Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3870051 A
Publication typeGrant
Publication dateMar 11, 1975
Filing dateApr 26, 1973
Priority dateApr 27, 1972
Publication numberUS 3870051 A, US 3870051A, US-A-3870051, US3870051 A, US3870051A
InventorsGiles Skey Brindley
Original AssigneeNat Res Dev
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Urinary control
US 3870051 A
Abstract
Urinary control by electrical stimulation of the sphincter and bladder muscles is effected by way of the sacral ventral roots, selection in the resultant muscle action being effected by use of discriminating signal forms. Sphincter closure action is effected by use of a low intensity pulse train whereby the sphincter is stimulated but not the bladder and so incontinence is avoided. Bladder muscle action to cause micturation is effected by use of a higher intensity pulse train whereby both muscles are stimulated during each pulse train, but during each interruption the sphincter relaxes while the bladder remains contracted.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Brindley Mar. 11, 1975 1 URINARY CONTROL 3,650,276 3/1972 Brughele et a1. 128/419 1-: 3,667,477 6 1972 S t l. 128 419 E [75] Inventor: Giles Skey Brindley, London, usse et a I England Przmary Exammer--W1ll1am E. Kamm [73] Assignee: National Research Development Attorney, Agent, or FirmCushman, Darby &

Corporation, London, England Cushman 22 Pl d: A 26, 1973 1 pr 57 ABSTRACT [2]] Appl' 354910 Urinary control by electrical stimulation of the sphincter and bladder muscles is effected by way of the sa- [30] Foreign Application Priority Data cral ventral roots, selection in the resultant muscle ac- Apr. 27, 1972 Great Britain 19583/72 tion being effected y use of discriminating Signal forms. Sphincter closure action is effected b use of a y 5 Clmmu 128/422, 128/419 5, 128/1316 25 low mtensity pulse train whereby the sphincter is stim- 511 1111. C1 A61n 1/36 but not the bladder and so incontinence is [58] Field of Search U 128/419 E, 419 R, 42] avoided; Bladder muscle action to cause micturation is 128/422v DIG. 25 effected by use of a higher intensity pulse train whereby both muscles are stimulated during each [56] References Cited pulse train, but during each interruption the sphincter UNITED STATES PATENTS relaxes while the bladder remains contracted. 3.236.240 2/l966 Bradley 128/419 E 12 Claims, 1 Drawing Figure 1 l 7 i I H M L 53 H5 2 2 i C a w J A: B6 E R9 772 B7 247 I? 4 'vv/ 23A l X as? B5 1 1 71/1 R/B'Z J C1 r 5 i l 1 l i 3 l TRANSMITTER/ 775 7/) INITIATING HIGH INTENSITY SHORT BURST PULSING\ INHIBITING LOW INTENSITY STEADY PULSING i l g/TRANSMTTER URINARY CONTROL BACKGROUND OF THE INVENTION This invention concerns urinary control and more particularly such control involving electrical stimula tion by way of implanted electrodes. Also, the invention more particularly, but not exclusively, concerns urinary control for persons having disorders of neurological origin whereby they are unable to empty urine from the bladder by normal action of the bladder muscle, or unable to retain urine in the bladder by normal action of the sphincter, or, as is often the case, are unable to do either.

Various attempts have been made in the past to effect urinary control in the presence of such disorders by direct stimulation of appropriate muscles through electrodes implanted on the muscle to stimulate the as sociated motor nerve fibres. However, relatively large currents are required to effect the desired muscle contractions and, because the relevant motor nerve fibres are normally in close proximity with sensory fibres, stimulation is frequently associated with pain.

SUMMARY OF THE INVENTION In a more general aspect, the present invention, on the other hand, affords similar urinary control by stimulation of the relevant muscles through electrodes implanted in the associated parts of the sacral ventral roots, normally numbers three and four, left and right. The muscles in question will be referred to hereinafter for convenience simply as the bladder muscle and the sphincter muscle. The former is intended to denote the detrusor muscle of the bladder, and the latter all of those striated muscles that contribute to closing the urethra. The principal one of these last muscles is the external sphincter of the urethra, but other pelvic muscles are also considered to be involved.

