Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3868522 A
Publication typeGrant
Publication dateFeb 25, 1975
Filing dateNov 26, 1973
Priority dateJun 19, 1973
Also published asCA966893A1, DE2410994A1, DE2410994C2
Publication numberUS 3868522 A, US 3868522A, US-A-3868522, US3868522 A, US3868522A
InventorsClifford B Bigham, Harvey R Schneider
Original AssigneeAtomic Energy Of Canada Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Superconducting cyclotron
US 3868522 A
Abstract
Isochronous cyclotron using an air core superconducting magnet to provide high intensity magnetic fields. To provide an axial focussing field, iron sectors with spiral edges acting as flutter poles positioned in the magnetic field such that saturation of the iron in the sectors gives an increased field between the sectors and a slightly decreased field outside.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Bigham et al.

[451 Feb. 25, 1975 SUPERCONDUCTING CYCLOTRON [75] Inventors: Clifford B. Bigham; Harvey R.

Schneider, both of Deep River, Ontario, Canada [73] Assignee: Atomic Energy of Canada Limited,

Ottawa, Ontario, Canada [22] Filed: Nov. 26, 1973 [21} Appl. No.: 419,034

[30] Foreign Application Priority Data June 19, 1973 Canada 174422 [52] U.S. Cl 313/62, 328/234, 335/216 [51] Int. Cl. 1105b 13/00 [58] Field of Search 313/62; 328/234; 335/216 [56] References Cited UNITED STATES PATENTS 2,872,574 2/1959 McMillan et al. 328/234 3,175,131 3/1965 Burleigh et al. 313/62 X 3,427,557 2/1969 Speciale 328/234 3,613,006 10/1971 Kantrowitz et a1. 335/216 3,641,446 2/1972 Gordon 328/234 X Primary Examiner-Paul L. Gensler Attorney, Agent, or Firm-James R. Hughes [57] ABSTRACT lsochronous cyclotron using an air core superconducting magnet to provide high intensity magnetic fields. To provide an axial focussing field, iron sectors with spiral edges acting as flutter poles positioned in the magnetic field such that saturation of the iron in the sectors gives an increased field between the sectors and a slightly decreased field outside.

7 Claims, 8 Drawing Figures Pmmmmes 15. 5 3,868,522

sum 2 Hf 5 PATENTEDFE825I9I5 3.868.522

sum 3 or g 0 OR IT-MODE ACCELERATION PATENTEnfiazs m5 3,868,522 sum 4 0r 5 HEAVY IONS IO MeV/A 23 LIGHT IONS 5O MeV/A FIG. 4

1 SUPERCONDUCTING CYCLOTRON This invention relates to an isochronous cyclotron and more particularly to a cyclotron for producing beams of heavy or light ions in which the magnetic field for orbiting the ions is produced by superconducting coils.

One of the disadvantages of the cyclotron has been the great size and weight of the large radius iron pole pieces required to produce high energy ions with the magnetic field strength limited to less than the 2.2 Tesla saturation value for iron. Another complication arises when the ion velocities approach the speed of light, and relativistic effects become important. Then the ion velocity is no longer constant and ion arrival at the accelerating gaps would not be at the proper phase. This can be corrected for by making the magnetic induction nonuniform in the radial direction but at the expense of introducing axial defocussing forces. These are overcome in present isochronous cyclotron designs with axial focussing provided by shaped sectors (hill and dale structures) built on or forming part of the magnetic pole faces such that axial flutter focussing is achieved.

It is an object of the present invention to provide an isochronous heavy and light ion cyclotron of small size but giving high energies.

This and other objects of the invention are achieved by a cyclotron using an air core superconducting magnet system to provide high intensity magnetic fields. To provide an axial focussing field, iron sectors with spiral edges acting as flutter poles positioned in the magnetic field such that saturation of the iron in the sectors gives an increased field between the sectors and a slightly decreased field outside.

In drawings which illustrate an embodiment of the invention,

FIG. 1 is a cross-section of a cyclotron structure with superconducting coils,

FIG. 2 is a plan view of the sectors,

FIGS. 3A, 3B, 3C illustrate modes of operation of the rf accelerating structure.

