Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3871836 A
Publication typeGrant
Publication dateMar 18, 1975
Filing dateDec 20, 1972
Priority dateDec 20, 1972
Also published asCA987897A1, CA1091474B, DE2362895A1, DE2362895C2, DE2366415C2, USRE29989
Publication numberUS 3871836 A, US 3871836A, US-A-3871836, US3871836 A, US3871836A
InventorsDonald E Polk, Robert C Morris
Original AssigneeAllied Chem
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cutting blades made of or coated with an amorphous metal
US 3871836 A
Abstract
Metal alloys in an amorphous state are employed in the fabrication of cutting implements such as razor blades or knives. The implement may be formed from the amorphous metal or a coating of the amorphous metal may be applied. Such products may be formed from a ribbon of the amorphous metal alloy which has been prepared by quenching the molten metal or by coating the amorphous metal alloy on a suitable substrate such as by a sputtering procedure or vapor, chemical or electro-deposition of the alloy on the substrate.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Polk et al.

[111 3,871,836 1 Mar. 18, 1975 1 1 CUTTING BLADES MADE OF OR COATED WITH AN AMORPHOUS METAL [75] Inventors: Donald E. Polk, Morristown; Robert C. Morris, Flanders, both of NJ.

[73] Assignee: Allied Chemical Corporation, New

York, NY.

[22] Filed: Dec. 20, 1972 [21] Appl. No.: 317,039

[52] US. Cl. 29/194, 29/195 P, 29/196, 29/l96.6, 30/34654, 75/122, 75/134 F,

[51] Int. Cl B26b 21/54, B32b 15/00 [58] Field of Search 30/346.53, 346.54; 29/194, 29/195 P, 196, 196.6; 75/122, 134 F, 170, 176

{561 References Cited UNlTED STATES PATENTS 3,427,154 2/1969 Mader et a1. 75/134 3,480,483 11/1969 Wilkinson 30/346.53 X 3.743551 7/1973 Sanderson 30/346.54 X

OTHER PUBLlCATlONS Masumoto et al., mechanical properties of PD20-S alloy quenched from liquidstate-actametallurgical,

INTENSITY (ARBITRARY UNITS) Vol. 19, July 1971, pp. 725-741, copy in Sc. Lib. Tnl. A35.

Chen et al., Rapid, quenching technique for preparation of thin uniform films of amorphous solid.

Review of Scientific Instruments, Vol. 41, No. 8. Aug. 1970, pp. 1237-1238, Copy in Scientific Library 0184.115.

Primary E.ramine rL. Dewayne Rutledge Assistant Examiner-O. F. Crutchfield Attorney, Agent, or Firm-Arthur J. Plantamura [57] ABSTRACT Metal alloys in an amorphous state are employed in the fabrication of cutting implements such as razor blades or knives. The implement may be formed from the amorphous metal or a coating of the amorphous metal may be applied. Such products may be formed from a ribbon of the amorphous metal alloy which has been prepared by quenching the molten metal or by coating the amorphous metal alloy-on a suitable substrate such as by a sputtering procedure or vapor, chemical or electro-deposition of the alloy on the substrate.

7 Claims,.3 Drawing Figures DIFFRACTION ANGLE (M K RADIATION) PEJENTEU WI 83975 3,871 836 sum 1 (If 2 FIGI INTENSITY (ARBITRARY UNITS) DIFFRACTION ANGLE (M K RADIATION) INTENSITY (ARBITRARY UNITS) DIFFRACTION ANGLE (M K RADIATION) INTENSITY (ARBITRARY UNITS) DIFFRACTION ANGLE (M K RADIATION) CUTTING BLADES MADE OF OR COATED WITH AN AMORPHOUS METAL DESCRIPTION OF PRIOR ART The production of cutting implements by sharpening a piece of metal is an ancient art. Typically, the implement is fabricated from a crystalline metal which is formed to the desired shape and an edge is then ground to a reduced thickness.

It is recognized that the properties and hence usefulness of the blade are determined by the form of the edge and by the properties of the substance from which the blade is produced; these properties generally depend upon the processing of the metal as well as upon its chemical composition.

Scientific investigations have demonstrated that it is possible to obtain solid amorphous metals for certain alloy compositions, and as used herein, the term amorphous" contemplates solid amorphous. An

amorphous substance generally characterizes a noncrystalline or glassy substance. In distinguishing an amorphous substance from a crystalline substance, diffraction measurements are generally suitably employed.

