Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3869731 A
Publication typeGrant
Publication dateMar 11, 1975
Filing dateFeb 14, 1973
Priority dateFeb 14, 1973
Also published asCA1003152A1
Publication numberUS 3869731 A, US 3869731A, US-A-3869731, US3869731 A, US3869731A
InventorsSanford H Anzel, Caesar F Orofino, Richard C Smith, Theodore R Waugh
Original AssigneeUniv California
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Articulated two-part prosthesis replacing the knee joint
US 3869731 A
Abstract
The invention provides a two-part knee prosthesis comprising components which, respectively, are implanted in the distal end surface of the femur and the proximal end surface of the tibia and which co-operate to provide a substituted articulated knee joint. The femoral component has an upwardly directed anterior fin for upward driven implantation into the distal part of the femur shaft and two transversely spaced femoral condyle replacement support members each of which has a downwardly directed bearing surface which is curved in cross section and in side elevation, the curvature in side elevation being on successively decreasing radii from the anterior portion to the posterior portion of the prosthesis. The tibial component is generally circular and flat in configuration whereby it will lie on the prepared proximal surface of the tibia and its upper surface has a circular upwardly facing groove therein which receives the two transversely spaced femoral condyle replacement support member surfaces of the femoral prosthesis.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 Waugh et al.

[ Mar. 11, 1975 ARTICULATED TWO-PART PROSTHESIS REPLACING THE KNEE JOINT [75] Inventors: Theodore R. Waugh; Richard C.

Smith, both of Irvine; Sanford H. Anzel, Orange; Caesar F. Orofino, Orange, all of Calif.

[73] Assignee: The Regents of the University of California 221 Filed: Feb. 14,1973

211 App1.No.:332,509

OTHER PUBLICATIONS Vitallium Surgical Appliances (catalog), Austenal Medical Div., Howmet Corp., New York, N.Y., 1964, page 62 relied upon, M.G.H. Femoral Condule Re placements, No. 6662 and Elliot Knee Plates, No.

69646. Muller-Charnley Type Total Hip Prosthesis (Advertisement by Howmedica International, lnc.), The .lour

nal of Bone & Joint Surgery British Vol. 53-B, No. 2, May 1971.

Vitallium Surgical Appliances (catalog), Austenal Medical Div., Howmet Corp., New York, N.Y., 1964, page 30, McBride Acetabulum Cups, No. 6429.

Primary Euzmincr-Ronald L. Frinks [57] ABSTRACT The invention provides a two-part knee prosthesis comprising components which, respectively, are implanted in the distal end surface of the femur and the proximal end surface of the tibia and which cooperate to provide a substituted articulated knee joint. The femoral component has an upwardly directed anterior fin for upward driven implantation into the distal part of the femur shaft and two transversely spaced femoral condyle replacement support members each of which has a downwardly directed bearing surface which is curved in cross section and in side elevation, the curvature in side elevation being on successively decreasing radii from the anterior portion to the pos terior portion of the prosthesis, The tibial component is generally circular and flat in configuration whereby it will lie on the prepared proximal surface of the tibia and its upper surface has a circular upwardly facing groove therein which receives the two transversely spaced femoral condyle replacement support member surfaces of the femoral prosthesis.

3 Claims, 8 Drawing Figures ARTICULATED TWO-PART PR OSTHESIS REPLACING. TI'IE'KNEE JOINT BACKGROUND OF THE INVENTION FIG. 2 is a lateral or side elevational view of the knee joint and the implanted prostheses shown in FIG. 1 with the knee joint simulating flexion.

knee joint from approximately l5 to +15, an arc of 30. The condylar curves of the distal femur are not simple curves but move relatively to the tibial plateau in flexion of the knee in such a waythat the areas of contact on the condyles constantly change in location because of rolling and sliding movements, and also each distal femoral condyle surface presents a curve of constantly decreasing radii as the amount or degree of flexion increases. Exact reproduction of the structure and operation of a normal, healthy knee would be ideal in knee arthroplasty but has never been achieved.

Many forms of knee arthroplasty have been described in the literature and used in practice, all of which are based on one of two principles. The first requires the interposition of materials between the bony surfaces after removal of synovial membranes and articular cartilage, while in the second the knee joint is resected and replaced by a metal hinge (Walldius 1957, Shiers I960). Material interposed between the bony surfaces has included Chromicised pigs bladder (Baer I918), facia lata (Putti I920), skin (Brown, McGraw and Shaw 1958), nylon (Kuhns and Potter 1950) and Vitallium (Campbell 1940). Such materials often had serious disadvantages. Chromicised pigs bladder was not tolerated by the tissues, and fascia lata, skin and nylon wore away after a short time. Hinge arthroplasty can work well but the hinge prosthesis does not permit the complex movements of the knee in flexion and rotation, and resection of the knee joint results in undesirable shortening of the limb if for any reason the prosthesis must be removed for subsequent arthrodesis.