An advantage of the presently proposed control is that the sacral ventral roots are free from sensory fibres with the result that stimulation is unlikely to lead to painJAlso, it is more economic in terms of power requirements to stimulate the sacral ventral roots than the muscles directly or the motor nerve fibres in them.

However, the sacral ventral'roots in question comprise tightly packed bundles including those which govern the activity of the bladder muscle and those which govern the activity of the sphincter muscle. Accordingly, unless it proves possible to separate the respective fibres, and this seems an impossible task on the basis of existing knowledge, it is necessary to adopt a mode of differential stimulation.

The invention involves one mode of differential stimulation which stems from the fact that the bladder muscle relaxes slowly after stimulation to contraction, while the sphincter muscle relaxes very rapidly in comparison. Thus, it is possible to stimulate the relevant fibres with electrical signals of interrupted form so that both muscles are contracted during each active signal period, while the bladder muscle remains contracted and the sphincter muscle is relaxed to afford micturition during at least a part of the signal interruption period. In practice each active signal will normally comprise a pulse train and the relevant interruption period is the inter-train interval.

Another mode of differential stimulation stems from the fact that the sacral ventral root fibres governing the activity of the bladder muscle are small compared to those for the sphincter muscle, and it follows that the latter fibres are more sensitive to electrical stimulation than theformer. Thus, it ispossible to stimulate the fibres at an intensity which causes contraction of the sphincter muscle but not the bladder muscle. Again, this stimulation will normally involve the use of a pulse train signal.

It will be normal for the purposes of the earliermentioned more particular application of the invention to employ both of these modes of differential control with the second mode being employed to hold the sphincter normally contracted except when the first mode is employed to empty the bladder.

As clarification, useful mention can be made of practical development of the invention to date. This development has led to urinary control apparatus for which the normal or hold mode involves stimulation by application of a relatively low intensity pulse train signal having a pulse repetition rate of about twenty per second, and the micturition or empty mode involves stimulation by application of a relatively high intensity, interrupted pulse train signal in which each train comprises about twelve pulses in a relatively short burst each 1 /2 seconds.

Regarding practical implementation of the invention: the power requirements for the two modes of stimulation are sufficiently low, namely, low intensity for long durations and high intensity for short durations, that implantation of suitable micro-circuits with battery power supplies is possible. However, it is necessary to provide some facility, controllable from without the body, to afford switching between the hold andempty modes of control. This can be effected by use of a radio transmitter/receiver arrangement as more generally de scribed in US. Pat. No. 3,699,970 whereby an externally located transmitter is operated to energise an implanted receiver. Indeed, the use of such arrangements would allow both the hold and empty modes of control to be individually powered from without the body and so obviate the need for any implantation of power supplies.

In practice the present development has involved implementation with a compromise between these effective extremes of maximum and minimum implantation. In this compromise, the hold mode of control is provided by way of total implantation, and the empty mode by way of a transmitter/receiver arrangement which also serves to inhibit the hold mode. This overall arrangement is presently considered to represent an optimum in convenience to the beneficiary.

BRIEF DESCRIPTION OF THE DRAWING For completeness in providing a clear understanding of the invention, one embodiment of the lastmentioned overall arrangement is illustrated, partly in diagrammatic form and partly in circuit diagram form, in the accompanying drawing. This embodiment has been successfully tested in animal trials with a baboon and is considered applicable to man.

DETAILED DESCRIPTION OF A PRESENTL PREFERRED EMBODIMENT The illustrated embodiment is in two parts denoted at 10 and 11 of which the first is implantable and the second employed externally of the body. Also these two parts 10 and 11 are themselves functionally subdivided into portions 10A, 10B and 11A, 118, although thissubdivision does not necessarily involve physical separation.