FIG. 4 is a schematic of the proposed cyclotron and a tandem accelerator supply,

FIG. 5 is a schematic of an injection system, and

FIG. 6 is a graphical representation of the magnetic field.

Referring to FIG. 1, a superconducting cyclotron is contained in a vacuum tight enclosure 10 containing cryostat tanks 11 and 12 which contain superconducting main coils 13a, 13b, and 14a, 14b. Because of the large magnetic attraction between them, the large coils 13a and 13b require a fairly strong separating structure 15 positioned between them. The design of these coils which is well within the scope of present superconducting magnet technology provides a magnetic field about three times that of an iron core structure of comparable size. This results in a much smaller overall size and reductions in space and containment requirement. The accelerating structure is made up of eight upper and .lower conducting sectors (shown in plan view in FIG. 2) and shown in cross-section as 16a, 16b. These are positioned centrally in the air core region and define the orbital gap between them with R,- being the inner ion orbit radius and R being the outer. There are four hot sectors and four grounded sectors. The hot sectors are connected alternately to quarter wave resonators 17a, 17b containing movable tuning shorts 18a, 18b. Energy is provided via a coaxial line 19a having a center conductor 20a which is connected to the tuning shorts. The RF power supply (not shown) is generally conventional and in a typical design would provide 60 kw at 22-45 MHz. The four upper and lower grounded sectors 160 (see FIG. 2) contain iron flutter pole pieces shown in cross section as 21a and 21b in FIG. 1.

To maintain a constant orbital angular velocity for the ions during acceleration (isochronism) a magnetic field which increases with radius according to the relation,

=7 c is required.

B(R) is the average midplane field at radius R 'y(R) is the relativistic factor related to the ion kinetic energy T and rest energy E, by,

B is constant.

A magnetic field with a maximum azimuthally average value of 5T(50,000 G) and a shape matching B(R) to within i 0.1% is generated by the superconducting coils. Normal trim coils 22a, 22b provide the necessary adjustment for isochronism. The cyclotron is connected to an input ion beam source at 22 and provision is made at 23 for extraction of the accelerated beam.

Referring more particularly to FIG. 2, the input beam is introduced tangentially and on the midplane to orbit inwardly to strike stripper foil 23 suitably mounted on a moveable carriage (not shown) for positioning purposes. The ion energy and charge state on injection are chosen so that the most probable charge state after stripping is approximately four times the initial charge state. With suitable positioning of the stripper foil and adjustment of the source accelerator (tandem Van de Graaf generator) voltage, ions from Li to U can be injected into the cyclotron. After passing the stripper foil the ions orbit outwardly (approximately turns) from an inner orbit R,- to an outer orbit R being accelerated in the eight accelerating gaps 24 between the sector pairs. The beam is extracted by electrostatic deflectors 25 positioned at the orbit periphery. The four flutter pole sector pairs 21 are conveniently mounted in the grounded sectors 16c and are completely encased in conducting metal to shield the magnetic material (iron) from the RF. The sectors have spiral edges 26 as shown to obtain sufficient focussing.

Referring to FIGS. 3A, 3B, and 3C it will be seen that the device described in FIGS. 1 and 2 has two resonances and can be used in two modes, i.e., a 0-mode where the upper and lower resonator plates or sectors in each pair (A and B) are in phase and a ir-mode when the upper and lower plates are out of phase or in pushpull. In the vr-mode the ion velocity at extraction is twice that in the 0-mode as seen from FIGS. 38 and 3C. In the tr-mode, the accelerating voltage at the gaps is Vm/ V2 compared to V,,, for the 0-mode because of the operation mode and therefore about twice the RF power is required.

FIG. 4 shows a typical arrangement with the cyclotron 30 being supplied from a negative ion source 31, a double drift harmonic buncher 32 for bunching the DC beam to a narrow phase width and a tandem accelerator 33 (with gas or foil stripper 34) for preaccelerating the beam. An analyzing magnet 35 directs the ion beam with desired charge state to the foil stripper 23 in the cyclotron. The output of the cyclotron is a heavy ion beam up to IOMeV/A or a light ion beam up to SOMeV/A. FIG. 5 shows the mid-plane injection geometry in more detail. Stripper foil 23 has to be correctly positioned for each particular type of ion used. Radial focussing of the beam results from the radially increasing field required for isochronism while vertical (or axial) focussing is achieved with an azimuthally varying field. The latter is produced by the iron sectors (flutter poles) mounted above and below the midplane. The radial and axial frequencies expressed as fractions of the cyclotron frequency are measures of the focussing forces, and are given by the following approximate relations k (N /N l') 1+2 tan e) k is the average field index,

N is the number of sectors F is the flutter factor, F B B l and e is the flutter pole spiral angle.

