Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3867140 A
Publication typeGrant
Publication dateFeb 18, 1975
Filing dateJan 24, 1973
Priority dateJan 24, 1972
Also published asDE2302625A1, DE2302625B2, DE2302625C3
Publication numberUS 3867140 A, US 3867140A, US-A-3867140, US3867140 A, US3867140A
InventorsHashimoto Mitsuru
Original AssigneeRicoh Kk
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Organic photoconductor-(mononitro-2-aza-fluorenylidene)malononitrile charge transfer complex
US 3867140 A
Photosensitive material for use in electrophotography which is a charge transfer complex comprising (mononitro-2-aza-9-fluorenylidene) malononitrile and an organic photoconductor.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

ite J Hashimoto 1 Feb. 18, 1975 [54] ORGANIIC 3,484,237 12/1969 Shattuck e461 96/15 PHOTOCONDUCT0R (M0N0NITR0 2 3,485,625 12/1969 Fox..... 96/15 3,556,785 1/1971 Baltazz|.'...,..,.. 96/15 x 3,583,869 6/1971 T b k 1 1. 96 1.5

FLUORENYLIDENE)MALONONITRILE 3,595,648 7/1971 96/15 x CHARGE TRANSFER COMPLEX 3,674,473 7 1972 BlaflCl'lEItfi 96/15 3,677,752 7 1972 L k -1. 96 1.5 x

[75] Inventor Hashlmmo Tokyo Japan 3,752,668 8/1973 96/15 [73] Assignee: Kabushiki Kaisha Ricoh, Tokyo,

Japan [22] Filed: Jan. 24, 1973 [21] Appl. N0.: 326,563

[30] Foreign Application Priority Data Jan. 24, I972 Japan 479293 [52] US. Cl 96/l.5, 96/].6, 260/294.9, 260/297 R, 260/297 T, 252/501 [51] lint. Cl G03g 5/00 [58] Field Of Search 96/15, 1.6; 252/501 [56] References Cited UNITED STATES PATENTS 2,980,535 4/1961 Schroeter 96/1.5 X 3,244,516 4/1966 Neugebauer et a1 96/1.5 3,252,794 5/1966 Schaum et a1. 96/1.5 3,301,676 I/l967 Tomanek v 1 1 96/15 3,307,940 3/1967 Haegl et a1 1. 96/l.5'

3,796,572 3/1974 Hashimoto 96/15 OTHER PUBLICATIONS Wagner et al., A Study of the Relation of Electron Affinity to the Photoconductivity of Doped Poly-N- Vinylcarbazale Films: A New Method of Analyzing the Photoresponse, Photographic Science and Engineering, Vol. 14, No. 3, MayJune, 1970, pp. 205209.

Primary Examiner-Morman G. Torchin Assistant ExaminerJohn R. Miller Attorney, Agent, or FirmCooper, Dunham, Clark, Griffin & Moran [57] ABSTRACT Photosensitive material for use in electrophotography which is a charge transfer complex comprising (mononitro-2-aza-9-fluoreny1idene) malononitrile and an organic photoconductor.

1 Claim, 1 Drawing Figure 5, g H ETHEIZ CH3 Hun -11,90 11/ BACKGROUND OF THE INVENTION A. Field of the Invention The present invention relates to novel compositions suitable for use in electrophotography.

B. Description of the Prior Art Electrophotography is an art which usefully combines photoconductivity with electrostatic phenomena. A wide variety of inorganic substances as selenium, zinc oride, and the like have heretofore been employed as photoconductors. Recently, however, organic photoconductive substances such as poly-N-vinyl carbazole and others have attracted wide attention. They are of particular interest because of their advantageous properties with respect to cost of production, transparency of product film, ease of film forming, etc. Despite these advantages, their wide adoption has been impeded because they are generally inferior to inorganic substances in sensitivity and exhibit only marginal sensitivities in the visible region of the spectra. This problem has been somewhat alleviated by the use of various sensitizing substances. Another problem which has retarded the adoption of organic photoconductors is that it is difficult to preserve them.

SUMMARY OF THE INVENTION One object of the present invention is to provide organic photoconductive compositions which manifest useful sensitivity in the visible region of the spectrum.

Another object of the present invention is to provide organic photoconductive compositions which are superior in film transparency, film formability, preservability, etc. A principal feature of the invention is the provision of a charge transfer complex comprising a novel (mononitro-Z-aza- 9-fluorenylidene) malononitrile electron acceptor and any known organic photoconductive electron donor. 1

DETAILED DESCRIPTION OF THE INVENTION The above mentioned charge transfer complex comprising (mononitro-Z-aza-9-fluorenylidene) malononitrile as the acceptor and various organic, photoconductive donors comprise the photoconductive compositions of the present invention. The compositions display panchromatic sensitivity and are useful with actinic light in the visible region of the spectrum. Their utility can be enhanced however by the addition of known sensitizers such as Rhodamine B, Rose Bengal, fluorescein and the like.

