Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3870042 A
Publication typeGrant
Publication dateMar 11, 1975
Filing dateOct 6, 1972
Priority dateOct 13, 1971
Also published asCA1018417A1, DE2248265A1
Publication numberUS 3870042 A, US 3870042A, US-A-3870042, US3870042 A, US3870042A
InventorsLeon Fernand Viguier
Original AssigneeLab Medicoplast
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for separating and injecting blood component
US 3870042 A
Abstract
The device comprises a system of blood-taking and decanting pockets interconnected by tubes, a storage pocket, the dimensions of which correspond to the amount of component to be injected, a filter and injection means in this storage pocket. The device is particularly useful for separating by cryo-precipitation and for injecting into a patient the factor VIII used against haemophilia.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Viguier 1 1 Mar. 11, 1975 APPARATUS FOR SEPARATING AND 2,842,122 7/1958 Butler 128/214 D IN BL 0D COMPONENT 2,848.995 8/1958 Ryannnm 128/214 D INJECT G 0 3,064,647 11/1962 Earl 128/272 x [75] Inventor: Leon Fernand Viguier, Samt-Prerre 3,110,308 11/1963 Bellamy, Jr 128/214 D de Mesage, France 3,187,750 6/1965 Tenczar, Jr. 1 128/272 3, 4 9 3 2 K l2 4 D [73] Assignee: Laboratories Medicoplast, Paris 6 8 6 3 Oremura (Seine), France [22] Filed: Oct. 6, 1972 Primary E.t arninerAldrich F. Medbery [21] Appl. No.: 295,687

57 ABSTRACT [30] Foreign Application Priority Data 1 OCT. l3, FI'ZIHCC Th device omprises a ystem of blood taking and decanting pockets interconnected by tubes, a storage U-S- r D, pocket the dimensions of correspond to [he [5 e amount f component to be injected a filter and in l l Field of Search l28/2l4 R1214 D1214 E, jection means in this storage pocket. The device is 128/272 214-2 particularly useful for separating by cryo-precipitation and for injecting into a patient the factor VIII used l l Referne$ Clted against haemophilia.

UNITED STATES PATENTS 2 2,702,034 2/1955 Walter 128/272 X 5 Claims, 3 Drawing Figures RHENIED NARI 1 I915 SHEET 1 0F 3 WNX FATEMEU 1 SWEET 2 OF 3 I 1 APPARATUS FOR SEPARATING AND INJECTING BLOOD COMPONENT vein and is stored in a first blood-taking pocket, where it undergoes a first treatment for initial separation. One of the components is then transferred to a second pocket in the system for a second separation treatment. One of the elements separated after this second treatment is passed to a final pocket where it is stored.

The element thus separated and intended to be injected into a patient is taken from this storage pocket by means of a hollow needle which is used to pierce the pocket. In the case of a blood component containing agglomerated elements, however, the device just described has disadvantages, since the agglomerated particles may obstruct the passage in the hollow needle or may enter the patients vein and create circulation problems. Incidents of this kind generally occur where the blood component has been separated by cryoprecipitation, since agglomerated elements still remain after thawing. In order to avoid such incidents, it is usual to dilute the component in a solution, especially an isotonic solution, before injecting it into the patient. This operation is usually carried out in an adjacent pocket into which the constituent taken is introduced by means of the hollow needle.

For the purpose of overcoming these disadvantages, it is also known to filter the blood before injecting it ,into the patient. A transfusion device of this kind is described in US. Pat. No. 2,702,034 filed on July 20, 1950. The filter chamber, usually of large capacity, is integrated into the means of transfusion and the dead volume of the latter therefore makes it impossible to use it for injecting small quantities.

Finally it is very difficult to remove the liquid from the storage pocket in a perfectly sterile manner in order to dilute it in the isotonic solution and inject it, while eliminating any riskof contamination of the element to be injected.

It is an object of this invention to provide a method and an apparatus to overcome these disadvantages and difficulties. The method in accordance with the present invention consists in the following steps:

the component is transferred in a sterile manner to a storage pocket connected to the system of blood-taking and decanting pockets, the pocket comprising an internal filter and having dimensions corresponding to the amount of component isolated;

the storage pocket is separated from the system of blood-taking and decanting pockets, and

the component is kept in the storage pocket until it is injected into the patients vein.

According to one embodiment of the invention, before the component just isolated is transferred to the storage pocket, it is mixed with a rinsing solution, especially an isotonic solution, which dilutes, in part, the agglomerated elements; this rinsing solution is contained in a pocket connected in a sealed and sterile manner to the system of blood-taking and decanting pockets.

The apparatus made in accordance with the present invention consists of a storage pocket containing a filter and having dimensions corresponding to the quantity of component isolated. The arrangement of the filter within the storage pocket is essential, since it produces adevice which is particularly compact and easy to use, in which dead volumes are greatly limited. This is essential if the quantities of component extracted from the blood are very small.