SUMMARY OF THE INVENTION The present invention overcomes these disadvantages of known knee arthroplasty and provides a twopart knee prosthesis including a distal femoral component having two transversely spaced bearing surfaces facing the tibia and corresponding closely in position and shape to the normal human femoral condyles and, in cooperation with this femoral component, a tibial component consisting of a generally circular flat bearing plate constructed and adapted to rest on, and be attached to, the prepared proximal plateau surface of the tibia and in its upper surface having a circular upwardly facing concentric groove which receives the bearing surfaces of the support members of the femoral component. The lower central axis or bottom of this groove is level, by which it is meant that it lies in one plane. This two-part prosthesis permits reproduction of the fiexional, rotational, rolling and sliding movements of the normal human knee.

DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the two-part prosthesis provided by the invention in place in association with the flexed human knee;

FIGS. 3 and 4 are, respectively, top and posterior elevational views of the femoral prosthesis provided by the invention;

FIGS. 5, 6 and 7 are, respectively, top, posterior and bottom views of the tibial prosthesis provided by the invention, and

FIG. 8 is an anterior perspective view showing the preferred method of preparing the proximal tibial plateau for implanting the tibial prosthesis.

DESCRIPTION OF THE INVENTION The invention is a two-part prosthesis which may be substituted for the malfunctioning or diseased human knee, leaving the cruciate and collateral ligaments in place and functioning normally. The parts of the prosthesis are implanted, respectively in the distal femur and proximal tibia plateau after suitable preparation thereof, and when implanted permit flexion, rotation, rolling and sliding movements substantially reproducing those movements of the normal human knee.

The femoral component of the two-part prosthesis provided by the invention is preferably of integral construction and may be made by die casting, molding or otherwise suitably forming stainless steel, cobaltchrome alloy, titanium or other suitable metallic implantmaterial. This component is disclosed in FIGS. 1 to 4 of the drawings and comprises a lower part which is designated generally by the letter A and which provides two downwardly facing bearing surfaces which substitute for the condyles of the femur and which rest on and co-operate with the tibial component provided by the invention. The femoral component also comprises an upper part B which extends upwardly from the lower part A and is constructed and adapted to be driven upwardly into the femur shaft in order to implant the component into the femur.

The lower part A of the femoral prothesis compo;

nent a)mprises two sbbstantiam! parallel transversely spaced support members 2, 4, each of which has on its bottom a downwardly facing bearing surface which are shown at 6, 8 and each of which is convex and curved in both cross section and in side elevational views. These bearing surfaces are spaced apart by a distance substantially equal to the spacing of the natural femoral condyles and they therefore substitute for these condyles in cooperating with the tibial component of the prosthesis to provide knee action in the operation of the two-part prosthesis provided by the invention. The transverse or cross sectional curvature of each of these bearing surfaces is a regular .curve forming part of a .circle and is of relatively shallow depth. However, the lateral or side elevational shape of the bearing surface of each support member is not a simple curve formingpart of a circle, but is formed of a continuous series of curves of constantly diminshing radii from the anterior portion of the curve at C to the posterior portion at D. This curvature is particularly shown in FIG. 2 of the drawings, in which the anterior portion is designated by the letter C and the posterior portion by the letter D, the anterior portion being at the front of the knee and the posterior portion being at the rear of the knee when the prosthesis is in place. It will be seen that the curvature near the anterior portion has a relatively long ra the other parts of the component may have a dull fin-.

ish.

The upper part 'B of the femoral component provides meansfor connecting the support members and bearing surfaces of the lower part A to the femoral shaft, and this part provides a V-shaped assembly of three elongated thin fins which are constructed and adapted to be implanted in the osteotomized areas of the femur and which serve the purpose of stabilizing and maintaining-the placement of the component. These fins are provided by a central upwardly extending fin which has inverted V-shaped and two fins l2, 14 each of which extends forwardly and upwardly from the lower end of one of the arms of the inverted V-shaped central fin 10 and which are connected to the upper surfaces of the two support members 2, 4. Each of the three fins 10, 12, 14 of this upper part B is inverted V-shaped in cross section to provide an upwardly facing edge 16, permitting the upper part B of the component to be driven into the distal surface of the femur and upwardly into the femur shaft after removal of the condyles in the operative procedure of implanting the prosthesis. Fins l2 and 14 form an angle slightly more than 90 with respect to fin 10 to provide stability of the femoral unit in full flexion with the tibial prosthesis.

The tibial component of the prosthesis is disclosed in FIGS. 1, 2 and 5 to 8 and, as particularly shown in FIG. 8, is adapted to be connected to and rest on the proximal plateau surface of the tibia after preparation thereof in the suggested manner described hereinafter. The tibial component is shaped as a disc being of generally flat circular configuration having an upper surface 20, a lower surface 22 and an outer peripheral wall 24. The component is C-shaped in plan, having the two arms 26, 28 separated by space 29, and its upper surface is provided with a circular concave groove 30 which is concentric withthe side wall 24 and which in cross section is part circular and has the same crosssectional shape and dimension as that of each of the downwardly facing surfaces 6, 8 of the support members 2, 4 of the femoral component, by reason of which such surfaces are received in and exactly fit the spaced parts of the circular upwardly facing groove in the tibial component when the parts are in place.