In the magnetic fields considered, i.e., Z 2 Tesla, the iron flutter poles will except for small edge effects, be uniformly magnetized with a magnetization equal to the saturation value M (M E (2/477) X Ampere turns/m for iron.)

As seen in FIG. 6, the magnetic field of the magnetized iron poles 21a, 21b is superimposd on the coil field H, resulting in an increased field AH between the poles and a slightly decreased field outside. The magnitude of the increase depends on the gap d between the poles. In the limit of a very small gap the field increase is equal to M For a reasonable gap size such as that illustrated in FIG. I, the increase in approximately 0.75 M, or 1.5 T in the case of iron. For the four sector geometry shown in FIG. 2, F ranges from 0015 at B 5Tto 0.06 at B 37. Axial focussing should be adequate if 11 0.1, with a pole shape similar to that shown in FIG. 2, this is the case for ion energies up to 10 MeV/A at B ST and up to 50 MeV/A at B 3T.

A typical design for the main superconducting magnet would be as follows. The superconducting coils are constructed of 76 pancake windings each with 130 turns of 1,000 A conductor. The superconducting NbTi is in the form of fine filaments embedded in copper and twisted for stabilization against eddy currents. Sufficient copper conductor and cooling surface is allowed for complete cryostatic stabilization. This means that the coil could recover from any possible thermal transient. A stainless steel ribbon is wound in with the conductor to keep the hoop stress below the yield point. The axial force is substantial so that a strong support is required between the coils. The field in the coil is well below the critical value for NbTi. The current density is in the range that has been used in some existing large magnets.

The following are representation mechanical and electrical design. parameters:

MECHANICAL Inside diameter 1.84 metres -Continued MECHANICAL Cross Section (Square) Spacing 5 Turns (both) Weight (both) 0.46 metres 0.325 metres 17.25 tonnes (l tonne 7250 psi 3400 tonnes Average Hoop Stress Axial force ELECTRICAL Maximum Midplane Field 0 Maximum field at conductor Conductor Current Overall Current Density Charging Time at l0 Volts (O-ST) Stored Energy 5 Tesla 6.2 Tesla 1000 A 2360/cm 3.5 hours 64 M Joules The cyclotron specifically described above is illustrated only; various changes and reaarangements could be made, e.g., the cyclotron could accomodate an ion source located internally. This might require a change in the design and construction of the RF structure but this should present no great difficulty. Extraction of the beam is achieved by initial deflections with electrostatic deflectors in adjacent grounded sectors. These deflections bring the beam out over the edge of the magnetic field where the orbit radius increases and the beam spirals out. Other extraction methods are possible.

We claim:

1. An isochronous cyclotron for heavy or light ions comprising:

a. a superconducting coil system for producing a strong magnetic field in the air core centrally of the coils,

b. an even number of pairs, at least four in number,

of generally flat sectoral conducting plates, alternate pairs of which are at low or ground potential and the other pairs are connected to an RF voltage supply, mounted on tunable quarter wavelength resonator structures and defining an annular orbital region between the plates in the pairs and ion accelerating gaps between the edges of the pairs of plates and positioned in and generally orthogonal to the magnetic field in the central air core region,

c. means for energizing said plates with an RF voltage such that orbiting ions will be accelerated between the gaps,

d. means for injecting the ions to be accelerated into an inner position in the orbital region,

e. means for extracting the accelerated ions at an orbit location adjacent the periphery of the orbital region, and

f. means for varying the magnetic field in the radial direction to provide radial focussing of the orbiting ion beam.

