Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3871881 A
Publication typeGrant
Publication dateMar 18, 1975
Filing dateFeb 12, 1973
Priority dateFeb 12, 1973
Publication numberUS 3871881 A, US 3871881A, US-A-3871881, US3871881 A, US3871881A
InventorsMikelsons Valdis
Original AssigneeMinnesota Mining & Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Coated aluminum substrates having a binder of aluminum hydroxyoxide
US 3871881 A
Abstract
Aluminum substrates are provided having a coating of particulate material bound thereto by means of an in situ formed binder of aluminum hydroxyoxide. The coated aluminum constructions have utility in imaging and reproduction process (e.g., as printing plates, as electrographic elements, etc.), as magnetic recording surfaces, controlled roughness surfaces, decorative panels, protective surfaces, etc.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Mikelsons 1451 Mar. 18, 1975 COATED ALUMINUM SUBSTRATES HAVING A BINDER OF ALUMINUM HYDROXYOXIDE [75] Inventor: Valdis Mikelsons, Mendota Heights,

Minn.

[73] Assignee: Minnesota Mining and Manufacturing Company, Saint Paul, Minn.

22 Filed: Feb. 12, 1973 211 Appl. No.: 331,372

[52] US. Cl 96/15, 96/67, 96/68, 96/87, 117/240, 161/196, 204/16, 204/38 A, 204/58 151 1m. (:1. G03g 5/04, G03g 7/00, 603C l/76, 003C 3 00, (303C 1/94, BOSc 1/00 581 Field of Search 96/l.5,67, 68,87; 161/196; 204/16, 38 A, 58; 117/240 [56] References Cited UNITED STATES PATENTS 3,547,635 12/1970 Kennard ct a1. 96/1.-5

3,676,292 7/1972 Pryor et a1. 161/196 3,684,368 8/1972 Tanno 96/1.5 11/1973 Sadamatsu et a1 96/1.5

OTHER PUBLICATIONS Vedder et a1., Trans. Faraday Soc., 65, 561-584, (1969).

Primary Examiner-Norman G. Torchin Assistant E.\'aminer.l. P. Brammer Attorney, Agent, or Firm-Alexander, Sell, Steldt & DelaHunt [57] ABSTRACT Aluminum substrates are provided having a coating of particulate material bound thereto by means of an in situ formed binder of aluminum hydroxyoxide. The coated aluminum constructions have utility in imaging and reproduction process (e.g., as printing plates, as electrographic elements, etc.), as magnetic recording surfaces, controlled roughness surfaces, decorative panels, protective surfaces, etc.

16 Claims, 2 Drawing Figures COATED ALUMINUM SUBSTRATES HAVING A BINDER OF ALUMINUM IIYDROXYOXIDE This invention relates to coated aluminum substrates and, more particularly, to coated aluminum substrates having utility in various imaging and reproduction processes, e.g., as lithographic plates and electrographic elements. The invention also relates to coated aluminum substrates having utility as magnetic recording surfaces, controlled roughness surfaces, decorative panels, etc.

Coated aluminum substrates have many applications. Thus, for example, photosensitive coatings on aluminum have been used in the preparation of printing plates, and ferromagnetic coatings on aluminum have been used in the preparation of magnetic discs for use in rapid access information storage.

Such coated structures are generally obtained by bonding the desired particulate material to the aluminum substrate by means of an organic binder. That is, the use of a conventional binder has heretofore been believed necessary in order to obtain the bonding or adhesion of the desired particulate material to the aluminum substrate.

Although the use of such conventional binders may be acceptable for some types of coated aluminum products, there are several disadvantages which are inherent in the use of conventional binders for this purpose. For example, it is very difficult to prepare electrographic elements which are hard, scratch-resistant and resistant to pressure marking when using conventional binders. It is also rather difficult, if not impossible, to prepare abrasion-resistant hydrophilic substrates for lithographic plate applications when using conventional organic binders because most of such binders are hydrophobic in nature. Those hydrophilic binders which are known are not ordinarily useful for making lithographic printing plates because such binders are subject to attack by the printing solution during use. Furthermore, such binders lack high temperature resistance and are susceptible to degradation by ozone and ultraviolet light.

Other disadvantages attendant with the use of an organic binder to bond coatings to aluminum revolve around the necessity for removing the oxide film from the aluminum substrate so that the organic binder will firmly anchor thereto. It is common knowledge'that an aluminum oxide film forms on the surface of aluminum during exposure to air and moisture, and conventional binders generally anchor very poorly to this naturally occurring oxide film. Accordingly, it is necessary to re move this oxide film before the desired coating can be applied to the aluminum substrate. Various treatments to remove this oxide film are disclosed in a number of patents, e.g., U.S. Pat. Nos. 2,137,988; 2,244,526; 2,868,679; 2,945,778; 3,231,425; and 3,544,391. Generally, these treatments to remove the oxide film involve the immersion of the aluminum substrate into baths containing various acids.

Such techniques for the removal of the aluminum oxide film also have several disadvantages attendant therewith. For example, the procedures require considerable processing time, and one must use highly acidic materials and special cleaning baths, etc. Among other disadvantages, the use of acidic cleaning baths gives rise to water pollution problems.

Consequently, the use of conventional binders for an choring various types of coatings or particulate material to aluminum substrates is unsatisfactory in many respects. Although such techniques produce adequate coated structures for some uses, these techniques are not generally useful for the preparation of highly abrasion-resistant lithographic printing plates, electrographic elements, high density magnetic recording surfaces, etc.