The implantable portion A is the circuit which provides the hold mode of control referred to above and comprises a complementary multivibrator stage operable to generate a pulse train of twenty pulses per second which are applied through a buffer stage 21 and output stage 22 to stimulating electrodes 23A. The electrodes 23A are located adjacent the relevant ventralsacral roots by use of electrode terminal devices such as describedin US. Pat. No. 3,718,134 and the tissue load at the electrodes is denoted by broken line resistor RlA; This circuit is powered by a mercury cell 24, resistor R2 in the multivibrator stage is chosen so that fifty microsecond pulses are generated, and the potentiometer R3 affords adjustment of the output pulse intensity to a low level at which only the sphincter mus cle is contracted. Potentiometer R3 is preferably ad- 'justable post-operatively from without the body and this can be effected by use of a magnetic coupling.

The remaining components of the relevant circuit constitute an inhibiting stage 25 in the form of a simple radio receiver which is actuated in response to the external portion 11A to hold the multivibrator transistor switched off.

The implantable portion 108 is also of simple radio receiver form and serves, in response to the external portion 11B, to energise further stimulating electrodes 238, in response to the external portion 11B.

As will be apparent from the above discussion, the external portions 11A, 11B are radio transmitters and it is unnecessary to consider more detailed circuit design since these portions can be of any suitable form to serve the relevant function requirements.

The more complex of these requirements is for the portion 118 which as mentioned earlier is to provide a relatively high intensity, interrupted pulse train signal. In the development in question the portion 118 comprised two multivibrators connected in cascade, with the first activating the second for a period of 120 milliseconds each 1 /2 seconds, the second generating 12 /2 millisecond pulses at 9 /2 milliseconds separation during each period of activation, and the last-mentioned pulses gating the radio frequency output of the relevant transmitter.

The more simple requirement is for the portion 11A which is operated at the same time as portion 118 to provide a radio signal .to inhibit the portion 10A.

Component values in the illustrated circuits are as follows:

While the invention has been described, and indeed developed so far, with reference to urinarycontrol in respect of disorders of neurological origin, the invention may afford similar control in respect of disorders of non-neurological origin, such as urinary incontinence arising from gynaecological defects. By the same token, it will be appreciated that use of both of the above-discussed more specific modes of control is not essential in all applications of the invention.

We claim:

l. A method of urinary control which comprises applying an electricalsignal of continuous pulse train form to'the sacralventral roots,.said sacral ventral roots communicating with the sphincter muscle and bladder muscle, thereby causing the step of contracting said sphincter muscle while said bladder muscle is relaxed. i i

2. A method according to claim 1 wherein said pulse 3 train has a pulse repetition rate of about 20 per second.

3. A method of urinary control which comprises applying an electrical signal of interrupted pulse train form'to the sacral ventral roots, said sacral ventral roots communicating with the sphincter muscle and bladder muscle, thereby causing the step of contracting both of said muscles during each pulse train and the further step of maintaining said bladder muscle contracted during part of each interruption period between successive pulse trains when said sphincter muscle is relaxed.

4. A method according to claim 3 wherein said pulse trains are of short duration during successive intervals of about 1 /2 seconds, and each comprise about twelve pulses.

5. A method according to claim 4 wherein each of said pulse trains comprises pulses of about /2 millisecond duration each 10 milliseconds.

6. A method of urinary control which comprises alternatively applying two different pulsatile electrical signals to the sacral ventral roots, said sacral ventral roots communicating with the sphincter muscle and bladder muscle to thereby cause the step of stimulating said muscles, one of said signals being of lower intensity and higher repetition rate for causing the step of contracting said sphincter muscle while said bladder muscle is relaxed, and the other signal being of higher intensity and lower repetition rate for causing the step of contraction of both of said muscles during each pulse and to cause the further step of maintaining said bladder muscle contracted during part of successive interpulse periods when said sphincter muscle is relaxed.