55 2. An isochronous cyclotron for heavy or light ions comprising:

a. a superconducting coil system for producing a strong magnetic field in the air core centrally of the coils, I

b. an even number" of pairs, at least four in number,

of generally flat sectoral conducting plates, alternate pair of which are'at low or ground potential and the other pairs are connected to an RF voltage supply, defining an annular orbital region between the plates in the pairs and ion accelerating gaps between the edges of the pairs of plates and positioned in and generally orthogonal to the magnetic field in the central air core region, wherein the pairs of sectoral plates at ground or low voltage have associated and mounted adjacent to them pairs of shaped ferrous material structures, said pairs of structures being positioned in the magnetic field and as opposing pairs on each side of the orbital region such as to become saturated in the magnetic field and increase the magnetic field between them and thus providing a flutter pole axial focussing effect to the orbiting ions,

c. means for energizing said plates with an RF voltage such that orbiting ions will be accelerated between the gaps,

d. means for injecting the ions to be accelerated into an inner position in the orbital region,

e. means for extracting the accelerated ions at an orbit location adjacent the periphery of the orbital region, and

f. means for varying the magnetic field in the radial direction to provide radial focussing of the orbiting ion beam.

3. An isochronous cyclotron for heavy or light ions comprising:

a. a superconducting coil system for producing a strong magnetic field in the air core centrally of the coils,

b. eight pairs of generally flat sectoral conducting plates defining an annular ion orbital region between the opposing plates in the pairs and ions accelerating gaps between the edges of the pairs of plates and position in a ring and generally orthogonal to the magnetic field in the central air core region,

0. means for energizing said plates with an RF voltage such that orbiting ions will be accelerated between the gaps,

d. means for injecting the ions to be accelerated into an inner position in the orbital region,

e. means for extracting the accelerated ions at an orbit location adjacent the periphery of the orbital region,

. trim coils mounted above and below the beam orbiting region to adjust the magnetic field shape in the air core region and provide an accurately isochronous radial profile, and

g. four pairs of shaped ferrous material structures positioned in the magnetic field in the air core region and as a ring of opposing pairs on each side of the orbital region such as to become saturated in the magnetic field and increase the magnetic field between structures in the pairs and thus providing an axial focussing effect to the orbiting ions.

4. An isochronous cyclotron as in claim 3 wherein the coil arrangement is made up of a first pair of superconducting coil firmly mounted in spaced axial relation and a second pair of superconducting coils of smaller cross-section and diameter mounted radially inward of the first pair.

5. An isochronous cyclotron as in claim 3 wherein the ferrous material is an iron containing metal.

6. An isochronous cyclotron as in claim 3 wherein four alternate pairs of the sectoral plates are connected via tunable quarter-wave resonators to the RF supply and the interleaved remaining four pairs of plates are connected to ground or low potential and have the four pairs of shaped ferrous material structures positioned adjacent to their surfaces away from the orbital region.

7. An isochronous cyclotron for heavy or light ions comprising:

a. a first pair of superconducting coils firmly mounted in spaced axial relation,

b. a second pair of superconducting coils of smaller cross-section and diameter mounted radially inward of the first pair, said first and second pairs of coils capable of producing a strong unidirectional magnetic field in the air core region centrally of the coils,

c. eight pairs of generally flat sectoral conducting plates defining an annular ion orbital region between the opposing plates in the pairs and ion accelerating gaps between adjacent edges of the pairs of plates and positioned in a ring in and generally orthogonal to the magnetic field in the central air core region,

(1. two tunable quarter-wave resonators electrically connected to an RF power supply and to four alternate pairs of said plates such that orbiting ions between the plates will be accelerated between the gaps, said resonators being turned to either the 0- mode or rr-mode resonance either in phase of out of phase to provide two accelerating modes of operation,

e. means for injecting the ions to be accelerated into an inner position in the orbital region, said means including a stripper foil for changing the charge state on incoming ions,

f. means for extracting accelerated ions at an orbit location adjacent the periphery of the orbital region, said means including capacitor plates carrying a potential such as to deflect the ion beam outwardly from the orbit region,

g. trim coils mounted above and below the beam space to adjust the magnetic field in the radial sense to provide an accurately isochronous radial field variation,

h. four pairs of shaped ferrous material structures positioned in the magnetic field in the air core region and as a ring of opposing pairs on each side of the orbital region such as to be magnetically saturable in the magnetic field and provide a fixed increase in the magnetic field between structures in the pairs and thus an axial focussing effect to the orbiting ions,