According to another embodiment of the invention, the storage pocket also comprises injection means adapted to the end of the filter. The purpose of this arrangement is to avoid contamination of the components in the storage pocket at the time of their injection, but this highly compact arrangement of the injection means also helps to greatly limit dead volumes.

According to another embodiment of the apparatus of the invention, the isotonic solution is kept, prior to use, in the storage pocket. Thus the storage pocket, which comprises a filter and injection means, contains a solution of the blood component already diluted and ready to be injected.

The invention will now be described in greater detail in conjunction with two forms of embodiment given by way of examples only, and illustrated in the attached drawings, wherein:

FIG. 1 shows a side elevational view of the device according to the invention;

FIG. 2 shows a side elevational view of the storage pocket, partly broken away and to an enlarged scale; and

FIG. 3 shows a side elevational view of another embodiment of the device according to the invention.

Illustrated in FIG. I is a device which comprises a first flexible pocket 1 made of transparent synthetic material. Opening into this pocket is the end of a flexible tube 3 made of weldable synthetic material, the other end thereof being integral with a hollow needle 4 protected by a sleeve 5.

Opening into pocket 1 is one end of a tube 8 made of weldable synthetic material, the other end of which is integral with one arm of a three-way union 9, the other two arms of which are connected respectively, through tubes 11 and 12, to flexible pockets 6 and 10. Pocket 10 is connected through a tube 13 to a storage pocket 14 made of two sheets of synthetic material welded together by their edges. Pocket 14 contains a filter 17 and injection means consisting, more particularly, of a tube 23 comprising an injection needle 15 protected by a cap 16.

Filter 17, seen in FIG. 2, consists of a piece of fabric in the form of a sleeve, one end thereof being held by the weld at the bottom of the pocket, while the other end accommodates a ferrule 18 to which it is attached by the weld joining together the two sheets of which the pocket is made.

In one particular configurationof the invention, ferrule 18 has an internal wall 19 intended to be pierced by a hollow needle 20 integral with a sleeve 21 connected to the injection needle by means of a tube 23.

A description will now be given of the method of using the device illustrated in FIGS. 1 and 2. Hollow needle 4 is inserted into the patients vein. After the blood has been collected in pocket 1, tube 3 is flattened in the vicinity of the pocket and its walls are welded together in order to close it off. The remainder of the tube, which is no longer in use, is then cut off.

such as cryo-precipitation, in order to separate an element"(such as factor VIII) used against haemophilia. After tube 8 has been closed off, the element of the blood to be separated is decanted, through tubes 11 and '12, into pocket which contains an isotonic solution to be mixed with the element. This mixture is then transferred to pocket 14 through tube 13.

Another way of using the present device consistsin passing the plasma contained in pocket 1 through tubes 8 and 12 into pocket 10, tube 11 being closed off, for example by means of a clamp. The component contained in the plasma (more particularly factor VIII which is used against haemophilia) is separated by cryo-precipitation in pocket 10. The unprecipitated fraction of the plasma is transferred to pocket 6 through tubes 11 and 12, after tube 8 has been closed off, for example with a clamp. The isotonic solution, which in this configuration of the invention, is contained in storage pocket 14, is transferred to pocket 10 where it is used to dilute the component separated by cryo-precipitation. Pocket 10 is carefully rinsed with this solution, and the mixture of isotonic solution and component is transferred to pocket 14 through tube 13.

Tube 13 is then flattened and welded and pocket 14 is then separated from pocket 10 by cutting the tube. The blood elements in pockets 1 and 6 are then retained for specific purposes, while the component in pocket 14 may be kept therein until it is-required for use.

At the time of use, sleeve 21 is pushed into ferrule 18 in a manner such that needle 20 pierces wall 19, after which needle 15 is inserted into the patients veinand the component in its isotonic solution is injected directly by rolling up pocket 14 in order to force the liquid through tube 23. The agglomerated elements cannot pass through filter 17 and they therefore remain in pocket 14. Dead volumes are limited to a minimum since pocket 14 is small in size and the useful volume thereof corresponds substantially to the volume of component placed in solution for injection into the patient; moreover, the filtermeans is integrated into the storage pocket. A device of this kind also prevents contamination and ensures storage and injection under completely sterile conditions.

FIG. 3 shows blood-taking pocket 1 with its means for taking blood, namely hollow needle 4 protected by cap 5. This pocket is connected, through tube 32, to a second pocket 30 which is connected in turn, through a tube 33, to a third pocket 31 and, through a tube 34, to a storage pocket 14. This latter pocket comprises a filter 17 integral with a ferrule 18 as described in connection with FIG. 2, the ferrule being integral with a sterile access port 35, and the end of the ferrule being adaptable to the injection means.