SUMMARY OF THE INVENTION In accordance with the present invention, there is provided an article comprising an aluminum substrate and a coating of particulate material overlying the substrate, the particulate material being bound to the substrate by an in situ formed binder of aluminum hydroxyoxide. Depending upon the type of particulate material bound to the aluminum, the articles of the invention have utility as electrographic elements, lithographic printing plates, controlled roughness surfaces, magnetic recording discs, decorative panels, protective surfaces, etc.

The invention also provides a process formaking the novel articles, the process comprising:

1. applying particulate material to an aluminum substrate,

2. exposing the aluminum'substrate bearing the particulate material to an oxidizing environment containing water for a time, in an amount, and at a temperature sufficient to provide in situ formation of aluminum hydroxyoxide whereby the particulate material is firmly bound to the aluminum substrate.

, Following the teachings of the present invention, the problem associated with the use of conventional binders to anchor coatings to aluminum substrates are avoided. Thus, since the naturally occurring aluminum oxide film need not be removed from the surface of the aluminum substrate, the problems attendant with acid baths and time-consumingprocessing techniques are avoided. Also, it is not necessary to select an appropriate organic binder for a particular coating since the or ganic binder may not be used at all. Furthermore, the articles of the invention can be provided with high density packing of particles on the substrate. Moreover, since the in situ formed binder of aluminum hydroxyoxide firmly anchors the particles to the aluminum substrate, the invention provides hard, scratch-resistant electrographic elements and lithographic plate substrates.

DETAILED DESCRIPTION OF THE INVENTION The invention will be described in more detail hereinafter with reference to the accompanying drawings wherein like reference characters refer to the same parts throughout the several views and in which:

FIG. 1 is a cross-sectional view of an aluminum substrate having a layer of unbonded particulate material disposed thereon;

FIG. 2 is a cross-sectional view of an aluminum substrate having particulate material bound thereto by an in situ formed binder of aluminum hydroxyoxide.

In FIG. 1 there is shown an aluminum substrate 10 having water-insoluble particles 12 disposed on the surface 14 of the substrate. In FIG. 2 there is shown a coated aluminum article 20 comprising the aluminum substrate 10 having particulate material 12 bonded to the surface of the aluminum substrate by means of in situ formed aluminum hydroxyoxide 16. The aluminum hydroxyoxide is formed by exposing the particulatecoated aluminum surface to an oxidizing environment containing water, whereby the surface of the aluminum substrate is oxidized to form hydrated aluminum'oxide which grows as crystallites around the particulate material to form a matrix firmly bonding theparticulate material to the surface of the aluminum substrate.

Aluminum substrates which are useful in the practice of the present invention include pure aluminum as well as other aluminum products containing up to about 30 percent or more of alloying metals. For example, useful aluminum alloys include Lynite," a commercially available alloy of aluminum containing 5 percent by weight of copper; Aluminum-silicon 43, a commercially available aluminum alloy containing about 5 percent silicon; Aluminum Alloy 35, a commercially available aluminum alloy containing 1.25 percent man- 'ganese; Aluminum Alloy 3003, a commercially alloy containing about 99.2 percent aluminum; and

4 about 0.05 to about 5 microns. Depending upon the desired properties of the coated aluminum substrate, the

.particles can be soft or hard, organic or inorganic,.con-

ductive or nonconductive, photosensitive or nonphotosensitive, etc. Mixtures of various particulate materials may also be used.

Although not necessary for the practice of the present invention, it is preferable to use particulate material which is water-wettable. That is, when water (surface tension of 72.8 dynes/cm.) is placed in contact with the surface of the preferred particulate material, the water spreads across the surface thereof to form a film. Particulate material which is not water-wettable according to this criteria can also be bonded in accordance with the present invention (e.g., by mechanically holding the particulate material against the aluminum substrate during the oxidation step).

Representative of the various particulate materials which may be used in the practice of the present invention include:

PARTICULATE PARTICULATE M.P. C. M.P. C. MATERIAL MATERIAL Titanium dioxide 1640 Sodium bismuthate Zinc oxide 1800 Calcium carbonate 825 (decomposes) lndium oxide 850 (decom Cadmium sulfide 1750 poses) Silica 147O Barium oxide 1923 Barium titanate Lead sulfide 1 1 14 Magnesium oxide 2500 Ferrous sulfide 1 193 Chromic oxide 1990 Cotton fibers Zirconium oxide 2950 Cerium oxide 1950 Zinc sulfide 1850 Vanadium dioxide 1967 Lithium titanate Zinc rosinate 165-168 Manganese dioxide 535 (decom gamma-Ferric oxide 1565 poses) Calcium oxide 2573 Beryllium oxide 2570 Yttrium oxide 2410 Asbestos Aluminum oxide 2050 Clay, e.g., Bentonite Calcium fluoride 1360 Powdered metal, e.g.,

copper pigment 1083 Calcium tungstate Nylon 150 Antimony oxide 656 Teflon 150 Bismuth trioxide 820 Copper phthalocyanine 500 (sublimes) 1,5-dichloroanthraquinone 251 Anthraquinone 286 (sublimes) Aluminum Alloy 1145, a commercially available alloy containing about 99.55 percent aluminum.