' The lower surface 22 of the tibial component is generally flat but is formed with two groups of curved rings or ridges 32, 34. One group 32 is formed on the bottom surface of one arm of the C-shaped component, while the other group is formed on the bottom surface of the other arm. The ridges of each group are part circular and concentric in plan and those of one group are curved oppositely to those of the other. Each ring or ridge is shaped as a triangle in cross section and has a sharp edge 36 so that it will bite firmly into the bone of the prepared tibial plateau.

The tibial component of the prosthesis is fabricated from ultra high molecular weight polyethylene or other suitable implant material, and has a wire 40 positioned in a groove formed in its side wall 24. The wire serves as an X ray locator and as a reference line to permit observation of wear characteristics of the material of the prosthesis while in use. X-rays taken at one year or some such interval will indicateany variations in distance between the bottom edge of the femoral component and the wire.

The two prosthetic components are designed to work together in a unit in such a fashion as to emulate the normal motion characteristics of a healthy human knee. Due to the configuration of the condyles there are both flexion and rotational motions involved in the flexion of the human knee, and the configuration of the prostheses permits both motions. The position of the bearing surfaces 6, 8 in the laterally spaced parts of groove 30 in the tibial prosthesis and the shape of the bearing surfaces themselves permit fiexion of the tibia with respect to the femur from approximately-6 to approximately +150 thus substantially reproducing the range of flexional movement of the human knee. The lateral or side elevation shape of each of the bearing surfaces 6, 8 closely approximates the average configuration of the surface of the correspondingly posi tioned femoral condyle and thus permits a combined rolling and sliding motion of the bearing surfaces of the femoral component on the tibial component which corresponds to the motions of the normal human condyles. The circular shape of the groove 30 of the tibial component permits relative rotational movement of the femoral and tibial components corresponding to the same movement of parts of the human knee, the hearing surfaces 6, 8 riding levelly in the groove 30 during rotational movement of the knee and without riding up on the sides of the groove. The two components of the prosthesis are designed so that in use the theoretical limits of motion are from -6 to +l50 of fiexion and i 15 of rotation.

If the nature of the case requires or permits it, the femoral component of the complete prosthesis may consist of only one of the support members 2, 4 and the tibial component may consist of only one-half of the circular tibial component described above.

A SUGGESTED SURGICAL PROCEDURE UTILIZING THE PROSTHESIS PROVIDED BY THE INVENTION The patient lies supine on the operating room table, with a padded pressure tourniquet in place on the thigh. The knee is draped free and the distal portion of the table may be dropped so that the knee hangs at of flexion if desired. A long medial parapatellar incision is made and the patella is subsequently everted and displaced laterally. This provides excellent exposure of the anterior aspect of the entire knee joint. Care should be taken not to detach a significant part of the patella tendon insertion on the tibia, for if this is inadvertently done the prolonged immobilization required for healing jeopardizes the attainment of flexion.

With the knee in extension and using an air saw and special blades a transverse plane cut is made in the distal femur perpendicular to both the AP and lateral anatomical axes of the tibia, removing the prominent portion of each of the frontal condyles and leaving a plane surface or plateau. Care should be taken not to sever the cruciate ligaments, if present. This cut may be completed with the knee flexed or extended. The thickness of this cut will preferably be approximately A inch and additional bone may be easily removed later.

The knee must now be flexed to 90 and the posterior condyles removed in the frontal plane. A template is available for determining the maximum amount of the posterior condyles that should be removed. The template is placed on the cut surface with its top edge aligned with the anterior edge of the osteotomy and the posterior osteotomy is made along the bottom edges of the template. It is important that an adequate amount of posterior condyle bone be removed as failure to do so will prevent flexion beyond 90. However, removing too much bone will bring the prosthesis forward and cause it to interfere with the excursion of the patella during extreme flexion. The femoral template is designed so that it may be implaced against freshly cut bone of the femur in order to accurately show the proper position for osteotomy of the posterior condyles. The posterior corners are now removed (rounded of by a 45 cut which representsa minor trim of the sharp corners made by the first two osteotomies.

A femoral saw guide is now placed in position on the condyles, the reference line on the topedge of the saw guide indicating the location of the anterior edge of the prosthesis, if emplaced without methyl methacrylate. The air saw is then used to cut slots for the reception of the fins 10, 12, 14 of the prosthesis. A femoral trial prosthesis is then inserted to verify the femoral osteotomies, and is then removed with an extractor. If utilization of methyl-methacrylate is desired, the fin slots are enlarged and undermined with the air saw to accommodate fins and cement. The trial prosthesis is identical in size and configuration to the prosthesis which is actually used and which has been described, except that the contact or weight-bearing surfaces are not polished to a mirror finish. This device is utilized in surgery somewhat like an instrument used to determine the proper fit between prosthesis and bone without risking a regular prosthesis to the exposure of being scratched or damaged-by such handling.