7. A method of urinary control in primates, comprising:

applying pulsing electrical signals to the sacral ventral roots which control contraction of the detrusor muscle for the bladder and the striated, sphincter muscles which contribute to closing the urethra, in two different modes;

in the first of which, the signals are of a first intensity for the step of contracting the urethra closing muscles, but not contracting the bladder detrusor muscle, and including the step of spacing the first intensity pulses such that the urethra closing muscles do not become substantially relaxed between pulses; and

in the second of which, the signals are of a second intensity higher than said first intensity signals for causing the step of contracting both the urethra closing muscles and the bladder detrusor muscle,

' and including the step of spacing the second intensity pulses such that the urethra closing muscles, but not the bladder detrusor muscle become relaxed between pulses, such that pressure exerted on the bladder by the detrusor muscle in between pulses when the urethra closing muscles have relaxed, forces urine from the bladder and out through the urethra.

8. The method of claim 7, wherein the applying step comprises:

implanting in the subject primate:

a. electrode means disposed for stimulating the third and fourth, left and right sacral ventral motor nerve fibre roots, without substantially stimulating sensory nerve fibres;

b. multivibrator means and an electrical power supply therefor, for emitting said first intensity signals and a connection for communicating these signals to said electrode means;

c. inhibiting means for preventing communication of said first intensity signals to said electrode means upon command;

d. receiver means for receiving a command signal from outside the subject primate and connected to the inhibiting means for commanding same;

e. multivibrator means for emitting said second intensity signals and a connection for communicating these signals to said electrode means;

f. receiver means for receiving a command signal from outside the subject primate and connected to the multivibrator means to emit said second intensity signals;

wherein changing modes from the first to the second comprises: sending command signals from outside the subject primate to the receiver means of (d) and to the receiver means of (f); and

wherein changing modes from the second to the first comprises: terminating the sending of said command signals from outside the subject primate.

9. The method of claim 8, wherein: the implanted multivibrator means of (b) includes electrical output intensity adjustment means and the method further comprises: post operatively adjusting the intensity of signals provided by the implanted multivibrator means of (b) by adjusting the intensity adjustment means to ensure desired first mode operation wherein there occurs contraction of the striated, sphincter muscles which contribute to closing the urethra without substantially contracting the bladder detrusor muscle.

10. Urinary control apparatus comprising:

a. stimulating electrode devices adapted for connection to the sacral ventral roots;

b. a first electrical circuit means operable to generate a low intensity, continuous pulse train signal, which circuit means is connected to said electrode devices to energize the same;

c. a second electrical circuit means operable to generate a high intensity, interrupted pulse train signal, which circuit means is connected to said electrode devices to energize the same; and

d. means for alternatively activating said first and second circuit means to energize said electrode devices;

e. said electrode devices and at least part of both said first and second circuit means being adapted for bodily implantation, and at least part of said activating means being for use outside the body.

11. Urinary control apparatus comprising:

a, stimulating electrode devices adapted for connection to the sacral ventral roots;

b. an implantable electric circuit means, including a power source, operable to generate a low intensity continuous pulse train signal, which circuit means is connected to said electrode devices to energize the same;

c. radio transmitter means for use outside the body operable to generate a first signal including at least a high intensity interrupted pulse train and a second signal;

d. an implantable first radio receiver means operable in response to said interrupted pulse train and connected to said electrode devices to energize the same; and

e. an implantable second radio receiver means operable in response to said second signal and connected to said electric circuit to inhibit operation of the same.

12. Apparatus for effecting urinary control in primates by applying pulsing electrical signals to the sacral ventral roots which control contraction of the detrusor muscle for the bladder and the striated, sphincter muscles which contribute to closing the urethra, in two different modes;

in the first of which, the signals are of a low intensity so as to contract the urethra closing muscles, but not to contract the bladder detrusor muscle, and wherein these low intensity signals are of such spacing between pulses that the urethra closing muscles do not become substantially relaxed between pulses; and

in the second of which, the signals are of a different intensity higher than said low intensity signals so as to contract both the urethra closing muscles and the bladder detrusor muscle, but of such spacing between pulses, that the urethra closing muscles, but not the bladder detrusor muscle become sufficiently relaxed between pulses, that pressure exerted on the bladder by the detrusor muscle in between pulses when the urethra closing muscles have relaxed, forces urine from the bladder and out through the urethra;

said apparatus comprising a surgical implant which includes:

a. electrode means being disposed, when implanted,

to stimulate the third and fourth, left and right sacral ventral motor nerve fibre roots, without substantially stimulating sensory nerve fibres;

b. multivibrator means including an electrical power supply therefor, for emitting said low intensity signals and a connection for communicating these signals to said electrode means;