In addition to pure aluminum and aluminum alloys, the term aluminum substrate as used herein also includes any substrate which has been overcoated or clad with pure aluminum or an alloy of aluminum. For example, the term aluminum substrate as used herein includes plastic films which have thin vapor coatings of aluminum or aluminum alloy thereon. In essence, the term aluminum substrate includes any material having sufficient surface-occurring aluminum to support the growth of aluminum hydroxyoxide in an oxidizing environment.

Particulate materials which may be bonded to aluminum substrates in accordance with the present invention include solid materials having a melting point above about 150 C. and having a water solubility of less than about 0.1 parts per 100 parts of water at 100 C. The particles may be of any shape, e.g., cube, needles, irregular, fiber, etc., and they have an average size of about 0.05 to about 3,000 microns, although it is preferred for the particles to have an average size of The foregoing list of particulate material is merely representative of the types ofmaterials which may be used in the present invention. It will be apparent to one skilled in the art that other particulate materials possessing suitable melting points and water-insolubility may also be bonded to aluminum substrates as taught herein.

In preparing the coated product of the invention, the aluminum substrate is ordinarily cleaned of oil and surfaceimpurities by any of the conventional processes heretofore used for cleaning aluminum. Although it is not necessary to remove the naturally occurring aluminum oxide film from the surface of the substrate, this may be done if desired. Ordinarily, however, the aluminum substrate is simply cleaned by washing it with an aqueous solution of a conventional surfactant or detergent, followed by rinsing with water and drying. Organic solvents may be used to remove oils from the aluminum.

The particulate material to be bonded to an aluminum substrate is ordinarily deposited or disposed on the aluminum surface in a thin layer. In one sense the particulate material may be simply dusted onto the surface of the aluminum substrate followed by exposing the coated substrate to an oxidizing atmosphere. However, it has been found that increased bonding efficiency is obtained when the particulate material is applied to the aluminum substrate from a dispersion thereof in a liquid vehicle, followed by evaporation of most or all of the liquid vehicle. It is believed that when applying the particulate material from a liquid vehicle, the particulate material becomes more firmly packed on the aluminum substrate and thus establishes better physical contact therewith.

Suitable liquid vehicles which have been used for this purpose include water, lower aliphatic alcohols, (e.g., methanol, ethanol, isopropanol, n-propanol, n-butanol, and isobutanol) lower aliphatic ketones, (e.g., acetone and methyl ethyl ketone), aliphatic hydrocarbons having about 6-12 carbon atoms (e.g., hexane and octane), aromatic hydrocarbons having about 6-8 carbon atoms (e.g., benzene, toluene, and xylene), and miscible blends of these vehicles. Preferred vehicles include the lower aliphatic alcohols which thoroughly wet the aluminum substrate and the particulate material and provide for less agglomeration of the particulate mate rial on the substrate. Generally, the vehicle is a nonsol-.

vent for the particulate material, although it may be a solvent therefor so long as the material crystallizes or otherwise forms discrete particles in a discontinuous manner when the vehicle is removed. 7

After the desired particulate material has been deposited or disposed on the surface of the aluminum substrate, the so-coated substrate (which is preferably, but not necessarily. dry) is exposed to water in an oxidizing environment. Although this can be done by simply immersing the coated substrate in liquid water for a period of time, it is more preferable to expose the coated substrate to a gaseous oxidizing environment that is essentially saturated with water vapor at l 50 C. For example, the aluminum substrate with particulate material disposed thereon may be introduced into an environment of steam. The effect of the water and the oxidizing atmosphere is to cause the in situ formation of an aluminum hydroxyoxide crystalline layer which grows on the surface of the aluminum substrate and forms a matrix about the particulate material, thereby firmly bonding the particulate material to the aluminum substrate.

The efficiency of the just described process for the bonding of particulate material to the aluminum substrate is believed to be due to one or both of two factors, one being chemical in nature and the other physical in nature. It is postulated that the chemical factor for bonding of the particulate material to the aluminum is a result of coordination between the aluminum atoms and atoms in the particulate material which have a coordinating capability. For example, the titanium in titanium dioxide and the zinc in zinc oxide have coordination sites enabling a coordination to aluminum atoms through an oxygen atom.

The physical factor for the bonding of particulate material to the aluminum substrate is the result of the growth of pseudoboehmite crystallites about the particulate material to thereby mechanically bind it to the aluminum substrate. The formation of pseudoboehmite, a metastable aluminum hydroxyoxide, by the reaction of aluminum or aluminum oxide with liquid water in air is discussed by Vedder and Vermiyea, Trans. Faraday Soc. 65, 561-584 (1969) and A1witt,.l. Electrochemical Soc. 118 (11), 1730 (1971). The pseudoboehmite can be identified in the bonded coatings of the. invention by electron microscopy which shows that the crystals which form the matrix around the deposited particulate material have the characteristic lamellar shape.

In the practice of the invention the aluminum substrate having particulate material disposed thereon, is exposed to an oxidizing atmosphere containing water for a time, in an amount, and at a temperature sufficient to provide in situ formation of aluminum hydroxyoxide to firmly bond the particulate material to the substrate. The exposure time required for the process depends upon the temperature of the oxidizing environment, the mass of the aluminum substrate, and the amount of particulate material disposed on the aluminum substrate. Generally, it has been found that the maximum amount of particulate material which can be practically bonded to an aluminum substrate is about 0.0004 grams per square centimeter.