An amorphous metal produces a diffraction profile which varies slowly with the diffraction angle and is qualitatively similar to the diffraction profile ofa liquid or ordinary window glass. For example, FIG. 1 is the first peak of the diffracted intensity I as a function of the diffraction angle 26 for amorphous Fe Ni P B as obtained from an x-ray diffractometer with MoKa radiation. Such a pattern is typical for amorphous metals. On the other hand, FIG. 2 represents the diffracted intensity I as a function of the diffraction angle 26 for polycrystalline Fe Ni P B over the same range of 20. This more rapidly varying intensity is typical of crystalline materials.

These amorphous metals are in a metastable state. Upon heating to a sufficiently high temperature, they crystallize with the evolution of a heat of crystallization and the diffraction profile changes from one having the glassy or amorphous characteristics to one having crystalline characteristics.

Additionally, suitably employed transmission electron micrography and electron diffraction can be used to distinguish between the amorphous and the crystalline state.

It is possible to produce a metal which is a two-phase mixture of the amorphous and the crystalline state; the relative proportions can vary from totally crystalline to totally amorphous. An amorphous metal, as employed herein, refers to a metal which is primarily amorphous but may have a small fraction of the material present as included crystallites.

For a suitable composition, proper processing will produce a metal in the amorphous state. One typical procedure is to cause the molten alloy to be spread thinly in contact with a solid metal substrate such as copper or aluminum so that the molten metal looses its heat to the substrate.

When the alloy is spread to a thickness of -0.002 inch, cooling rates of the order of 106C/sec are achieved. See, for example, R. C. Ruhl, Mat. Sci. & Eng. 1, 313 (1967), which discusses the dependence of cooling rates upon the conditions of processing the molten metal. For an alloy of proper composition and for a sufficiently high cooling rate, such a process produces an amorphous metal. Any process which provides a suitably high cooling rate can be used. Illustrative examples of procedures which can be used to make the amorphous metals are the rotating double rolls described by H. S. Chen and C. E. Miller, Rev. Sci. Instrum. 41, 1237 (1970) and the rotating cylinder technique described by R. Pond, Jr. and R. Maddin, Trans. Met. Soc., AIME 245, 2475 (1969).

Alternatively, a deposition technique can be used to produce an amorphous metal. Two such techniques are vapor deposition and sputtering. In vapor deposition, the metal to be deposited is placed in a high vacuum and is heated to a temperature such that its vapor pressure is at least 10 mm Hg; this vapor is then condensed to the solid state on sufficiently cold surfaces exposed to the vapor. In sputtering, the metal to be deposited and the substrate upon which it is to be deposited are placed in a partial vacuum, usually of the order of 1 mm Hg. A high potential is applied between an electrode and the metal to be deposited, and the gaseous ions created by the high potential strike the surface of the metal with an energy sufficient to cause atoms from the metal to enter the vapor phase; these atoms then condense to the solid state on surfaces exposed to the vapor. Both the vapor deposition and the sputtering techniques are described in detail in Handbook of Thin Film Technology, L. I. Maissel and R. Glang, McGraw Hill, 1970. Similarly, chemical (electro-less) or electrodeposition of a suitable alloy composition from a solution can also lead to an amorphous alloy.

SUMMARY OF THE INVENTION The invention has as its primary object the provision of cutting implements which are composed of, or are coated with, an amorphous metal.

Additional objects and advantages will be apparent from the specification and claims.

One class of cutting implements which is of particular interest is that typified by safety razor blades. A strip or sheet of an amorphous metal with a thickness of about 0.001 to 0.005 inch can be sharpened so as to produce a razor blade.. Further treatment such as .the sputtering on of a crystalline or amorphous metal coating orthe application of a fluorocarbon coating may be used to produce the finished blade.

We have discovered that amorphous metals are exceptionally well-suited to use for razor blades since compositions with high as-formed hardness, ductility, a high elastic limit and good corrosion resistance can be selected. Additionally, these amorphous metals are more homogeneous than common crystalline materials for the dimensions characteristic of the sharpened edge of a razor blade. Greater hardness and better corrosion resistance than the stainless steel blades now in use can be achieved.