0. inhibiting means for preventing communication of said low intensity signals to said electrode means upon the occurrence of a first command signal;

d. receiver means for receiving the first command signal from outside the subject primate and connected to the inhibiting means for controlling same;

e. multivibrator means for emitting said higher intensity signals and a connection for communicating these signals to said electrode means;

f. receiver means for receiving a second command signal from outside the subject primate and connected to the multivibrator means of (e) for commanding and powering that multivibrator means to emit said higher intensity signals;

and said apparatus further comprising external transmitter means for sending said first and second command signals;

whereby, the sending of command signals from outside the subject primate to the receiver means of (d) and to the receiver means of (f) places urinary control in the second mode thereof and terminating the sending of said command signals places urinary control in the first mode thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3236240 *Sep 6, 1962Feb 22, 1966Univ MinnesotaImplantable bladder stimulator
US3650276 *Mar 25, 1969Mar 21, 1972Inst Demedicina Si FarmacieMethod and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US3667477 *Nov 17, 1967Jun 6, 1972Canadian Patents DevImplantable vesical stimulator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4387719 *Oct 23, 1981Jun 14, 1983Gorenje Tovarna Gospodinjske Opreme N.Sol.O. VelenjeControl circuit of a therapeutic stimulator for the urinary incontinence
US4537195 *Nov 20, 1981Aug 27, 1985Mcdonnell Roy EElectrical control of body discharges and headaches
US4569351 *Dec 20, 1984Feb 11, 1986University Of Health Sciences/The Chicago Medical SchoolApparatus and method for stimulating micturition and certain muscles in paraplegic mammals
US4585005 *Apr 6, 1984Apr 29, 1986Regents Of University Of CaliforniaMethod and pacemaker for stimulating penile erection
US4742833 *Nov 8, 1985May 10, 1988Richard Wolf GmbhDevice for treating male persons suffering from urine incontinence
US4785828 *Oct 6, 1986Nov 22, 1988Empi, Inc.Vaginal stimulator for controlling urinary incontinence in women
US4873996 *Aug 18, 1988Oct 17, 1989Empi, Inc.Vaginal stimulator for controlling urinary incontinence in women
US4881526 *May 27, 1988Nov 21, 1989Empi, Inc.Intravaginal electrode and stimulation system for controlling female urinary incontinence
US5193539 *Dec 18, 1991Mar 16, 1993Alfred E. Mann Foundation For Scientific ResearchImplantable microstimulator
US5193540 *Dec 18, 1991Mar 16, 1993Alfred E. Mann Foundation For Scientific ResearchStructure and method of manufacture of an implantable microstimulator
US5199430 *Mar 11, 1991Apr 6, 1993Case Western Reserve UniversityMicturitional assist device
US5291902 *Jan 11, 1993Mar 8, 1994Brent CarmanMethod of improving the pelvic floor muscle strength
US5324316 *Mar 3, 1993Jun 28, 1994Alfred E. Mann Foundation For Scientific ResearchImplantable microstimulator
US5454840 *Apr 5, 1994Oct 3, 1995Krakovsky; Alexander A.Device for the cure of impotency
US5562717 *May 21, 1993Oct 8, 1996Axelgaard Manufacturing Company, Ltd.Electrical stimulation for treatment of incontinence and other neuromuscular disorders
US6061596 *Nov 20, 1996May 9, 2000Advanced Bionics CorporationMethod for conditioning pelvic musculature using an implanted microstimulator
US6354991Oct 6, 1999Mar 12, 2002Bio Control Medical LtdIncontinence treatment device