Attention is then directed to the tibial surface. The menisci, ifpresent, should be excised. Four sagittal cuts are made for the tibial prosthesis and two transverse cuts are made /8 inch beneath the articular surface of the tibia, and the sections of the tibial plateau are removed. It is important that these cuts be complete, as irregular fractures may occur posteriously otherwise. A similar midline transverse cut is made to an AP depth of A inch only, and this is joined by a frontal cut at right angles in order to accommodate the anterior bridging portion of the tibial prosthesis. The final prepared tibial plateau surface is shown in FIG. 8 with the tibial component in place on the plateau. The prosthesis rests on freshly cut surfaces of the tibial plateau and surrounds the cruciate ligaments except in the direct posterior. If methyl methacrylate is not to be utilized with the tibial prosthesis, the extreme medial and lateral parts of tibial plateau should be retained for stabilization of the prosthesis. If cement is to be utilized, the extreme medial and lateral parts of the plateau may be removed without seriously jeopardizing the stability. Minor adjustments should be made with air saw so that a satisfactory fit of the trial tibial prosthesis is accomplished. Minor variations between medial and lateral cuts in the tibia may be made in order to compensate for varus or valgus deformity. Considerable care should be taken to retain the middle portion of the tibial plateau so that most of the insertion of the anterior cruciate ligament is preserved. The trial tibial prosthesis is used to verify the tibial osteotomies. lf methyl methacrylate is to be utilized, two drill holesshould be placed in the tibial surface to anchor the cement. The trial tibial component is very similar to the regular tibial prosthesis, which has been described, except that it is fabricated of steel, does not have an X-ray locator wire, and the bottom surface is smooth. it also is to be used as though it were an instrument in order to determine the proper fit of the regular prosthesis.

When correct bone preparation has been determined by use of both trial prostheses, the femoral prosthesis may be implanted. If methyl methacrylate is not used, the femoral prosthesis is pushed into place using a prosthesis seater. When emplaced, the prosthesis may be seated or set by light mallet taps on the handle of the seater. If cement is used the cement should be mixed and handled in accordance with the manufacturers instructions. When in a dough-like state, small portions of cement should be inserted in the fin slots and a thin (approximately /8 inch) layer of cement placed on the freshly cut surfaces which will receive the prosthesis. The femoral prosthesis is then pushed slowly into place using the femoral prosthesis pusher. The prosthesismay be coined into the cement by taps with a mallet against the prosthesis pusher. Any excess cement should be removed with curettes.

If cement is not used, the tibial prosthesis is placed in position while the knee is still in flexion. After the prosthesis is inserted, the knee is slowly brought to full extension. lf cement is utilized, with the kene still in 90 flexion, a thin (l/l6 inch to /8 inch) layer of cement is spread on the prepared tibial surface. The tibial prosthesis is emplaced, taking care not to push or exude cement to the posterior. If cement is pushed beyond the prosthesis posterior, it may impinge during flexion, thereby limiting the amount of flexion to be obtained. While it is not recommended that methyl methacrylate be used to build up the prosthesis or correct major deformities, minor abnormalities may be offset by this technique in order to provide an axis of weightbearing that is perpendicular to the tibia and parallel with the floor. After implantation of the prosthesis, the knee is slowly returned to full extension. (0 flexion). During the elevation from flexion to extension, the sur geon must feel the pressure required to compensate for varus or valgus, remembering that excessive pressure in either direction will result in migration of the uncured cement.

The patella is then reduced and the absence of the impingement on the anterior portion of the prosthesis confirmed. The cut is closed in layers with interrupted sutures over suction drains in the usual fashion.

The recommended postoperative routine includes immobilization in a splint or dressing with the knee is extension for 5 to 7 days, at which time the initial bulky dressing is replaced. Mobilization is continued as tolerated in balanced suspension with protective weightbearing started at seven days. Quadriceps exercises are encouraged, but flexion beyond 60 is discouraged for 2 weeks until quadriceps healing is advanced and postoperative reaction in the joint is diminished. At three weeks, inadequate flexion can be encouraged by a gentle manipulation under anesthesia.

it will be understood that the described surgical procedure included in this specification imposes no limitation on the invention and that departures may be made from this described procedure within the scope of the invention.