Strips from which the blades are made can be obtained by any of various techniques. Mostsuitable is the quenching from the melt of a continuous strip by, for example, using a pair of rotating rolls or by squirting the molten metal onto the outside of a rapidly rotating cylinder.

Additionally, razor blades can be produced which consist of sharpened crystalline metal or amorphous metal blades with an amorphous metal film deposited on top of the edge, for example, by sputtering.

Further, a blade can be produced by sharpening after the amorphous metal coating has been applied to a crystalline substrate, by sputtering or vapor deposition, for example.

Cutting blades such as common knives can be produced with an amorphous metal coating applied, for example, by sputtering or electro-deposition so as to improve the properties of the surface.

Cutting blades other than razor blades can also be produced by sharpening an amorphous metal strip or sheet. Further, a sandwich construction where the amorphous metal is held between two layers of a softer material could be used to make blades.

It has been found that metal alloys which are partially amorphous can sometimes also have the desirable properties of high hardness, high strength, high elastic limit, and ductility which can be obtained with the fully amorphous state. These alloys may be a mixture of the amorphous and crystalline states because of several possible reasons. The composition may be one which for obtainable quench rates or deposition parameters does not give a totally amorphous substance, or a relatively low quench rate may have been employed, or part of the sample may have been recrystallized upon a heat treatment of the sample. A typical x-ray diffraction pattern for such an amorphous-crystalline mixture is shown in FIG. 3. It is a superposition or. summation of an amorphous pattern and a crystalline pattern. Resolving the two patterns and measuring the relative integrated intensities indicates the approximate relative percentages of the two structures. Additionally, transmission electron micrography and diffraction can also be used to estimate the percent of each phase. Further, the measured heat of crystallization will be proportional to the fraction that is amorphous.

The articles described above can be made from such an amorphous-crystalline mixture where the crystalline fraction is less than 50%.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 illustrates the diffraction intensity of an amorphous F40Nl40P B metal. 7

FIG. 2 illustrates the diffracted intensity of the crystalline metal of Fe Ni P B FIG. 3 is an x-ray diffraction pattern for a partially crystalline metal alloy of Ni P B Al DESCRIPTION OF THE PREFERRED EMBODIMENTS In accordance with the invention, an amorphous metal strip can be sharpened to form razor blades of excellent edge characteristics: high resistance to mechanical damage and superior corrosion resistance. In production, for example, an amorphous metal strip which is 0.002 inch thick and about A inch wide can be sharpened on one edge and then cut into lengths of about 1.75 inches. Alternatively, strips of greater width can be sharpened on both edges.

Strips of many different alloy compositions can be used for razor blades. The preferred alloys will consist of primarily iron, nickel, cobalt, chromium, vanadium and mixtures thereof. Alloys of particular interest contemplated by the invention are those having the general formula M,,X,, wherein M may be any combination of Ni, Fe, Co, Cr and/or V, X will be elements such as P, B, C, Si, Al, Sb, Sn, In, Ge and/or Be and a and b represent atomic percent in which a will generally range from 90 to 65 atomic percent and b will range from 10 to 35 atomic percent. Preferably, a will vary from about 84 to about 73 atomic percent while b will vary from about 16 to about 27 atomic percent.

Examples of some of the preferred compositions in- Clude Ni75 BsAig; Nl Fc- P B ;Al (35 F8 ao 1-i 4 2 2 aa 3s is 4 -2 3; -m -m H tii and ao m zs n sz- The alloying elements normally used in steels, such as Mo, Mn, Ti, W and Cu, can also be included in these compositions as a partial replacement for any of the metals Ni-Fe-Cr-Co-V. In replacing the latter with the former, preferably not more than about one-third of the latter metals in atomic percent is replaced with the former.

An alternate embodiment of the invention resides in coating a metal substrate with an amorphous metal layer such as by the sputtering of a thin film (about 50 to 300A. thick) of metal which is at least 50% amorphous onto the edge of an already sharpened amorphous or crystalline razor blade. The general compositions of such coating alloys are essentially those listed above in connection with the amorphous strips. Preferred coating compositions are, for example, s0 i5 5; 20 60 20; fis m is m and n ia s s- Still another embodiment resides in the deposition of an amorphous coating of the general compositions listed above on various articles of cutlery. For example, a composition such as Ni P can be electro-deposited onto a formed utensil such as a knife or instead a composition such as Cr Ni P B can be sputtered thereon.