US6505074 *Dec 29, 2000Jan 7, 2003Birinder R. BovejaMethod and apparatus for electrical stimulation adjunct (add-on) treatment of urinary incontinence and urological disorders using an external stimulator
US6615085 *Jun 18, 2001Sep 2, 2003Birinder R. BovejaApparatus for adjunct (add-on) therapy of Dementia and Alzheimer's disease utilizing an implantable lead and an external stimulator
US6652449Oct 5, 1999Nov 25, 2003Bio Control Medical, Ltd.Control of urge incontinence
US6659936Aug 4, 2000Dec 9, 2003University Of MelbourneMethod and apparatus for treating incontinence
US6712772Feb 15, 2002Mar 30, 2004Biocontrol Medical Ltd.Low power consumption implantable pressure sensor
US6735474Aug 18, 2000May 11, 2004Advanced Bionics CorporationImplantable stimulator system and method for treatment of incontinence and pain
US6836684Oct 29, 1999Dec 28, 2004Neurocon ApsMethod to control an overactive bladder
US6862480Nov 29, 2001Mar 1, 2005Biocontrol Medical Ltd.Pelvic disorder treatment device
US6896651Jan 15, 2002May 24, 2005Biocontrol Medical Ltd.Mechanical and electrical sensing for incontinence treatment
US6907293Mar 29, 2002Jun 14, 2005Case Western Reserve UniversitySystems and methods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US6941171Aug 16, 2001Sep 6, 2005Advanced Bionics CorporationImplantable stimulator methods for treatment of incontinence and pain
US7047078 *Sep 12, 2003May 16, 2006Case Western Reserve UniversityMethods for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US7054689Aug 13, 2001May 30, 2006Advanced Bionics CorporationFully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US7062330 *Jul 16, 2002Jun 13, 2006Boveja Birinder RElectrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator
US7142925 *Sep 14, 1999Nov 28, 2006Axon Engineering, Inc.Combined stimulation of ventral and dorsal sacral roots for control of bladder function
US7177703 *May 11, 2003Feb 13, 2007Boveja Birinder RMethod and system for providing pulsed electrical stimulation to sacral plexus of a patient to provide therapy for urinary incontinence and urological disorders
US7343202Jun 10, 2005Mar 11, 2008Ndi Medical, Llc.Method for affecting urinary function with electrode implantation in adipose tissue
US7384390Dec 2, 2004Jun 10, 2008The University Of MelbourneMethod and apparatus for treating incontinence
US7387603Nov 30, 2004Jun 17, 2008Ams Research CorporationIncontinence treatment device
US7565198Jun 10, 2005Jul 21, 2009Medtronic Urinary Solutions, Inc.Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence
US7571000Apr 11, 2006Aug 4, 2009Case Western Reserve UniversityApparatus for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US7582053Sep 24, 2003Sep 1, 2009Ams Research CorporationControl of urge incontinence
US7596413Jun 8, 2004Sep 29, 2009Cardiac Pacemakers, Inc.Coordinated therapy for disordered breathing including baroreflex modulation
US7613516Nov 28, 2002Nov 3, 2009Ams Research CorporationPelvic disorder treatment device
US7623925May 31, 2005Nov 24, 2009Case Western Reserve UniversityMethods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US7623926Apr 5, 2004Nov 24, 2009Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7647113 *Dec 20, 2007Jan 12, 2010Ams Research CorporationElectrode implantation in male external urinary sphincter
US7747323Jun 8, 2004Jun 29, 2010Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US7761167Oct 2, 2006Jul 20, 2010Medtronic Urinary Solutions, Inc.Systems and methods for clinician control of stimulation systems