By increasing the mass of the aluminum substrate, or by increasing the amount of particulate material disposed on the substrate, the exposure time required to obtain the requisite formation of sufficient aluminum hydroxyoxide also increases. The requisite exposure time may be shortened by increasing the temperature of the oxidizing environment. The efficiency of the bonding process also increases with decreasing amounts of deposited particulate material.

As an example, TiO particles (0.05 microns) disposed on a 5 mil (127 micron) thick aluminum sheet in an amount of 1 X 10* grams/sq. cm. were firmly bonded thereto in 30-45 seconds when exposing the sample to C. steam at atmospheric pressure. Simi' lar particulate material was firmly bonded to a 62.5 mil (1.6 mm.) aluminum sheet under the same conditions in about 3 minutes. Longer exposure times may, of course, be used if desired.

The oxidizing environment to which the particulate material coated aluminum substrate is exposed to obtain the in situ formation of aluminum hydroxyoxide may be a water bath, although preferably it is an atmosphere obtained by admitting steam into an open vessel. Closed vessels containing steam and air at pressures ranging from atmospheric to pressures of 100 psi or more may also be used. By regulation of the quantity and pressure of steam introduced into the vessel, temperatures from about 50 to about C. suitable for causing the formation of the bonding aluminum hydroxyoxide crystallites may be obtained. The ratio of steam to air is not critical, a suitable range being between about 1120 to 20:1 parts of air per part of steam.

An oxidizing gas (for example, oxygen) may be used to replace part or all of the air used in the oxidative atmospheres. Such oxygen-enriched atmospheres are particularly useful where the particulate material to be bonded to the aluminum substrate is prone to reduction during the bonding process as is, for example, particulate zinc oxide and indium oxide. It is also preferable to wet the particulate material with water (or with water containing a surfactant or wetting agent) prior to contacting the sample with steam or other oxidizing atmosphere.

The efficiency of the bonding process can be enhanced (particularly when bonding increasing amounts of particulate-material) by the incorporation of various additives into the dispersion of the particulate materials on the aluminum substrate. Included among the additives that may be used, if desired, are alkali metal, alkaand about 0.05 micron in size. The amount of titanium dioxide applied to the aluminum sheet was about 0.00028 grams per square centimeter.

The coated aluminum sheet, from which the titanium line earth metal (except beryllium), and rare earth metal oxides, hydroxides, carbonates, acetates, nidioxide could very'easily be removed by gentle touch trates, andhalides. Generally, the useful additives prowith the fingers, was wet with water and-placed into an vide a pH ot' about 4.0 or higher to the dispersion of the open vessel into which steam from a 25 psi steam line particulate material in water. 1 was introduced. The coated aluminum sheet was ex- Prelerred additives include CaO, BaO, MgO, NaOH, l0 posed to the steam (100 C.) for minutes and then CH CO Na, Ba(NO Mg(NO '6H O, Sr(NO )2, dried. A strongly adhering film of titanium dioxide re- Ca(NO -4H O, CaF CaCO BaCO NaHCO and sulted on the aluminum substrate. To test the anchor- Ca(C.' H O Generally these additives are used in an age of the film to the aluminum, a strip of pressureamount of about 0.01-1 part by Weigh per 1 Part y sensitive adhesive tape was pressed against the coated weight of particulate material to be bonded. 15 surface of the substrate and then removed using a test The coated aluminum substrates prepared in accorprocedure similar to that described .in US, P t, No. dance with this invention are tough, d. and hy r 3,554,836. On peeling the tape from the surface it was philic. They are therefore useful as base material for observed that the adhesive suffered cohesive failure lithographic plates and as surface protective coverings rather than remove the bonded particulate material such as wall coverings where their hydrophilic nature from the aluminum substrate. The 180 peel force for makes them nonsoiling and readily cleanable. Furtherthe 1.895 cm. wide pressure-sensitive tape used in the more, the particulate material-bonded surfaces retain test was 1,600 grams (840 grams/cm). the properties that the particulate materials possess prior to bonding. Thus, for example, zinc oxide and ti- E 2 tanium dioxide powders bonded to aluminum as taught A Sheet 8 mll microns) alumlnutn Was herein are photoconductive and photocatalytic; zinc l d as E m i was coated the (cadmium) sulfide particles bonded to aluminum surdispersion Of mamum dloxlde from Example I \15mg 3 faces as taught herein are photoluminescent; and gam- Meyeir bar f allowed to y f 5 mmutesma-ferric oxide powders bonded to aluminum surfaces The y Coating fl/elght was the Same EXamPle as taught herein are magnetic Consequently the The coated aluminum sheet was then immersed in deo coated aluminum substrates of this invention are useful 1OmZ ed Water F C After 5 y Somebondmg of as recording elements including lithographic printing the mamum dioxide had Q F l Qfter 21 y 3 plates. photoluminescent devices, magnetic recording Strongly adhering layer of tltelnlum dloxlde was formed discsv electrophotogmphic elements, on the surface of the aluminum sheet. The coating The present invention is further illustrated by means couldflot be removed by Peeling a pr'essuie'sensltwe of the following examples wherein the term parts readheslve tape from the Surface as described 111 Example fers to parts by weight unless otherwise indicated.