The invention will be further described by reference to the following specific examples. It should be understood, however, that although these examples may describe in detail certain preferred operating conditions and/or materials and/or proportions, they are provided primarily for purposes of illustration and the invention, in its broader aspects, is not limited thereto. Parts expressed are parts by atomic percent unless otherwise stated.

temperature of 1,050C. is quenched to the amorphous.

state by using the rotating double roll apparatus described by Chen and Miller in Rev. Sci. Instrum. 41, I237 (1970). An argon pressure of 8 psi is used to squirt the molten metal through a 0.010 inch hole in the bottom of a fused silica tube into the nip of the 2 inch diameter, 3 inch long double rolls which are at room temperature and rotating at about 1,400 rpm. A force of about lbs. is applied so as to push the rolls towards each other. The molten metal is thus quenched to a 0.002 inch thick ribbon of amorphous metal of the same composition. The edge of the ribbon is sheared off so as to provide a straight edge and a cutting edge is ground and honed on the sheared edge of the strip in a manner conventionally used to sharpen razor blades. In sharpening, care is taken such that any part of the metal strip does not reach a temperature above 340C. The strips are cut to the desired length for individual blades. The blade may be suitably employed at this juncture. However, the blade may be further processed after sharpening such as by the deposition of an amor phous or crystalline metal film of about A. on the cutting edge. This coating may be applied by sputtering or vapor deposition, as described in the aforementioned Maissel and Glang text. A fluorocarbon coating may also be applied such as disclosed in US. Pat. No. 3,071,856 care again being taken to avoid excess temperature which would cause crystallization of the amorphous metal.

EXAMPLE 2 ness of 200 A. on the edge of the blade. A fluorocarbon coating in the manner disclosed in Example 3 of US. Pat. No. 3,071,856 is applied to the blade.

A similar procedure was followed for a 0.002 inch thick blade of amorphous Ni Fe P B Al Similarly, Cr Ni P B Si is sputtered onto other ground stainless steel and amorphous Ni Fe P B Al blades which are then coated with a fluorocarbon.

EXAMPLES 3-s Following the procedure of Example 1, amorphous strips suitable for forming of razor blades are prepared from the alloys shown in Table I. Some examples, as indicated, are coated.

TABLE I Coating Fxamplc Alloys (atomic 71) (if any) 3 illl illl lll -l 2 an an ut l 2 4 Cr l B, (sputtered) Cr.; Ni,,,P ;,Si (sputtered) and thereafter coated with polytetrafluoroalkylene) Cr ,P, =,B;, (sputtered) and thereafter coated with polytetral'luoroethylene NimPmBfiShAli (r P B (sputtered) and thereafter coated with polytetralluoroethylene EXAMPLE 9 A stainless steel knife with a high polish is cleaned by washing with trichloroethylene and dried. An amorphous film of Cr P B is sputtered on the entire blade. The film thickness is 1,000 A. A relatively tough and durable mar-resistant coating is produced.

We claim:

1. A cutting implement comprising a metal which is at least 50% amorphous, characterized in that the metal has the composition M,,X,,, where M is at least one element selected from the group consisting of Ni, Fe, Co, Cr and V, X is at least one element selected from the group consisting of P, B, C, Si, Al. Sb. Sn, In. Ge and Be, a ranges from 65 atomic percent to atomic percent and b ranges from 10 atomic percent to 35 atomic percent.

2. The cutting implement ofclaim l in which a ranges from about 73 atomic percent to 84 atomic percent and b ranges from about 16 atomic percent to 27 atomic percent.

3. The cutting implement of claim 1 in the form of a razor blade.

4. A cutting implement having deposited thereon a metal film which is at least 50% amorphous, characterized in that the metal has the composition M,,X,,, where M is at least one element selected from the group consisting of Ni, Fe, Co, Cr and V, X is at least one element selected from the group consisting of P, B, C, Si, Al, Sb,

Sn, In, Ge and Be, a ranges from 65 atomic percent to' 90 atomic percent and b ranges from l0 atomic percent to 35 atomic percent.

5. The cutting implement of claim 4 in which a ranges from about 73 atomic percent to 84 atomic percent and b ranges from about 16 atomic percent to 27 atomic percent.