US7801614Oct 23, 2006Sep 21, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7813809Jun 10, 2005Oct 12, 2010Medtronic, Inc.Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US7813812Jul 7, 2006Oct 12, 2010Cvrx, Inc.Baroreflex stimulator with integrated pressure sensor
US7840271Jul 20, 2005Nov 23, 2010Cvrx, Inc.Stimulus regimens for cardiovascular reflex control
US7890176Jun 17, 2005Feb 15, 2011Boston Scientific Neuromodulation CorporationMethods and systems for treating chronic pelvic pain
US7937148Oct 13, 2006May 3, 2011Nanostim, Inc.Rate responsive leadless cardiac pacemaker
US7945333Oct 13, 2006May 17, 2011Nanostim, Inc.Programmer for biostimulator system
US7949400Nov 10, 2009May 24, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control via coupled electrodes
US8010209Oct 13, 2006Aug 30, 2011Nanostim, Inc.Delivery system for implantable biostimulator
US8060206Jul 7, 2006Nov 15, 2011Cvrx, Inc.Baroreflex modulation to gradually decrease blood pressure
US8083663Jun 17, 2009Dec 27, 2011Ams Research CorporationPelvic disorder treatment
US8086314 *Oct 29, 2002Dec 27, 2011Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8109879Jan 10, 2006Feb 7, 2012Cardiac Pacemakers, Inc.Assessing autonomic activity using baroreflex analysis
US8160710Jul 10, 2007Apr 17, 2012Ams Research CorporationSystems and methods for implanting tissue stimulation electrodes in the pelvic region
US8165692Jul 3, 2007Apr 24, 2012Medtronic Urinary Solutions, Inc.Implantable pulse generator power management
US8195296May 5, 2006Jun 5, 2012Ams Research CorporationApparatus for treating stress and urge incontinence
US8195304Oct 12, 2007Jun 5, 2012Medtronic Urinary Solutions, Inc.Implantable systems and methods for acquisition and processing of electrical signals
US8214048 *Mar 10, 2006Jul 3, 2012Boston Scientific Neuromodulation CorporationFully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US8290595Jul 7, 2006Oct 16, 2012Cvrx, Inc.Method and apparatus for stimulation of baroreceptors in pulmonary artery
US8295939May 17, 2011Oct 23, 2012Nanostim, Inc.Programmer for biostimulator system
US8340786Jun 12, 2008Dec 25, 2012Ams Research CorporationIncontinence treatment device
US8352025Oct 13, 2006Jan 8, 2013Nanostim, Inc.Leadless cardiac pacemaker triggered by conductive communication
US8380312Dec 30, 2010Feb 19, 2013Ams Research CorporationMulti-zone stimulation implant system and method
US8396555Jun 24, 2009Mar 12, 2013Case Western Reserve UniversityApparatus for stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US8442638May 17, 2010May 14, 2013Cardiac Pacemakers, Inc.Adaptive baroreflex stimulation therapy for disordered breathing
US8457742Oct 13, 2006Jun 4, 2013Nanostim, Inc.Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator
US8467875Mar 28, 2007Jun 18, 2013Medtronic, Inc.Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8527068Feb 2, 2010Sep 3, 2013Nanostim, Inc.Leadless cardiac pacemaker with secondary fixation capability
US8535222Mar 13, 2007Sep 17, 2013Cardiac Pacemakers, Inc.Sleep detection using an adjustable threshold
US8543205Oct 12, 2011Sep 24, 2013Nanostim, Inc.Temperature sensor for a leadless cardiac pacemaker
US8574164Sep 28, 2012Nov 5, 2013Nyxoah SAApparatus and method for detecting a sleep disordered breathing precursor
US8577464Sep 28, 2012Nov 5, 2013Nyxoah SAApparatus and methods for feedback-based nerve modulation
US8577465Sep 28, 2012Nov 5, 2013Nyxoah SAModulator apparatus configured for implantation
US8577466Sep 28, 2012Nov 5, 2013Nyxoah SASystem and method for nerve modulation using noncontacting electrodes
US8577467Sep 28, 2012Nov 5, 2013Nyxoah SAApparatus and method for controlling energy delivery as a function of degree of coupling
