Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3872525 A
Publication typeGrant
Publication dateMar 25, 1975
Filing dateJan 10, 1972
Priority dateJan 10, 1972
Publication numberUS 3872525 A, US 3872525A, US-A-3872525, US3872525 A, US3872525A
InventorsNeil P Anderson, James M Lea
Original AssigneeNeil P Anderson, James M Lea
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Inflatable foam pad
US 3872525 A
Abstract
A pad and a method of making same with a combination resilient foam and fluid compression; using open-cell foam encased in and bonded to an impervious envelope and a valve communicating with the interior of the envelope for passage and containment of the fluid. The pad is also used as a structural member when the fluid is pressurized.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Unite States atent 1191 1111 3,872,525 Lea et a1. Mar. 25, 1975 INFLATABLE FOAM PAD 3.537.116 11/1970 Kain... 5/344 Inventors: James M 9682 Rainier Ave 3,611,455 10/1971 Gottfried 5/348 WB South, Seattle, Wash. 981 18; Neil P. FOREIGN PATENTS OR APPLlCATlONS Anderson, 3105 29th 428,124 7/1967 Switzerland... 5/348 Tacoma, Wash. 98407 984.604 2/1965 United Kingdom 5/348 R [22] Filed: Jan. 10, 1972 Primary Examiner-Paul R. Gilllam [2]] APPL N03 2161702 Assistant Examiner-Kenneth J. Dorner Attorney, Agent, or Firm-Graybeal, Barnard, Uhlir & 52 us. 01. 5/348 150/8 Hughes [51] Int. Cl. A47c 27/08 [58] Field of Search 5/348 R, 348 WB, 338, 337, [57] ABSTRACT 5/344 345 21503350; 9/2 H 13 A pad and a method of making same with a combinae tion resilient foam and fluid compression; using open- [56] References cued cell foam encased in and bonded to an impervious en- UNITED STATES PATENTS velope and a valve communicating with the interior of l,l59,l66 1 H1915 Brawner 215/73 the envelope for passage and containment of the fluid. 2,834.970 5/l958 Nappe 5/348 R The pad is also used as a structural member when the Morris R is pressurized 3,323,151 6/1967 Lermam. 5/344 3,378,864 4/1968 Cornes..; 5/348 8 Claims, 7 Drawing Figures PATENTEDMR25I975 2.872.525

ijffffif IIIIIIIIIIIIIIIIIIIIIIIII'III I2 14 '17 IO FIG; 5

INFLATABLE FOAM PAD BACKGROUND OF THE INVENTION Several types of pads or cushions are used for camping mattresses. Most common is the air mattress which is usually made by bonding two sheets of reinforced rubber or plastic together in a pattern such that when the mattress is pressurized with air a series of parallel tubes is obtained. The bonding effecting points of tension to confine and define the shape of the inflated mattress. Air mattresses must be inflated by mouth or pump and the mattress has poor insulating qualities because of the single air gap.

Plastic or rubber foam provides good insulation when used for camping mattresses, but the required density of foam makes the mattress bulky and heavy.

It was discovered that a self inflating, flat surfaced mattress having good insulating properties could be obtained by containing a one piece resilient: open-cell foamed material inside an impervious envelope and utilizing a valve in communication with the inside of the envelope to control fluid therein.

It was also discovered this article serves as a structural member when the fluid inside the envelope is pressurized before being contained. One of the better means for obtaining an inflatable structural part has been to use a flexible bag having parallel skins which are held together by a multitude of threads fastened between the skins to serve as tension members when the bag is pressurized. The instant invention places the resilient foam in tension to define the inflated structure.

SUMMARY OF THE INVENTION A self inflating pad capable of being adjusted to control its firmness is obtained with a resilient foam, a fluid tight film or skin forming an envelope around the foam and a valve for communicating withtheinside of the envelope. The foam should be of a resilient material and have a multittfde of interconnecting interstices to allow free movement of fluid within the foam. The envelope should be ofa flexible material that is fluid tight. The valve extends through and is bonded to the envelope to effect communication with the inside of the envelope and to allow fluid to be introduced, removed or retained. The foam is bonded to the inside of the envelope to form the pad; thus when pressurizedfluid is trapped inside the pad the foam is placed in tension and the shape of the foam determines the shape of the pad. Therefore, the surface may be essentially flat. The cushioning effect or in other words the firmness may be controlled by the compressibility and extensibility of the pad and the amount of fluid within the envelope. The valve allows adjustment of the fluid volume. A pad of this configuration with a gas such as air as the fluid provides good thermal insulating characteristics because of the multitude of air spaces.

The pad may be of a very light weight as the foam is loaded mainly in tension, holding the skins together rather than depending solely on 'its crushing strength. The foam acts as a compression member in areas of a direct load and as a tension member in areas removed from a direct load. Tensioning of the foam remote from the area of compression causes the pressure to rise in the pad, further resisting the local compression.