. each of said structures being positioned adjacent to each plate of the remaining alternate pairs of said sectoral plates, said plates being connected to ground or low potential,

j. each of said structures being enclosed in conducting material to shield them from RF effects and having at least one spiral shaped edge, said spiral shape being predetermined for optimum axial focussing.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2872574 *Apr 12, 1956Feb 3, 1959Judd David LCloverleaf cyclotron
US3175131 *Feb 8, 1961Mar 23, 1965Burleigh Richard JMagnet construction for a variable energy cyclotron
US3427557 *Apr 11, 1966Feb 11, 1969Philips CorpDevice for accelerating particles
US3613006 *Nov 23, 1966Oct 12, 1971Avco CorpStable superconducting magnet
US3641446 *Dec 18, 1969Feb 8, 1972Us Air ForcePolyergic cyclotron
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4112306 *Dec 6, 1976Sep 5, 1978Varian Associates, Inc.Neutron irradiation therapy machine
US4641057 *Jan 23, 1985Feb 3, 1987Board Of Trustees Operating Michigan State UniversitySuperconducting synchrocyclotron
US4641104 *Apr 26, 1984Feb 3, 1987Board Of Trustees Operating Michigan State UniversitySuperconducting medical cyclotron
US4843333 *Jan 19, 1988Jun 27, 1989Siemens AktiengesellschaftSynchrotron radiation source having adjustable fixed curved coil windings
US4943781 *Jul 18, 1989Jul 24, 1990Oxford Instruments, Ltd.Cyclotron with yokeless superconducting magnet
US5017882 *Aug 22, 1989May 21, 1991Amersham International PlcProton source
US7446490Nov 14, 2003Nov 4, 2008Ion Beam Appliances S.A.Cyclotron
US7541905 *Jan 19, 2007Jun 2, 2009Massachusetts Institute Of TechnologyHigh-field superconducting synchrocyclotron
US7656258Aug 9, 2006Feb 2, 2010Massachusetts Institute Of TechnologyMagnet structure for particle acceleration
US7696847 *Apr 17, 2009Apr 13, 2010Massachusetts Institute Of TechnologyHigh-field synchrocyclotron
US7728311Nov 17, 2006Jun 1, 2010Still River Systems IncorporatedCharged particle radiation therapy
US7920040Feb 24, 2010Apr 5, 2011Massachusetts Institute Of TechnologyNiobium-tin superconducting coil
US8003964Oct 11, 2007Aug 23, 2011Still River Systems IncorporatedApplying a particle beam to a patient
US8111125Feb 24, 2011Feb 7, 2012Massachusetts Institute Of TechnologyNiobium-tin superconducting coil
US8344340Nov 20, 2008Jan 1, 2013Mevion Medical Systems, Inc.Inner gantry
US8558485Jul 7, 2011Oct 15, 2013Ionetix CorporationCompact, cold, superconducting isochronous cyclotron
US8581523Nov 30, 2007Nov 12, 2013Mevion Medical Systems, Inc.Interrupted particle source
US8614612 *Jan 17, 2012Dec 24, 2013Massachusetts Institute Of TechnologySuperconducting coil
US20120142538 *Jan 17, 2012Jun 7, 2012Massachusetts Institute Of TechnologySuperconducting Coil
EP0276123A2 *Jan 19, 1988Jul 27, 1988Oxford Instruments LimitedMagnetic field generating assembly
EP1118254A2 *Sep 28, 1999Jul 25, 2001Gems Pet Systems ABMethod of reducing axial beam focusing
WO1986007229A1 *May 21, 1986Dec 4, 1986Amersham Int PlcImprovements in cyclotrons
WO2004049770A1Nov 14, 2003Jun 10, 2004Ion Beam Applic SaCyclotron
WO2007084701A1 *Jan 19, 2007Jul 26, 2007Massachusetts Inst TechnologyMagnet structure for particle acceleration
Classifications
U.S. Classification313/62, 505/879, 315/502, 335/216
International ClassificationH05H13/00
Cooperative ClassificationY10S505/879, H05H13/00
European ClassificationH05H13/00