US8577468Sep 28, 2012Nov 5, 2013Nyxoah SAApparatus and method for extending implant life using a dual power scheme
US8577472Sep 28, 2012Nov 5, 2013Nyxoah SASystems and methods for determining a sleep disorder based on positioning of the tongue
US8577478Sep 28, 2012Nov 5, 2013Nyxoah SAAntenna providing variable communication with an implant
US8583236Mar 8, 2010Nov 12, 2013Cvrx, Inc.Devices and methods for cardiovascular reflex control
US8588917Jun 11, 2012Nov 19, 2013Boston Scientific Neuromodulation CorporationFully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US8588941Sep 28, 2012Nov 19, 2013Nyxoah SADevice and method for modulating nerves using parallel electric fields
US8594794Jul 17, 2008Nov 26, 2013Cvrx, Inc.Baroreflex activation therapy with incrementally changing intensity
US8606356Aug 17, 2004Dec 10, 2013Cardiac Pacemakers, Inc.Autonomic arousal detection system and method
US8606359Apr 13, 2007Dec 10, 2013Cvrx, Inc.System and method for sustained baroreflex stimulation
US8615310Dec 13, 2011Dec 24, 2013Pacesetter, Inc.Delivery catheter systems and methods
US8644957Sep 28, 2012Feb 4, 2014Nyxoah SAElectrode configuration for implantable modulator
US8649870Oct 31, 2007Feb 11, 2014Medtronic Uninary Solutions, Inc.Systems and methods including lead and electrode structures sized and configured for implantation in adipose tissue
US8700183Sep 28, 2012Apr 15, 2014Nyxoah SADevices and methods for low current neural modulation
US8706252Jul 1, 2010Apr 22, 2014Medtronic, Inc.Systems and methods for clinician control of stimulation system
US8712531May 24, 2012Apr 29, 2014Cvrx, Inc.Automatic baroreflex modulation responsive to adverse event
US8718776Sep 28, 2012May 6, 2014Nyxoah SAApparatus and method to control an implant
US8718789Apr 19, 2010May 6, 2014Cvrx, Inc.Electrode structures and methods for their use in cardiovascular reflex control
US8774942Mar 27, 2012Jul 8, 2014Ams Research CorporationTissue anchor
US8788035Dec 7, 2012Jul 22, 2014Pacesetter, Inc.Leadless cardiac pacemaker triggered by conductive communication
US8788053Oct 17, 2012Jul 22, 2014Pacesetter, Inc.Programmer for biostimulator system
US8798745Apr 19, 2013Aug 5, 2014Pacesetter, Inc.Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator
US8798773Dec 30, 2013Aug 5, 2014Man & Science, SAElectrode configuration for implantable modulator
EP0245547A1 *May 12, 1986Nov 19, 1987The Regents Of The University Of CaliforniaElectronic control system for controlling pelvic viscera via neuro-electrical stimulation
WO1982001656A1 *Nov 20, 1981May 27, 1982Roy E McdonnellElectrical control of body discharges and headaches
WO2000015293A1 *Sep 14, 1999Mar 23, 2000Axon Engineering IncCombined stimulation of ventral and dorsal sacral roots for control of bladder function
WO2001089629A1 *May 25, 2001Nov 29, 2001Aguilo Llobet JorgeSacral root stimulating system by means of a radio-frequency powered implant
WO2001089630A1 *Feb 21, 2001Nov 29, 2001Aguilo Llobet JorgeUrination, defecation and erection control system in neuropathy patients
WO2002047760A1Dec 12, 2001Jun 20, 2002Sylvain DumontImplantable neurostimulator
WO2003007885A2 *Jul 22, 2002Jan 30, 2003Alfred E Mann Inst Biomed EngMethod and apparatus for the treatment of urinary tract dysfunction
WO2005032332A2 *Sep 1, 2004Apr 14, 2005Joseph W Ii BoggsSystems and methods for stimulating the pudendal nerve for achieving selective responses.
Classifications
U.S. Classification607/40, 607/59, 607/72, 607/61, 607/66, 128/DIG.250, 607/41
International ClassificationA61N1/36
Cooperative ClassificationA61N1/36007, Y10S128/25
European ClassificationA61N1/36B