EXAMPLES 3-32 EXAMPLE 1 Example l is repeated using in place oftitanium diox- A sheet of 32 gauge (8 mils, 203 microns) aluminum ide the particulate materials listed in Table l. The time was cleaned by washing-it with an aqueous solution of steam treatment and the bonding results for each containing 6 percent trisodium phosphate, rinsing with particulate material are also given in Table 1. Each of water, and drying. It was then coated with a dispersion the particulate-bonded aluminum surfaces obtained are of titanium dioxide using a No. 16 Meyer bar and altough, scratch-resistant, and hydrophilic. In general, lowed to dry for 5 minutes (longer periods of drying the bonded surfaces are useful as substrates for printing give similar rcsults).-The dispersion of titanium dioxide plates and nonsoiling protective surfaces. The bonded was prepared by ball milling for 17 hours a mixture of particulate materials retain the properties they possess 10 grams titanium dioxide and 200 ml. of isopropyl alprior to bonding,

TABLE 1 Ex. Particulate Time of Steam Bonding Use"" of the No. Material Treatment Min. Results Bonded Surface 3 MgO 19 b Protective layer 4 Eco l5 c 5 CaO 3 c 6 B210 5 c 7 zro, 19 a 8 no, 5 b 9 MnO l0 c l0 A1203 l0 c ll caF, 19 b 12 CaWO 10 c 13 0,0, c M sb o 5 c 15 Bi,0a 5 a 16 Limo l9 4 17 NaBio, 5 c l8 caco 8 :1 l9 Zn(Cd)S 15 c Luminescent surface 9 10 TABLE I -Continued I-lx. Particulate Time of Steam Bonding Use"" of the No. Material Treatment Min. Results Bonded Surface (d8 30 c Luminescent surface 2| lhS 5 d 22 P08 5- d 23 Cu 6 b Decorative surface 24 Zn Rosinate 5 c 25 Cotton Fibers l5 c Decorative surface 26 Asbestos Fibers 10*" b 27 Kaolinite 5 c 28 CeO 5 b Photocatalytic 29 TiO l5 a Photoconductive.

v Photocatalytic 30 ZnO 5 b Photoconductive,

I; Photocatalytic 3 l BiTiO; 1 l8 b Photoconductive,

Photocatalytic 32 gamma-F90 l9 b Magnetic surface a cxcellentf b good. c fair (-,coatings are thin but uniform). d poor (coatings are thin and nonuniform).

EXAM PLES 3 355 These examples illustrate that the efficiency of the bonding process may be improved by the presence of certain compounds. 25

Aqueous dispersions were prepared by ball milling a mixture of 1 part titanium dioxide and from about 0.03 to 1.0 parts of the various additives listed in Table II. The mixtures were then coated at three different coating weights onto 3 inch by 3 inch pieces of 3 mil (76 30 water. rinsed, dried and weighed. The" coatings obtained were tough and scratch-resistant. Bonding efficiency was calculated as the percentage of coating remaining after the treatment. The results obtained for a number of additives at five different coating weights is presented in Table ll. Values above 100 percent are possible because the weight gain due to the formation of the hydrated alumina binder matrix is included in the sample weight after the steam treatment.

in addition to us: as a substrate for a printing plate, nnnsoiling surface. and surface priming.

The data of Table II shows that bonding efficiency is increased for additives magnesium oxide, sodium hydroxide, calcium oxide, calcium carbonate, barium carbonate, sodium bicarbonate, sodium acetate, magnesium nitrate, calcium nitrate, calcium fluoride, barium nitrate, and calcium acetate. Additives such as zinc oxide, calcium chloride, ammonium nitrate, and calcium sulfate have very little effect on the bonding efficiency. Beryllium oxide in addition to those additives (such as sodium bisulfate) which have a pH in water of less than 3.0 decrease the bonding efficiency. The data shown in Table II also illustrates that the bonding efficiency for a given amount of steam treatment decreases with an increase in the amount of particulate material disposed on the substrate.

EXAMPLES 56-63 These examples illustrate that increasing amounts of a typical additive cause an increase in the bonding efficiency.

Several samples of aluminum foil were coated by a procedure similar to that described in Examples 33-55 TABLE n BONDING EFFICIENCY (71) Coating Weight of Particulate Material Disposed on Substrate Parts Addi- Ex. tive per pH of the No. Additive Part TiO Dispersion 2.5 X 10" 3.0 X 10 4.0 X 10 6.0 X 10 8 X 10 g/cm g/cm g/cm g/cm g/cm 33 None 4.0 75 57 40 23 i0 34' C210 0.03 M95 l2l H6 80 35 B110 0.03 11.65 100 90 65 36 MgO 0.] 10.80 141 93 64 37 37 BeO 0.03 9.4l 56 43 34 38 ZnO 0.3 4.0 74 64 42 39 NaOH 0.03 10.45 132 128 H6 82 49 40 CH CO Na 0,03 6.55 120 96 77 43 35 4i NaCl 0.03 5.20 73 56 35 2i I8 42 NaHSO 0.03 2.50 41 26 14 7 6 43 Ba(NO;r)-1 (H6 3.84 102 89 69 46 3i 44 Mg(NO; ,.6H O (H6 4.73 I20 H8 98 53 38 45 Sr(NO-.ilz 0.l3 4.73 106 102 75 38 24 46 (a(NO;,) .4H- 0.l5 4.74 H3 102 88 53 36 47 (11F 1.0 6.26 107 l09 )3 60 42 48 CaCI 0.03 3.82 64 51 39 25 I5 4) CaSO 0.03 4. l 3 65 57 36 l9 i3 Ca(C- .H O 0.03 6.32 v 90 88 66 39 36 SI Ca0 NaOH 0.03-0.03 12.0 52 CaCO 0.03 6.22 I02 90 77 49 27 53 BaCO 0.03 6.79 I25 I I5 98 54 NaHCO 0.03 8.64 I20 I15 80 55 NH NO; 0.03 4 42 74 49 25 I4 1 1 using various dispersions containing zero parts, 0.03 parts, and 0.2 parts of sodium hydroxide per part of titanium dioxide and coating at the various coating weights shown in Table 111.