6. The cutting implement of claim 4 in the form of a razor blade.

7. The cutting implement of claim 4 in which the metal film ranges from about 50A to 300A. in thickness.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Dated 975 Inventor(s) Donald E. POlk et a1.

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 1, line 62, "106C/sec" should read l0 C/sec-.

Column 5, line 9, "Cr P B Si should read Cr P B Si Column 5, line 39, "polytetrafluoroalkylene) should read -polytetrafluoroalkylene-.

Signal and Scaled this AIICSI.

RUTH C. MASON Arresting Officer cJlnsllAttuAnn Commissioner nflatnts and. Trademarks ORM PO-lOSO (10-69) USCOMM-DC 60376-P69 U.S. GOVERNMENT PRINTING OFFICE

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3427154 *Sep 11, 1964Feb 11, 1969IbmAmorphous alloys and process therefor
US3480483 *May 4, 1966Nov 25, 1969Wilkinson Sword LtdRazor blades and methods of manufacture thereof
US3743551 *Apr 14, 1971Jul 3, 1973Wilkinson Sword LtdRazor blades and methods of manufacture thereof
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3986867 *Jan 13, 1975Oct 19, 1976The Research Institute For Iron, Steel And Other Metals Of The Tohoku UniversityIron-chromium series amorphous alloys
US4036638 *Nov 28, 1975Jul 19, 1977Allied Chemical CorporationSoft magnetic properties
US4038073 *Mar 1, 1976Jul 26, 1977Allied Chemical CorporationCobalt, iron, boron, carbon
US4052201 *Jun 26, 1975Oct 4, 1977Allied Chemical CorporationAmorphous alloys with improved resistance to embrittlement upon heat treatment
US4067732 *Jun 26, 1975Jan 10, 1978Allied Chemical CorporationAmorphous alloys which include iron group elements and boron
US4113478 *Aug 9, 1977Sep 12, 1978Allied Chemical CorporationZirconium alloys containing transition metal elements
US4116682 *Dec 27, 1976Sep 26, 1978Polk Donald EAmorphous metal alloys and products thereof
US4122240 *Mar 2, 1977Oct 24, 1978United Technologies CorporationSkin melting
US4133679 *Jan 3, 1978Jan 9, 1979Allied Chemical CorporationIron-refractory metal-boron glassy alloys
US4133681 *Jan 3, 1978Jan 9, 1979Allied Chemical CorporationMolybdenum, tungsten
US4133682 *Jan 3, 1978Jan 9, 1979Allied Chemical CorporationMolybdenum, tungsten
US4134779 *Jun 21, 1977Jan 16, 1979Allied Chemical CorporationIron-boron solid solution alloys having high saturation magnetization
US4135924 *Aug 9, 1977Jan 23, 1979Allied Chemical CorporationFilaments of zirconium-copper glassy alloys containing transition metal elements
US4137075 *May 25, 1977Jan 30, 1979Allied Chemical CorporationHeat resistance
US4140525 *Jan 3, 1978Feb 20, 1979Allied Chemical CorporationUltra-high strength glassy alloys
US4144058 *Jun 9, 1976Mar 13, 1979Allied Chemical CorporationHeat and corrosion resistant, ductile, strong
US4148973 *Jun 5, 1978Apr 10, 1979Allied Chemical CorporationHomogeneous, ductile brazing foils
US4152144 *Dec 29, 1976May 1, 1979Allied Chemical CorporationMetallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
US4152146 *Dec 29, 1976May 1, 1979Allied Chemical CorporationMolybdenum, boron, iron and impurities
US4152147 *Apr 10, 1978May 1, 1979Allied Chemical CorporationImproved thermal stability
US4171992 *Apr 3, 1978Oct 23, 1979Allied Chemical CorporationPreparation of zirconium alloys containing transition metal elements
US4188211 *Feb 9, 1978Feb 12, 1980Tdk Electronics Company, LimitedThermally stable amorphous magnetic alloy
US4209570 *Oct 2, 1978Jun 24, 1980Allied Chemical CorporationHomogeneous brazing foils of copper based metallic glasses