Preparation of electrophotographic compositions of the present invention can be easily effected by: mixing (mononitro-2-aza-9-fluorenylidene) malononitrile, the acceptor, with the selected donor in the weight ratio of from 1:100 to 1501100; adding such additives as may be desired such as binders, additional sensitizers and other conventional additives to the resulting mixture; dissolving the mixture in an appropriate inert, organic solvent such as dioxane, tetrahydrofuran, etc.; subsequently coating the thus obtained solution on an appropriate substrate. Suitable binders include, for example, novolak, acrylic resins and others of the type conventionally employed. Suitable substrates include, for example, aluminum plates, polyester films with a vacuum deposited aluminum layer, paper treated for conductivity, etc. The final product is dried.

Typically, a composition of the invention may contain added binder in the range of about 5 to 50 parts by weight relative to the total weight of the mixture, and additional sensitizers such as fluorescein in the weight range of about 0.001 to 0.0] parts by weight based on the weight of the donor.

Typical donors which may be employed in this invention include condensation polycyclic compounds such as pyrene, perylene, anthracene, etc., phenothiazine,

phenoxazine, thionine, 9,9-diphenyl-9,10- dihydroanthracene, 2,3-diphenyl pyrrocoline, a,w-bis( N-carbazolyl )-propane, N ,N,N,N -tetrabenzyl-P-phenylene diamine, 1,6-dimethoxyphenazine, 1,8-bis(dimethylamino)-naphthalene, 1,1,5- triphenylbrom-1-en-4-in-3-ol,N-ethyl carbazole, N- propyl carbazole, 3,6-dibrom-N-ethyl carbazole, 2- phenyl-3-P-dimethylaminophenyl quinoxaline, acridine, p,p-bis-dimethylamino biphenyl, p,p'- bisdiphenylamino biphenyl, 2,3,4,5-tetrakis (p-dimethylaminophenyl )-pyrrole, 2-p-diimethylaminophenyl- 3,4-diphenyl imidazole, 2,5-lbis(p-dimethylaminophenyl)-l,3,4-oxadiazole, 4-phenyl-5-pdimethylaminophenyl-3H-2-imidazolone, etc., and, as high-molecular compounds, there may be poly-N-vinyl carbazole, poly-3-vinyl-N-ethyl carbazole, polyphenylene pyrazole, poly-l-allyl-4,5-diphenyl imidazole, polyvinyl pyrene, polyvinyl phertanthrene, polyacenaphthylene, poly-N-vinyl-3,6-dibromocarbazole, polyvinyl dibenzothiophene, poly-9-vinyl acridine, poly-N- allyl phenothiazine, poly-P-imidazolyl-(Z)-styrene, polyvinyl anthracene, poly-P-phenylene-l,3,-oxadiazole, anthracene-formalin condensation resin, polypylomeritimide, vinyl anthracene-N-vinyl carbazole copolymer, l,2dihydroacenaphthene-indene copolymer, pyrene-formalin condensate, polyvinyl Malachite Green, polyvinyl dibenzofuran, poly-Z-vinyl quinoline, poly-Z-vinyl furan, poly-3-benzofuran, poly-2-vinyl-4-(4'-dimethyl aminophenyl)-3-phenyl oxazole, as well as reaction products between polyvinyl amine and anthracene-9-aldehyde, naphthaleneformalin resins, N-ethyl carbazole-formalin resins, etc.

The (mononitro-2aza-9-fluorenylidene) malononitrile for use in the present invention can be synthesized by the following procedure:

First, by effecting Friedel Krafts reaction between hydrochloride nicotinic acid chloride and mesitylene in accordance with Reynold C. Fuson and John J. Millers method [cf.J.Am.Chem. Soc. 79.3477 (1957)],3- mesitol pyridine (yield: 63 percent, b.p.:l57.5158 C/4mml-Ig) is obtained.

Next, by phenylizing this reaction product through Grignard's reaction, 3-mesitol-4-phenyldihydropyridine (yield: 76 percent, m.p.:l83l85.5 C; light yellow powder) is obtained. Further, by oxidizing this product with chloranil in benzene, 3mesitol-4- phenyl pyridine is obtained.

When the thus obtained compound is subjected to ring formation by utilizing polyphosphoric acid, there is obtained 2-aza-9-fluorenone to serve as the material. Then by reacting this material with mixed sulfuric and nitric acids in an acetic acid solvent at a temperature of about C for lhour, mononitro-2-aza-9- fluorenone which is principally the 7-nitrated product is obtained.

Subsequently, by making this mononitro-Z-aza- 9fluorenone react with malononitrile in methanol in the presence of piperidine as catalyst, the intended (mononitro-2-aza-9-fluoreny1idene) malononitrile is obtained. The reactions are shown in FIG. 1.

The photosensitive compositions of this invention comprising a charge transfer complex containing (mononitro-2-aza-9-fluorenylidene) malononitrile and an organic photoconductive donor as the principal components are sensitive in the visible region of the spectrum, have satisfactory preservability and reproducibility, and. are further applicable to the transfer process. When deposited on an electrically conductive substrate they form excellent electrophotographic plates.