The method of using this device to isolate and inject a component containing agglomerated elements will now be described.

The blood taken from the subjects vein is subjected to initial fractionation in pocket 1, more particularly by .centrifuging. The plasma is transferred, through tube 32, to pocket 30, after which the tube is heat sealed or welded and cut off. The plasma in pocket 30 is again fractionated, more particularly by cryo-precipitation, in order to isolate those components which are present in very small quantities in human blood and which possess therapeutical properties. After being thawed out, the liquid fraction of the plasma is transferred, through tube 33, to pocket 31, during which transfer tube 34 is closed off, for example with a clamp. After tube 32 has been closed off, the rinsing solution in storage pocket 14 ispassed, through tube 34, into pocket 30 which contains the component separated by cryoprecipitation. The mixture thus obtained is again transferred to pocket 14, where it is retained after tube 34 has been welded and cut off. During this latter operation, sterile air trapped in pocket 14 is evacuated through tube 34, so that pocket 14 is completely filled. In order to inject the solution containing the component into the patients vein, a catheter containing a tube of very small cross section is connected to pocket 14. This catheter is fitted to ferrule 18 in access port 35 after the port has been opened under sterile conditions. The liquid is then injected by compressing pocket 14. The agglomerated elements are retained in pocket 14 by filter 17. Moreover, there is no risk of introducing air into the patients vein, since care is taken to remove the air from pocket 14 before it is sealed. Moreover, the dead volume of the injection tube is as small as possible, and almost the entire amount of the solution contained in the storage pocket is injected. Finally, the injection means may be disconnected from access port 35 in pocket 14 and connected to a new pocket. It is thus possible to inject into the patients vein as many doses as may be required, with no fear of the fine injection tube becoming blocked.

It is to be understood thatthe invention is not restricted in interpretation except by the scope of the following claims.

I claim:

1. In an apparatus for sampling and fractionating blood components including a plurality of sampling and fractionating pockets interconnected by tubing, a means for sequentially isolating, storing and intravenously injecting into a patient a blood component present in small amounts in the blood and liable to contain agglomerated elements,

said means comprising:

a distinct storage pocket for said component,

the inlet of said storage pocket being connected by sectionable tubing to said plurality of sampling and fractionating pockets, the outlet of said storage pocket being sealed and having means for being equipped with injection means; I a filter means for'preventing the injection of the agglomerated elements incorporated inside said storage pocket between said inlet and said outlet; said storage pocket being of dimensions substantially corresponding to the quantity of the component separated.

2. An apparatus according to claim 1, wherin said filter means consists of a tubular length of a filter fabric in the form of a sleeve running longitudinally inside said storage pocket,

one end of said sleeve being held closed at the bottom of said storage pocket,

the other end surrounding an outlet ferrule, said other end and said ferrule being held at the top of said storage pocket. J

other end and said ferrule being held between said sheets by the weld at the top of said storage pocket.