We claim:

1. A two-part prosthetic device for arthoplasty of the knee joint, comprising a component for replacing at least a part of the distal end of the femur and a component for replacing at least a part of the proximal end of the tibia, the femoral component comprising a unitary integrally formed device constructed and adapted-to be connected to the distal end of the femur and serve in lieu of the condyle surfaces thereof, said femoral component having an upper part having an upwardly directed bone fixation element for upward implantation in thefemur shaft and a lower part providing two substantially parallel transversely spaced support members which serve in lieu of the natural condyles, each of said support members having a downwardly facing bearing surface the anterior to posterior shape of which is a continuously changing curve of constantly decreasing radii and the transverse cross sectional shape of which is a curve forming part of a circle and of shallow depth, the tibial component being disc shaped and having upper and lower surfaces and a side wall and being constructed and adapted to lie with its lower surface on and connected to the prepared plateau surface of the proximal tibia, the tibial component having an opening extending from the posterior part of its side wall to its center whereby the component is C-shaped, the tibial component having a groove in its upper surface which is C-shaped in plan, following the C-shape of the component, to receive the support members of the femoral component, the groove being of uniform cross sectional shape and shallow depth throughout its length and its bottom shaped in each transverse cross section as a curve forming part of a circle.

2. As a new article of manufacture, a femoral prosthesis forming part of a two part knee prosthesis, comprising a unitary, one-piece device constructed and adapted to be connected to the distal end of the femur and replace the condyle surfaces thereof, said prosthesishaving a lower part having two transversely spaced substantially parallel condyle replacing members each of which has a downwardly facing bearing surface which is shaped in anterior to posterior direction as a continuously changing curve of constantly decreasing radii and is shaped in transverse cross section as'a curve forming part ofa circle and a shallow depth, and means for connecting the prosthesis to the femur by upward driving implantation, comprising two fins extending upwardly from the upper surfaces of the condyle replacing members, respectively, and having upwardly facing upper edges, and a third fin of triangular shape extending upwardly from the upper surfaces of the condyle replacing members at the anterior parts thereof and having upwardly converging upper edges extending from the anterior parts of the upper edges ofthe first two fins.