US4221592 *Sep 2, 1977Sep 9, 1980Allied Chemical CorporationGlassy alloys which include iron group elements and boron
US4283225 *Nov 13, 1978Aug 11, 1981Allied Chemical CorporationJoints
US4302515 *Aug 20, 1979Nov 24, 1981Allied CorporationDuctile foil
US4314661 *Apr 9, 1981Feb 9, 1982Allied CorporationHomogeneous, ductile brazing foils
US4316572 *Jun 23, 1980Feb 23, 1982Allied CorporationHomogeneous, ductile brazing foils
US4359352 *Nov 19, 1979Nov 16, 1982Marko Materials, Inc.Nickel base superalloys which contain boron and have been processed by a rapid solidification process
US4387698 *Mar 20, 1981Jun 14, 1983Allied CorporationSlurry saw blade head assembly
US4409296 *Oct 22, 1980Oct 11, 1983Allegheny Ludlum Steel CorporationRapidly cast alloy strip having dissimilar portions
US4480016 *Sep 27, 1982Oct 30, 1984Allied CorporationMolybdenum, cobalt, boron, chromium, and nickel alloy
US4523245 *Dec 4, 1981Jun 11, 1985Sony CorporationSliding member
US4743513 *Jun 10, 1983May 10, 1988Dresser Industries, Inc.Wear-resistant amorphous materials and articles, and process for preparation thereof
US4801072 *Apr 21, 1986Jan 31, 1989Allied-Signal Inc.Homogeneous, ductile brazing foils
US4916109 *Jul 13, 1988Apr 10, 1990Lonza Ltd.Palladium zirconium oxide
US4978513 *Jan 4, 1989Dec 18, 1990Lonza Ltd.Catalyst for the oxidation of carbon compounds
US5088202 *Sep 21, 1990Feb 18, 1992Warner-Lambert CompanyShaving razors
US5129289 *Nov 26, 1991Jul 14, 1992Warner-Lambert CompanyShaving razors
US5653032 *Dec 4, 1995Aug 5, 1997Lockheed Martin Energy Systems, Inc.Having long-lasting cutting edge
US6763593Jan 24, 2002Jul 20, 2004Hitachi Metals, Ltd.Excellent corrosion and wear resistances and contains a reduced amount of precipitates
US6887586Mar 7, 2002May 3, 2005Liquidmetal TechnologiesSharp-edged cutting tools
US7677296 *Mar 23, 2007Mar 16, 2010Cloudland Institute LlcPrecision cast dental instrument
US8177926Feb 1, 2008May 15, 2012Hydro-QuebecAmorphous Fe100-a-bPaMb alloy foil and method for its preparation
USRE29239 *Sep 17, 1975May 31, 1977Whyco Chromium Company Inc.Ternary alloys
DE2628362A1 *Jun 24, 1976Jan 13, 1977Allied ChemAmorphe metallegierung
EP0016916A1 *Jan 28, 1980Oct 15, 1980Allied CorporationHomogeneous ductile brazing foils
EP1199055A1 *Oct 16, 2001Apr 24, 2002Gebauer GmbHBlade with amorphous cutting edge
EP1275746A2 *Jun 10, 2002Jan 15, 2003Warner-Lambert CompanyShaving articles formed from geometrically articulated amorphous metal alloys and processes for their production
EP1372918A2 *Mar 7, 2002Jan 2, 2004Liquidmetal TechnologiesSharp-edged cutting tools
WO1984004899A1 *May 21, 1984Dec 20, 1984Dresser IndWear-resistant amorphous materials and articles, and process for preparation thereof
WO2003000945A1 *Jun 25, 2002Jan 3, 2003Honeywell Int IncGeometrically articulated amorphous metal alloys, processes for their production and articles formed therefrom
WO2004054402A1 *Dec 11, 2003Jul 1, 2004Eveready Battery IncA progressive hair removal surface
WO2008092265A1 *Feb 1, 2008Aug 7, 2008Hydro QuebecAMORPHOUS Fe100-a-bPaMb ALLOY FOIL AND METHOD FOR ITS PREPARATION
Classifications
U.S. Classification428/656, 30/346.54, 148/403, 428/932, 420/459, 428/626, 420/460, 420/428, 420/588, 420/581
International ClassificationC22F3/00, C22C45/00, C22C45/04, C23C30/00, C22C27/00, C23C14/14, C23C14/16, B26B21/58
Cooperative ClassificationC22F3/00, B26B21/58, C23C30/00, C22C45/008, Y10S428/932
European ClassificationC22F3/00, C23C30/00, C22C45/00K, B26B21/58