4. An apparatus according to claim 2, wherein said injection means is integral with said outlet ferrule.

5. An apparatus according to claim 2, wherein said outlet ferrule is further surrounded by a sterile access port, said injection means being adaptable to said access port.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2702034 *Jul 20, 1950Feb 15, 1955Fenwal IncApparatus for collecting, storing, and dispensing whole blood
US2842122 *Aug 2, 1955Jul 8, 1958Cutter LabFilter
US2848995 *Sep 11, 1953Aug 26, 1958Abbott LabTransfusion apparatus
US3064647 *Jun 13, 1957Nov 20, 1962Baxter Laboratories IncBlood component separation method and apparatus
US3110308 *Oct 20, 1960Nov 12, 1963Baxter Laboratories IncParenteral fluid administration equiment
US3187750 *Jan 15, 1963Jun 8, 1965Baxter Laboratories IncMultiple bag blood storage unit
US3648693 *May 26, 1970Mar 14, 1972Jintan Terumo CoBag apparatus for transfusion of blood or fluid involving heat shrinkable tube means
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3986506 *Sep 3, 1974Oct 19, 1976Baxter Travenol Laboratories, Inc.Apparatus for separation of cryoprecipitate from blood plasma and method
US4474568 *Jan 21, 1982Oct 2, 1984Haemonetics CorporationMultipurpose component container and anticoagulant bag
US4680025 *Nov 27, 1984Jul 14, 1987Baxter Travenol Laboratories, Inc.Blood component collection systems and methods
US4915847 *Aug 4, 1987Apr 10, 1990Baxter International Inc.Cryoglobulin separation
US4917804 *Oct 31, 1986Apr 17, 1990Baxter International Inc.Method and vessel for separation of cryoglobin
US4985153 *Jun 23, 1989Jan 15, 1991Asahi Medical Co., Ltd.Method for separating blood into blood components, and blood components separator unit
US4994039 *Feb 6, 1987Feb 19, 1991Mattson Philip DApparatus and method for patients from a single donor or a restricted group of donors
US5030215 *Jan 3, 1990Jul 9, 1991Cryolife, Inc.Preparation of fibrinogen/factor XIII precipitate
US5071570 *Nov 19, 1990Dec 10, 1991Terumo CorporationCentrifugation; separation through connecting tubes; returning part of platelet-deficient plasma as nutrient source for red corpuscles
US5141645 *Jun 5, 1991Aug 25, 1992Terumo CorporationSeparate containers for each component
US5167656 *Jan 22, 1991Dec 1, 1992Baxter International Inc.Blood container having lay-flat sample reservoir
US5300060 *Oct 7, 1991Apr 5, 1994Miles Inc.Blood bag system for separation and isolation of neocytes and gerocytes
US5318782 *Feb 25, 1993Jun 7, 1994Weis Fogh Ulla SMethod for preparing tissue repair promoting substances
US5399268 *Jul 6, 1994Mar 21, 1995Pall CorporationPreparing platelets for long term storage
US5445736 *Apr 25, 1994Aug 29, 1995Pall CorporationDevice and filter element for processing blood for human transfusion
US5462716 *Nov 10, 1992Oct 31, 1995Holm; Niels E.Container for receiving and separating a fluid, preferably blood plasma, into its ingredients
US5480378 *Aug 24, 1994Jan 2, 1996Weis-Fogh; UllaApparatus for preparing a concentrate of coagulation factors from a blood sample
US5543060 *Jun 6, 1995Aug 6, 1996Pall CorporationCentrifuging, separating supernatant layer by filtration through porous filter
US5578326 *May 12, 1995Nov 26, 1996E. R. Squibb & Sons, Inc.Method and an apparatus for preparing tissue repair promoting substances
US5580465 *Dec 3, 1993Dec 3, 1996Pall CorporationFiltering whole blood
US5658533 *Jun 6, 1995Aug 19, 1997E.R. Squibb & Sons, Inc.For blood
US5674458 *Jun 6, 1995Oct 7, 1997E. R. Squibb & Sons, Inc.Container for receiving and separating a fluid into its ingredients
US5746979 *Jun 6, 1995May 5, 1998F. R, Squibb & Sons, Inc.Method for receiving and separating a fluid into its ingredients
US6284285Dec 29, 1992Sep 4, 2001E. R. Squibb & Sons, Inc.Tissue repair promoting composition
US6994790Feb 3, 2003Feb 7, 2006Gambro, Inc.Whole blood collection and processing method
US7025877Jun 3, 1999Apr 11, 2006Baxter International Inc.Processing set for processing and treating a biological fluid
US7105093Oct 8, 2002Sep 12, 2006Baxter International Inc.Improved apparatus for light treatment of biological fluid that contains light activated photochemical agent for inactivating pathogens that may be present in biological fluid; blood
US7425304Feb 13, 2006Sep 16, 2008Fenwal, Inc.containers used for treating blood and blood components using ultraviolet radiation; contains photosensitizers and adsorber materials for removing excess photosensitizers and photoactivation by-products
US7445756Oct 11, 2002Nov 4, 2008Fenwal, Inc.Treating biological fluid with light; connecting flexible container, tube; folding; disposable products
US7601268May 27, 2003Oct 13, 2009Haemonetics CorporationContinuous blood filtration and method of use
US8222027 *Dec 17, 2008Jul 17, 2012Cook General Biotechnolgy, LLCSystems and methods for cryopreservation of cells
US8709797Feb 24, 2010Apr 29, 2014Cook General Biotechnology LlcSystems and methods for cryopreservation of cells
US20120171658 *May 27, 2010Jul 5, 2012Justus-Liebig-Universitšt GiessenDevice and procedure for the manufacture of blood products
DE2845365A1 *Oct 18, 1978Apr 19, 1979Baxter Travenol LabDruckwaechter- und stroemungskreisanordnung
EP0175274A2 *Sep 11, 1985Mar 26, 1986TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATIONMethod of separation of blood components
WO1984000905A1 *Aug 17, 1983Mar 15, 1984Baxter Travenol LabBlood component collection systems and methods
WO1992012684A1 *Jan 10, 1992Jul 23, 1992Baxter IntBlood container having lay-flat sample reservoir
WO2010136535A1 *May 27, 2010Dec 2, 2010Justus-Liebig-Universitšt GiessenDevice and method for producing blood products
Classifications
U.S. Classification604/406, 604/410
International ClassificationA61M39/00, A61M39/22, A61M1/02
Cooperative ClassificationA61M2202/0454, A61M39/221, A61M1/0209, A61M2205/7545, A61M1/02
European ClassificationA61M1/02B, A61M1/02, A61M39/22C