3. As a new article of manufacture, a tibial prosthesis forming part of a two-part knee prosthesis, comprising a circular disc shaped device having upper and lower surfaces and a side wall and having an opening extending from one part of the side wall to the center of the device whereby the device is C-shaped, a shallow groove in the upper surface of the device extending throughout substantially the entire length thereof and therefore also being C-shaped, the groove being of uniform cross sectional shape and depth and in each of its cross-sections its bottom being formed as a curve forming part of a circle.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3715763 *Apr 21, 1971Feb 13, 1973Link WArtificial limb for the knee joint
US3728742 *Jun 18, 1971Apr 24, 1973HowmedicaKnee or elbow prosthesis
US3774244 *Feb 8, 1972Nov 27, 1973Relief Ruptured And Crippled SKnee-joint prosthesis
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3958278 *Apr 22, 1975May 25, 1976National Research Development CorporationEndoprosthetic knee joint
US3964106 *Mar 3, 1975Jun 22, 1976Physical Systems, Inc.Three-part total knee prosthesis
US4034418 *May 11, 1976Jul 12, 1977The Governing Council Of The University Of TorontoArtificial knee joint
US4055862 *Jan 23, 1976Nov 1, 1977Zimmer Usa, Inc.Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US4081866 *Feb 2, 1977Apr 4, 1978Howmedica, Inc.Total anatomical knee prosthesis
US4166292 *Sep 8, 1977Sep 4, 1979Carbomedics, Inc.Stress reinforced artificial joint prostheses
US4216549 *Dec 27, 1977Aug 12, 1980Purdue Research FoundationSemi-stable total knee prosthesis
US4219893 *Sep 1, 1977Sep 2, 1980United States Surgical CorporationProsthetic knee joint
US4261064 *Feb 21, 1979Apr 14, 1981Helfet Arthur JacobBicondylar joint prosthesis
US4301553 *May 23, 1980Nov 24, 1981United States Surgical CorporationProsthetic knee joint
US4309778 *Jul 2, 1979Jan 12, 1982Biomedical Engineering Corp.New Jersey meniscal bearing knee replacement
US4340978 *Jun 23, 1980Jul 27, 1982Biomedical Engineering Corp.New Jersey meniscal bearing knee replacement
US4344193 *Nov 28, 1980Aug 17, 1982Kenny Charles HMeniscus prosthesis
US4353135 *May 9, 1980Oct 12, 1982Minnesota Mining And Manufacturing CompanyPatellar flange and femoral knee-joint prosthesis
US4659331 *Nov 28, 1983Apr 21, 1987Regents Of University Of MichiganProsthesis interface surface and method of implanting
US4661112 *Mar 4, 1985Apr 28, 1987Sulzer Brothers LimitedHip joint prosthesis
US4714470 *Feb 19, 1986Dec 22, 1987Zimmer, Inc.Grooved prosthetic implant
US4714473 *Jul 25, 1985Dec 22, 1987Harrington Arthritis Research CenterKnee prosthesis
US4769040 *Nov 18, 1986Sep 6, 1988Queen's University At KingstonTibial prosthesis
US4963153 *Jun 10, 1988Oct 16, 1990Sulzer Brothers LimitedMetal tibial anchoring part for a partial knee joint prosthesis
US4964868 *Aug 27, 1987Oct 23, 1990Harrington Arthritis Research CenterKnee prosthesis
US4979957 *Sep 11, 1989Dec 25, 1990Zimmer, Inc.Textured prosthetic implant
US5133759 *May 24, 1991Jul 28, 1992Turner Richard HAsymmetrical femoral condye total knee arthroplasty prosthesis
US5201768 *Oct 9, 1991Apr 13, 1993Caspari Richard BProsthesis for implant on the tibial plateau of the knee
US5207711 *Oct 9, 1991May 4, 1993Caspari Richard BKnee joint prosthesis
US5330532 *Nov 9, 1990Jul 19, 1994Chitranjan RanawatKnee joint prosthesis
US5417693 *Jun 16, 1993May 23, 1995Minnesota Mining And Manufacturing CompanyInstrumentation for preparing the femur for an artificial knee implant and for positioning the femoral component of the implant
US5509934 *Dec 7, 1994Apr 23, 1996Osteonics Corp.Prosthetic knee tibial component constructed of synthetic polymeric material
US5624462 *Jan 24, 1995Apr 29, 1997Bonutti; Peter M.Bone implant and method of securing
US5639279 *Feb 9, 1995Jun 17, 1997Intermedics Orthopedics, Inc.Posteriorly-stabilized prosthetic knee
US5876460 *Sep 6, 1996Mar 2, 1999Bloebaum; Roy D.Cemented prosthetic component and placement method
US5957979 *Dec 12, 1997Sep 28, 1999Bristol-Myers Squibb CompanyMobile bearing knee with metal on metal interface
US6217617Oct 24, 1996Apr 17, 2001Peter M. BonuttiBone implant and method of securing
US6355067Jul 27, 1998Mar 12, 2002Aaron. A. HofmannCemented prosthetic component and placement method
US6893467 *Jul 25, 2000May 17, 2005Michel BercovyKnee prosthesis
US6966928 *Aug 23, 2002Nov 22, 2005Fell Barry MSurgically implantable knee prosthesis having keels
US7115131 *May 29, 2002Oct 3, 2006Alexandria Research Technologies, LlcApparatus and method for sculpting the surface of a joint
US7179264 *Aug 28, 2002Feb 20, 2007Depuy Products, Inc.Cemented prosthetic kit
US7264635Feb 6, 2003Sep 4, 2007Nakashima Propeller Co., Ltd.Artificial knee joint
US7297161Apr 26, 2004Nov 20, 2007Fell Barry MSurgically implantable knee prosthesis