The data of Table Ill shows that at a given coating weight of particulate material, the use of increasing amounts of the additive sodium hydroxide results in increasing efficiency of the bonding process. The bonded coatings obtained are hydrophilic, macroscopically smooth, tough and scratch resistant.

Other typical additives which increase the efficiency of bonding of particulate materials to aluminum substrates in a similar manner'include magnesium oxide, calcium oxide, barium oxide, sodium acetate, calcium acetate, magnesium nitrate and barium nitrate.

EXAMPLES 64-68 These examples illustrate that increasing the time of exposure of the sample to an oxidizing watercontaining environment increases the efficiency of bonding of particulate material to aluminum.

Aluminum foil was coated with titanium dioxide at various coating weights by a procedure similar to that described for Examples 33-55. Substrate samples having varying coating weights were then exposed to steam (100 C.) in an open vessel for periods of time from 1 minute to 30 minutes, washed, dried, and weighed. The bonding efficiency for each coating weight for each periodof time was calculated. The data obtained is recorded in Table IV.

TABLE IV BONDING EFFICIENCY (/z) Coating Weight of Particulate Material Disposed on Substrate When examples similar to Examples 64-68 are repeated using in place of titanium dioxide particles, other particulate material such as silica, alumina, bismuth titanate, gamma-ferric oxide, and zinc (cadmium) sulfide, similar increases in bonding efficiency with time are obtained.

EXAMPLES 69-87 These examples illustrate the effect of various volatile vehicles on the efficiency of bonding of particulate material to aluminum.

Dispersions of titanium dioxide were prepared by ball milling for about 17 hours a mixture of 10 grams of titanium dioxide and 200 ml.of the volatile vehicles shown in Table V. Each of the dispersions obtained were then coated at various coating weights onto 8 mil aluminum sheet that. had been cleaned as disclosed in Example 1. The coatings were then dried and exposed to steam in an open vessel for 5 minutes, washed, dried and the coating weight after steaming determined. The data obtained are recorded in Table V.

The data of Table V shows that bonding is obtained when toluene, benzene, methanol and isopropanol is used as the vehicle for dispersing the particulate material. Other chemically unreactive volatile vehicles give similar results. In addition, the data shows that bonding efficiency is increased when using liquid vehicles which cause the least amount of particulate agglomeration because tighter packing of particles on the substrate is obtained.

EXAMPLE 88 This example illustrates the use of an aluminum surface having particulate titanium dioxide bonded thereto as a phot'oconductive surface for use in electrophotography.

An aluminum sheet having particulate titanium dioxide bonded thereto was prepared as in Example 1.

The bonded layer is exposed through a photographic negative to UV radiation from a Black Ray lVL 22 source at a distance of 5 mm. for 5 seconds and then developed at +3500 volts by the electrographic process disclosed in US. Pat. No. 3,563,734. The drytoner particles deposit in the unexposed areas of the surface of the bonded layer. The dry-toner powder image can be transferred to a suitable receptor by conventional electrical or mechanical means.

EXAMPLE 89 This example illustrates the use of an aluminum surface having particulate titanium dioxide bonded thereto as the substrate for use as a presensitized printing plate. An aluminum sheet having particulate titanium dioxide bonded thereto was prepared as in Example -l. The surface of the bonded layer was swabbed with a 10 percent aqueous solution of sodium silicate.

After drying the surface was dip-coated with an aqueous solution of a conventional diazo salt. The dried sheet was then exposed through a photographic negative to ultraviolet radiation for 1 minute. After washing the undecomposed, i.e., unexposed; diazo salt from the surface with water, the surface was contacted with water and then with lithographic ink. The ink adhered only to areas containing the photodecomposed diazo salt. The ink image can then be transferred to a receptor sheet such as paper to provide printed images of high resolution and clean background. Similar results are obtained when the plates are prepared using zinc oxide, magnesium oxide, or titanium dioxide containing 3 percent sodium hydroxide.

EXAMPLE 90 This example illustrates a presensitized printing plate comprising an aluminum sheet having particulate titanium dioxide bonded thereto.

The titanium dioxide is bonded to the aluminum sheet as in Example 1. The surface of the bonded particulate layer is then silicated in accordance with the procedure of US. Pat. No. 2,714,066 (Jewett and Case) by dipping it into a solution containing 3.75 percent Star Brand Silicate at 88 C. for 2.5 minutes, followed by rinsing with distilled water at 38 C. for 30 seconds and air drying. A sensitizer solution is then squeeze-roll coated on the silicated surface and dried. The sensitizer solution contains the zinc chloride double salt of the condensation product of 4- diazodiphenylamine and paraformaldehyde along with thiourea and boric acid stabilizers.

