19, 2011Metrologic Instruments, Inc.Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols
US7988053Jan 31, 2008Aug 2, 2011Metrologic Instruments, Inc.Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV
US7997489Jan 31, 2008Aug 16, 2011Metrologic Instruments, Inc.Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field
US8011585Jan 31, 2008Sep 6, 2011Metrologic Instruments, Inc.Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system
US8047438Jan 31, 2008Nov 1, 2011Metrologic Instruments, Inc.Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination
US8052057Jan 31, 2008Nov 8, 2011Metrologic Instruments, Inc.Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols
US8087588Feb 29, 2008Jan 3, 2012Metrologic Instruments, Inc.Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system
US8100331Feb 1, 2008Jan 24, 2012Metrologic Instruments, Inc.Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture
US8132731Feb 1, 2008Mar 13, 2012Metrologic Instruments, Inc.Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window
US8157174Jan 31, 2008Apr 17, 2012Metrologic Instruments, Inc.Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations
US8157175Jan 31, 2008Apr 17, 2012Metrologic Instruments, Inc.Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation
US8317105Jun 9, 2011Nov 27, 2012Metrologic Instruments, Inc.Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin
USRE32718 *Jan 25, 1984Jul 26, 1988Sinus Medical Equipment AbTransillumination diagnostic method and apparatus
DE202008018010U1Jan 14, 2008May 5, 2011Henty, David L., IrvineObst und Gemüse Identifikations- und Preiskalkulations-System für Kassen
Classifications
U.S. Classification356/448, 250/341.8
International ClassificationG01N33/02, G01N21/35, G01N21/31
Cooperative ClassificationG01N33/025, G01N21/35
European ClassificationG01N33/02F, G01N21/35