US7338524Apr 22, 2004Mar 4, 2008Fell Barry MSurgically implantable knee prosthesis
US7341602 *Aug 30, 2002Mar 11, 2008Fell Barry MProportioned surgically implantable knee prosthesis
US7488324Dec 8, 2003Feb 10, 2009Biomet Manufacturing CorporationFemoral guide for implanting a femoral knee prosthesis
US7491235Apr 26, 2004Feb 17, 2009Fell Barry MSurgically implantable knee prosthesis
US7510557Jan 18, 2005Mar 31, 2009Bonutti Research Inc.Cutting guide
US7520901Aug 31, 2006Apr 21, 2009Alexandria Research Technologies, Inc.Bicompartmental implants and method of use
US7615054Nov 10, 2009Martec, LLCBicompartmental knee implant and method
US7635390Oct 8, 2003Dec 22, 2009Marctec, LlcJoint replacement component having a modular articulating surface
US7641689Jan 25, 2008Jan 5, 2010Fell Barry MSurgically implantable knee prosthesis
US7695479Apr 12, 2005Apr 13, 2010Biomet Manufacturing Corp.Femoral sizer
US7695520May 31, 2006Apr 13, 2010Biomet Manufacturing Corp.Prosthesis and implementation system
US7708740Jun 30, 2005May 4, 2010Marctec, LlcMethod for total knee arthroplasty and resecting bone in situ
US7749229Jul 6, 2010Marctec, LlcTotal knee arthroplasty through shortened incision
US7780672Feb 27, 2006Aug 24, 2010Biomet Manufacturing Corp.Femoral adjustment device and associated method
US7789885Feb 15, 2005Sep 7, 2010Biomet Manufacturing Corp.Instrumentation for knee resection
US7806896Nov 25, 2003Oct 5, 2010Marctec, LlcKnee arthroplasty method
US7806897Jun 30, 2005Oct 5, 2010Marctec, LlcKnee arthroplasty and preservation of the quadriceps mechanism
US7819919Nov 15, 2007Oct 26, 2010Fell Barry MSurgically implantable knee prosthesis
US7828852Mar 9, 2007Nov 9, 2010Marctec, Llc.Inlaid articular implant
US7837690Jan 15, 2003Nov 23, 2010Biomet Manufacturing Corp.Method and apparatus for less invasive knee resection
US7837736Oct 30, 2007Nov 23, 2010Marctec, LlcMinimally invasive surgical systems and methods
US7887542Aug 31, 2004Feb 15, 2011Biomet Manufacturing Corp.Method and apparatus for less invasive knee resection
US7892236Feb 22, 2011Marctec, LlcSystem and method for total joint replacement
US7896922Apr 20, 2009Mar 1, 2011Alexandria Research Technologies, LlcImplants for partial knee arthroplasty
US7931690Apr 26, 2011Marctec, LlcMethod of resurfacing an articular surface of a bone
US7959635 *Mar 8, 2004Jun 14, 2011Marctec, Llc.Limited incision total joint replacement methods
US8070752Jan 9, 2008Dec 6, 2011Biomet Manufacturing Corp.Patient specific alignment guide and inter-operative adjustment
US8123758Feb 9, 2009Feb 28, 2012Biomet Manufacturing Corp.Femoral guide for implanting a femoral knee prosthesis
US8128697Oct 7, 2009Mar 6, 2012Fell Barry MProportioned surgically implantable knee prosthesis
US8133229Oct 14, 2003Mar 13, 2012Marctec, Llc.Knee arthroplasty method
US8187335Jun 30, 2008May 29, 2012Depuy Products, Inc.Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8192498Jun 30, 2008Jun 5, 2012Depuy Products, Inc.Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8202323Jul 16, 2008Jun 19, 2012Depuy Products, Inc.Knee prostheses with enhanced kinematics
US8206451Jun 30, 2008Jun 26, 2012Depuy Products, Inc.Posterior stabilized orthopaedic prosthesis
US8236061Jun 19, 2009Aug 7, 2012Depuy Products, Inc.Orthopaedic knee prosthesis having controlled condylar curvature
US8265949Sep 27, 2007Sep 11, 2012Depuy Products, Inc.Customized patient surgical plan
US8343159Sep 29, 2008Jan 1, 2013Depuy Products, Inc.Orthopaedic bone saw and method of use thereof
US8357111Sep 30, 2007Jan 22, 2013Depuy Products, Inc.Method and system for designing patient-specific orthopaedic surgical instruments
US8357166Sep 29, 2008Jan 22, 2013Depuy Products, Inc.Customized patient-specific instrumentation and method for performing a bone re-cut
US8357202Dec 22, 2009Jan 22, 2013Zimmer, GmbhJ-curve for a femoral prosthesis component
US8361076Sep 29, 2008Jan 29, 2013Depuy Products, Inc.Patient-customizable device and system for performing an orthopaedic surgical procedure
US8377068Sep 29, 2008Feb 19, 2013DePuy Synthes Products, LLC.Customized patient-specific instrumentation for use in orthopaedic surgical procedures
US8398645Sep 29, 2008Mar 19, 2013DePuy Synthes Products, LLCFemoral tibial customized patient-specific orthopaedic surgical instrumentation
US8425522Apr 23, 2013Bonutti Skeletal Innovations LlcJoint replacement method
US8518047Aug 3, 2010Aug 27, 2013Biomet Manufacturing, LlcMethod and apparatus for less invasive knee resection
US8551100Jan 23, 2006Oct 8, 2013Biomet Manufacturing, LlcInstrumentation for knee resection
US8623030Mar 14, 2013Jan 7, 2014Bonutti Skeletal Innovations LlcRobotic arthroplasty system including navigation
US8632552Mar 14, 2013Jan 21, 2014Bonutti Skeletal Innovations LlcMethod of preparing a femur and tibia in knee arthroplasty