Plates sensitized as above are overcoated with a photopolymer solution comprising:

"Formvar /955 (tradename for a polyvinyl formal resin available from Monsanto Chemical Company) 44 parts "YMCH" vinyl resin (tradename for a vinyl acetate/vinyl chloride/maleic unhydride copolynter available from Union Carbide Company) 15 parts 'lrimethylol propane trimethacrylate 33 parts lrimcthacrylate of trishydroxyethyl isocyanurate 1 1 parts 2.4-Bis-trichloromethyl-6-t4' methoxy st \ryl)-s-triazinc 1.7 parts Monastral Blue pigment 10 parts Ethylene dichloride 585 parts EXAMPLE 91 This example illustrates the photocatalytic character ofaluminum surfaces having certain particulate materials bonded thereto in accordance with the technique of the invention.

Particulate titanium dioxide was bonded to an aluminum sheet as described in Example 1. The surface of the bonded layer was swabbed with a 3 percent solution of palladium chloride in iso-propyl alcohol and dried.

The dried sheet was then exposed through a photographic negative to ultraviolet radiation for about 45 seconds, washed with dilute hydrochloric acid and dipped into a commercial electroless copper plating bath. Copper deposited imagewise in the exposed areas, i.e., in those areas where the palladium chloride had been photocatalytically reduced under the influence of ultraviolet radiation by the titanium dioxide.

The plate obtained is useful as a lithographic printing plate. When this treated surface is contacted with water and then with a lithographic ink, the ink adheres only to the copper areas and not to the hydrophilic background areas. The ink image can then be transferred to a receptor sheet such as paper.

Similar photocatalytic plates useful for the preparation of lithographic printing plates are obtained when the titanium dioxide is replaced by cerium oxide, zinc oxide, or bismuth titanate.

What is claimed is:

1. An article comprising an aluminum substrate bearing a layer of particulate material, said particulate material being bound to said substrate by an in situ formed binder of aluminum hydroxyoxide, said particulate material having an average particle size of about 0.05 to 3000 microns, a melting point above about 150C, and a water solubility of less than about 0.1 part per parts of water at 100C.

2. The article of claim 1 wherein said particulate material is inorganic.

3. The article of claim 1 wherein said particulate material is inorganic and has a major dimension in the range of from about 0.05 to about 50' microns.

4. The article of claim 1 wherein said particulate material is water-wettable.

5. The article of claim 1 wherein said particulate material has a major dimension of from about 0.05 microns to about 50 microns and is selected from the class consisting of titanium dioxide, Zinc oxide, gammaferric oxide, barium titanate, aluminum oxide, cerium oxide, and zirconium dioxide.

6. The article of claim 1 wherein said particulate material is photocatalytic.

7. The article of claim 1 wherein said particulate material is photoconductive.

8. The article of claim 1 wherein said coating is bound to said aluminum substrate by a force exceeding a peel force of 1,000 grams per centimeter.

9. The article of claim 1 wherein said particulate material in said binder provides a hydrophilic surface.

10. The article of claim 1 wherein said particulate material is organic.

11. An electrographic element comprising an aluminum substrate and a layer of photoconductive inorganic metal oxide or sulfide particulate material overly ing said aluminum substrate, said inorganic metal oxide or sulfide material being bound to said substrate by an in situ formed binder of aluminum hydroxyoxide.

12. The element of claim 11 wherein said inorganic metal oxide or sulfide material is selected from the class consisting of titanium dioxide, zinc oxide, and cadmium sulfide.