The following non-limiting examples are given by way of illustration only:

EXAMPLE 1 A solution obtained by dissolving 64 mg of poly-N- vinyl carbazole, 91 mg of (7-nitro-2-aza-9- fluorenylidene) malononitrile and 100mg of diphenyl chloride in 10 g of tetrahydrofuran is coated by means ofa doctor blade having wet gaps of 200p, on an aluminum coated Mylar film and dried to produce an electrophotographic plate having a photosensitive film layer about 10 microns thick.

Subsequently, the thus prepared plate is charged by means of corona discharge (-6KV), exposed to light by means of an apparatus equipped with a tungsten lamp capable of producing an intensity ofillumination on the sensitive surface of the plate of 3 luxes and measured for its surface potential, whereby the time required for decreasing said potential to half (hereinafter referred to as exposure time required for half decay) is measured. It was found that the exposure time required for half decay is about 4 seconds.

Similar results are obtained with poly-N-vinyl-3,6- dibromocarbazole and poly-N-vinyl-3 chlorocarbazole.

EXAMPLE 2 A solution is prepared by dissolving 900 mg of poly- N-viny1-3-bromocarbazole, 91 mg of (7-nitro-2-aza-9- fluorenylidene) malononitrile and mg of diphenyl chloride in 15 g of tetrahydrofuran. When this composition is treated in the same manner as the compositions of Example 1 it is found that the exposure time required for half decay is about 3.5 seconds.

EXAMPLE 3 A sensitive material is prepared in the same way as in Example 1 except for increasing the amount of (7- nitro-2-aza-9-fluorenylidene) malononitrile to 910 mg from 91 mg as employed in Example 1. The exposure time required for half decay of this sensitive material is about 1.5 seconds.

EXAMPLE 4 A sensitive material is prepared in the same way as in Example 2 except for increasing the amount of (7- nitro-2-aza-9-fluorenylidene) malononitrile to 910 mg from 91 mg as employed in Example l.The exposure time required for half decay of this sensitive material is about 1.4 seconds.

EXAMPLE 5 fluorenylidene) malononitrile.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2980535 *Oct 6, 1958Apr 18, 1961Feldmuhle Papier Und ZellstoffLight sensitive layers of synthetic materials
US3244516 *Apr 7, 1960Apr 5, 1966Azoplate CorpElectrophotographic mateiral and process
US3252794 *Nov 2, 1962May 24, 1966Agfa AgPhotoconductive layers and process for electrophotography
US3301676 *Oct 9, 1964Jan 31, 1967Azoplate CorpProcess and material for the production of electrophotographic images
US3307940 *May 23, 1960Mar 7, 1967Azoplate CorpElectrophotographic process employing photoconductive polymers
US3484237 *Jun 13, 1966Dec 16, 1969IbmOrganic photoconductive compositions and their use in electrophotographic processes
US3485625 *Jun 9, 1966Dec 23, 1969Eastman Kodak CoPhotoconductive elements containing 2,3,4,5-tetraaryl pyrrole
US3556785 *Feb 23, 1968Jan 19, 1971Addressograph MultigraphSensitizers for organic photoconductor comprising orazolone and butenolide derivatives of of fluorenone
US3583869 *Mar 18, 1968Jun 8, 1971Ricoh KkElectrophotographic copying paper containing poly-n-vinyl-3-azo carbazole
US3595648 *Mar 13, 1968Jul 27, 1971Ricoh KkPoly-n-vinyl-3-nitro carbazole photoconductive material
US3674473 *Oct 6, 1970Jul 4, 1972Addressograph MultigraphCumulene containing photoconductive binder elements for use in electrophotography
US3677752 *Sep 2, 1969Jul 18, 1972Eastman Kodak CoBis(dialkylaminoaryl)ethylene photoconductors
US3752668 *Jun 5, 1969Aug 14, 1973Addressograph MultigraphOrganic photoconductive members comprising dicyanomethylene substituted fluorene sensitizers
US3796572 *Dec 7, 1972Mar 12, 1974Ricoh KkElectrophotographic light-sensitive material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3974167 *Dec 30, 1974Aug 10, 1976Ricoh Co., Ltd.(7-Nitro-2-aza-9-fluorenylidene) malononitrile
US4056391 *Sep 22, 1975Nov 1, 1977Xerox CorporationMethod for enhancing solid solution stability of electron acceptor molecules and electrophotographic compositions
US4063947 *Oct 29, 1975Dec 20, 1977Xerox CorporationPhotoconductive insulating films comprising fluorenone-substituted oligomers
US4474865 *Aug 8, 1983Oct 2, 1984Xerox CorporationLayered photoresponsive devices
US20140255836 *Feb 26, 2014Sep 11, 2014Canon Kabushiki KaishaElectrophotographic photosensitive member, and electrophotographic apparatus and process cartridge each including the electrophotographic photosensitive member
U.S. Classification430/83, 430/81, 546/111
International ClassificationC07D221/00, G03G5/07, C07D221/16, G03G5/06, C07D221/06
Cooperative ClassificationG03G5/0637
European ClassificationG03G5/06D2F2