US8636807Sep 4, 2008Jan 28, 2014Depuy (Ireland)Moment induced total arthroplasty prosthetic
US8641726Mar 14, 2013Feb 4, 2014Bonutti Skeletal Innovations LlcMethod for robotic arthroplasty using navigation
US8728086 *May 28, 2010May 20, 2014Smith & Nephew, Inc.Methods and apparatus for performing knee arthroplasty
US8728167Jan 10, 2011May 20, 2014Howmedica Osteonics Corp.Bicruciate retaining tibial baseplate design and method of implantation
US8734522Jun 20, 2012May 27, 2014Depuy (Ireland)Posterior stabilized orthopaedic prosthesis
US8747439Jul 10, 2006Jun 10, 2014P Tech, LlcMethod of using ultrasonic vibration to secure body tissue with fastening element
US8764830Oct 19, 2012Jul 1, 2014Articulinx, Inc.Disc-shaped orthopedic devices
US8784495Jun 8, 2010Jul 22, 2014Bonutti Skeletal Innovations LlcSegmental knee arthroplasty
US8784496Jun 4, 2012Jul 22, 2014Depuy (Ireland)Orthopaedic knee prosthesis having controlled condylar curvature
US8795380Jul 2, 2012Aug 5, 2014Depuy (Ireland)Orthopaedic knee prosthesis having controlled condylar curvature
US8828086Jun 30, 2008Sep 9, 2014Depuy (Ireland)Orthopaedic femoral component having controlled condylar curvature
US8834486Feb 21, 2012Sep 16, 2014Biomet Manufacturing, LlcFemoral guide for implanting a femoral knee prosthesis
US8834490Oct 29, 2013Sep 16, 2014Bonutti Skeletal Innovations LlcMethod for robotic arthroplasty using navigation
US8834575May 28, 2012Sep 16, 2014Depuy (Ireland)Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8840629Oct 29, 2013Sep 23, 2014Bonutti Skeletal Innovations LlcRobotic arthroplasty system including navigation
US8858557Oct 29, 2013Oct 14, 2014Bonutti Skeletal Innovations LlcMethod of preparing a femur and tibia in knee arthroplasty
US8870883Jan 28, 2011Oct 28, 2014Biomet Manufacturing, LlcMethod for less invasive knee resection
US8900316Jan 28, 2011Dec 2, 2014Smith & Nephew, Inc.Cruciate-retaining knee prosthesis
US8911501Dec 29, 2011Dec 16, 2014Mako Surgical Corp.Cruciate-retaining tibial prosthesis
US8915965May 7, 2009Dec 23, 2014Depuy (Ireland)Anterior stabilized knee implant
US9023053Oct 7, 2013May 5, 2015Biomet Manufacturing, LlcInstrumentation for knee resection
US9060797Aug 5, 2014Jun 23, 2015Bonutti Skeletal Innovations LlcMethod of preparing a femur and tibia in knee arthroplasty
US9101443Feb 29, 2012Aug 11, 2015Bonutti Skeletal Innovations LlcMethods for robotic arthroplasty
US20040138670 *Jan 15, 2003Jul 15, 2004Robert MetzgerMethod and apparatus for less invasive knee resection
US20040199249 *Apr 26, 2004Oct 7, 2004Fell Barry M.Surgically implantable knee prosthesis
US20040199250 *Apr 26, 2004Oct 7, 2004Fell Barry M.Surgically implantable knee prosthesis
US20040267363 *Apr 22, 2004Dec 30, 2004Fell Barry MSurgically implantable knee prosthesis
US20050033424 *Sep 15, 2004Feb 10, 2005Fell Barry M.Surgically implantable knee prosthesis
US20050113840 *Aug 31, 2004May 26, 2005Robert MetzgerMethod and apparatus for less invasive knee resection
US20050149042 *Feb 15, 2005Jul 7, 2005Robert MetzgerInstrumentation for knee resection
US20050209703 *Apr 29, 2005Sep 22, 2005Fell Barry MSurgically implantable prosthetic system
US20100331848 *May 28, 2010Dec 30, 2010Richard Michael SmithMethods and Apparatus for Performing Knee Arthroplasty
US20110112647 *Jan 26, 2010May 12, 2011Michael HogendijkOrthopedic joint device
DE2703059A1 *Jan 26, 1977Jul 27, 1978Schuett & Grundei SanitaetKniegelenk-endoprothese
DE3443109A1 *Nov 27, 1984Jun 27, 1985Larry S MatthewsVerbesserte prothesengrenzflaeche und verfahren zum implantieren derselben
DE3923418A1 *Jul 12, 1989Jan 31, 1991Rolf Prof Dr MiehlkeKnee joint prosthesis with hinge - has small sharp projections on surfaces which abut against femur and tibia
EP0053460A1 *Nov 20, 1981Jun 9, 1982Dow Corning CorporationMeniscus prosthesis
EP0135319A2 *Jul 30, 1984Mar 27, 1985ARTHROPLASTY RESEARCH & DEVELOPMENT (PTY) LTD.Knee prosthesis
EP0183670A1 *Nov 26, 1985Jun 4, 1986Björn AlbrektssonArtificial menisco-tibial joint
EP0297250A1 *May 4, 1988Jan 4, 1989Gebrüder Sulzer AktiengesellschaftMetallic tibial anchoring piece for partial knee-joint prosthesis
EP0375582A1 *Nov 14, 1989Jun 27, 1990S.P.O.R.T.Anchoring device for a knee prosthesis
EP1336395A2 *Feb 13, 2003Aug 20, 2003Nakashima Propeller Co., Ltd.An artificial knee joint
EP1690516A2 *Feb 7, 2006Aug 16, 2006Permedica S.p.a.Unicompartmental knee prosthesis and equipment for preparing a seat for the prosthesis in the joint surface
WO1982001816A1 *Nov 16, 1981Jun 10, 1982Dow CorningMeniscus prosthesis
Classifications
U.S. Classification623/20.21
International ClassificationA61F2/30, A61F2/00, A61F2/38
Cooperative ClassificationA61F2002/3008, A61F2/38, A61F2002/30879, A61F2250/0098, A61F2002/30884
European ClassificationA61F2/38