13. The element of claim 1 wherein said particulate material is zinc oxide.

14. The element of claim 1 wherein said particulate material is titanium dioxide.

15. The element of claim 1 wherein said particulate material is magnetic.

16. The element of claim 1 wherein said particulate material is gamma-ferric oxide.

l =l =l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3547635 *May 4, 1967Dec 15, 1970Eastman Kodak CoVacuum deposited light-sensitive titanium dioxide
US3676292 *Oct 7, 1970Jul 11, 1972Olin CorpComposites of glass-ceramic-to-metal,seals and method of making same
US3684368 *Jul 9, 1969Aug 15, 1972Hitachi LtdXerographic apparatus
US3775103 *Nov 10, 1971Nov 27, 1973Fuji Photo Film Co LtdElectrophotographic material and process for producing same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3954466 *Jan 2, 1975May 4, 1976Xerox CorporationElectrostatographic photoreceptor
US3975197 *Jan 6, 1975Aug 17, 1976Minnesota Mining And Manufacturing CompanyCoated aluminum substrates
US3980494 *Oct 29, 1975Sep 14, 1976Beatty Charles LMethod of reducing friction in blade cleaning of imaging surfaces
US3992091 *Sep 16, 1974Nov 16, 1976Xerox CorporationRoughened imaging surface for cleaning
US4054467 *Jun 2, 1976Oct 18, 1977Minnesota Mining And Manufacturing CompanyMethod of coating aluminum substrates
US4078112 *Jul 12, 1976Mar 7, 1978Union Carbide CorporationCoating modification process for ultrafiltration systems
US4105811 *Feb 7, 1975Aug 8, 1978Polygulf AssociatesMethod of protectively coating metallic aluminum containing substrate
US4123267 *Jun 27, 1977Oct 31, 1978Minnesota Mining And Manufacturing CompanyPhotoconductive element having a barrier layer of aluminum hydroxyoxide
US4168163 *Oct 12, 1977Sep 18, 1979Fuji Photo Film Co., Ltd.Particle migration type sensitive materials and method of using the same
US4189330 *Apr 20, 1977Feb 19, 1980Ab Svenska FlaktfabrikenMethod for making humidity and heat exchanger apparatus
US4340276 *Oct 10, 1979Jul 20, 1982Minnesota Mining And Manufacturing CompanyMethod of producing a microstructured surface and the article produced thereby
US4618552 *Feb 12, 1985Oct 21, 1986Canon Kabushiki KaishaLight receiving member for electrophotography having roughened intermediate layer
US4711667 *Sep 18, 1986Dec 8, 1987Sanchem, Inc.Corrosion resistant aluminum coating
US4895608 *Apr 29, 1988Jan 23, 1990Sanchem, Inc.Corrosion resistant aluminum coating composition
US4906541 *Nov 22, 1988Mar 6, 1990Basf AktiengesellschaftElectrophotographic recording element containing a naphtholactam dye sensitizer
US5009360 *Feb 27, 1990Apr 23, 1991McncMetal-to-metal bonding method and resulting structure
US5437912 *Dec 3, 1993Aug 1, 1995Minnesota Mining And Manufacturing CompanyCoated thin film for imaging
US5707465 *Oct 24, 1996Jan 13, 1998Sanchem, Inc.Low temperature corrosion resistant aluminum and aluminum coating composition
US5711991 *Nov 20, 1995Jan 27, 1998Aluminum Company Of AmericaProcess for making lithographic sheet material having a thermoplastic adhesive layer
US5881645 *Jan 10, 1997Mar 16, 1999Lenney; John RichardMethod of thermally spraying a lithographic substrate with a particulate material
US5888695 *Aug 18, 1997Mar 30, 1999Aluminum Company Of AmericaLithographic sheet material including a metal substrate, thermoplastic adhesive layer and mineral or metal particles
US6090489 *Jun 19, 1998Jul 18, 2000Toto, Ltd.Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
US6240846Aug 19, 1999Jun 5, 2001Agfa-GevaertRecording material comprising a substrate and a ceramic layer applied to a surface of the substrate
US6524664Aug 13, 1999Feb 25, 2003Toto Ltd.Photocatalytically hydrophilifying and hydrophobifying material
US6830785Aug 13, 1999Dec 14, 2004Toto Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
US7201841Feb 5, 2003Apr 10, 2007Water Visions International, Inc.Composite materials for fluid treatment
US7383946Mar 25, 2005Jun 10, 2008Hughes Kenneth DMaterials for storing and releasing reactive gases
US8636919Mar 25, 2005Jan 28, 2014Kenneth D. HughesReactive solutions
US8668984 *Sep 30, 2011Mar 11, 2014Wnc Solar, LlcMultilayer composite
US20040149634 *Feb 5, 2003Aug 5, 2004Hughes Kenneth D.Composite materials for fluid treatment
US20040159605 *Feb 1, 2002Aug 19, 2004Hughes Kenneth D.Compositions of insoluble magnesium containing minerals for use in fluid filtration
US20040232068 *Apr 20, 2001Nov 25, 2004Johnston Arthur W.Formation of composite materials with expandable matter
US20050098495 *Feb 18, 2002May 12, 2005Hughes Kenneth D.Purification materials and method of filtering using the same
US20050235830 *Mar 25, 2005Oct 27, 2005Hughes Kenneth DMaterials for storing and releasing reactive gases
US20060289349 *Jul 6, 2005Dec 28, 2006Hughes Kenneth DComposite materials for fluid treatment
US20120090669 *Sep 30, 2011Apr 19, 2012Martin Donald HMultilayer Composite
DE2807413A1 *Feb 17, 1978Aug 24, 1978Minnesota Mining & MfgMikrostrukturierte beschichtung zur modifikation des transmissions- und reflexionsverhaltens
DE2944404A1 *Oct 31, 1979May 22, 1980Minnesota Mining & MfgVerfahren zum herstellen einer mikrostrukturierten oberflaeche und danach hergestellter gegenstand
EP0869156A1 *Dec 18, 1996Oct 7, 1998Toto Ltd.Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
EP0869156A4 *Dec 18, 1996Jun 9, 1999Toto LtdPhotocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
EP1304366A1 *Mar 21, 1996Apr 23, 2003Toto Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and a method of making thereof
WO1994005507A1 *Sep 9, 1993Mar 17, 1994Horsell Graphic Industries LtdPrinting plate
WO1995007496A1 *Apr 22, 1994Mar 16, 1995Horsell Graphic Industries Ltd.A light sensitive printing plate
WO2000058095A1 *Mar 28, 2000Oct 5, 2000Kodak Polychrome Graphics Company Ltd.Direct drawing planographic printing plate and preparation method therefor
Classifications
U.S. Classification430/60, 430/131, G9B/5.287, 148/275, 228/198, 228/211, 428/148, 228/262.5, 430/495.1, 427/132, 228/194
International ClassificationB41N3/03, G03C1/705, G03C1/77, G11B5/62, G11B5/73, G03G5/085
Cooperative ClassificationG03G5/085, G03C1/77, G03C1/705, B41N3/03, G11B5/7305
European ClassificationG03C1/77, G11B5/73B, B41N3/03, G03C1/705, G03G5/085