This pad, due to the low density highly compressible foam and the flexible envelope may be readily compressed until flat by opening the valve to permit air to be expelled while the pad is being compressed. If the valve is closed while the pad is under compression the pad remains compressed until the valve is opened. Several mattress sized pads may be thus compressed and packaged together for effecting a space savings while in transit or in storage. If one chooses the pad may be flattened and rolled and upon closing the valve will stay in the compressed rolled shape until the valve is opened. To inflate it is neccessary only to open the valve which allows air to enter and self inflate the pad due to the resilience of the foam as it returns to its original size and shape. Close the valve to hold the air in and the pad is ready for use. If desired, the firmness of the pad may be adjusted by blowing or pumping a small amount of air inside to increase firmness or by squeezing to exhaust some air before closing the valve to reduce firmness.

When the fluid in the pad is a liquid such as water the buoyancy of the pad is supplemented by the weight of the liquid displaced. As with the gas-filled mattress the foam loads in tension to increase internal pressure, this allows the use of a much thinner pad for a given cushioning requirement than a water bed. The foam damps much of the wave action due to the viscous effect of the water flowing through the interstices of the pad.

When the fluid in the pad is introduced under pressure and the valve closed to contain the pressure the pad acts as a structural member. The foam is placed entirely'in tension and the internal pressure resists general or local deformation and buckling of the skins. For structural applications the pad must be open-celled but may or may not be resilient.

I DESCRIPTION'OF THE DRAWINGS FIG. 1 is a perspective view of an inflatable pad.

FIG. 2 is a perspective view of a deflated and rolled up inflatable pad.

FIG. 3 is a partial sectional view of an inflated pad taken along section 33 of FIG. 1.

FIG. 4 is a partial sectional view of a deflated pad taken along section 4-4 of FIG. 1.

FIG. 5 is a partial sectional view of an inflated pad with valve taken along section 55 of FIG. 1.

FIG. 6 is a perspective view of a corner section of an inflated pad showing a lap type of joint for joining the skins.

FIG. 7 shows a fragmented side elevation of a fabric reinforced skin.

DETAILED DESCRIPTION The details of an inflatable pad 10, as practiced by this invention is best illustrated in FIG. 5. Referring then to FIG. 5 one finds a flexible fluid-tight envelope 12, in the form of a membrane or skin, encasing a resilient foam 14, having a multitude of interconnecting interstices, now shown, and a valve 16. The envelope and the foam are bonded together at interface 17. Any open-cell foamed resilient material such as polyurethane, plasticized polyvinylchloride and rubber may be used, but the polyurethane foam is preferred. Thefluidtight skin may be of a flexible polyurethane, plasticized polyvinylchloride, natural rubber, neoprene (polychloroprene) rubber, Tedlar (polyvinyl fluoride) or Hypalon (dichlorosulfonated polyethylene). The bond may be accomplished by use of an elastomeric adhesive of a polyurethane, nitrile or neoprene base. When both the foam and the envelope are polyurethanes a bond may be obtained by the application of heat at about 300 to 450 Fahrenheit. In the drawings the skins may be reinforced by a fabric such as nylon, polyester, or cotton, with nylon preferred. These fabrics are named by way of example and are not intended to be limiting. In one preferred embodiment the open-cell foam is a resilient polyurethane of from about 0.5 to 1.5 pounds per cubic foot and from 1 to 6 inches thick. A skin of l'lypalon rubber impregnated nylon cloth of from about 0.0015 inches to about 0.015 inches in thickness is coated with a neoprene base contact cement and is applied to the upperand lower surfaces of the open-cell resilient polyurethane foam 14, and the surfaces of the skinthat extend beyond the foam are pressed together and sealed in a tee type joint as at 18, FIG. 3 and FIG. 4. I

Valve 16, may be any of the conventional types such as a tube and plug, tube and cap, flexible tube folded over and fastened in folded position, or a screwed or spring poppet or globe valve. In one preferred embodiment, best shown in FIG. 5, the valve has tube 20, having a large internal diameter sized according to the thickness of the pad 10. The thicker the pad the larger the diameter. Even larger tubes may be used if installed on the flat surface of the pad. The size of this tube controls the time for compressing and for inflating the pad 10. The inside end of the tube in this embodiment is cut on a bias 22, to allow for maximum flow area at the interface between the foam and the tube. The tube may be of a polyvinyl chloride, neoprene, I-Iypalommetal, or polurethane with polyurethane preferred when used with the polyurethane skin. Removable stopper 24, in one preferred embodiment has a second tube 26, extending through with a second stopper 28. The second tube and stopper form a valve within a valve, and when the second stopper is removed it allows for a fine adjustment when introducing or removing a fluid to easily control thecushioning effect of the pad. The second tube may be lengthened and may be of a flexiblematerial to allow pinching to further restrict flow of fluid to obtain an even finer adjustment. The materials for the two stoppers andthe second tube are not critical. In this embodiment stopper 24, was neoprene, tube 26, was polyvinylchloride and the stopper 28, was metal. A chain or cord 30, is used to prevent losing the stoppers.

In another preferred embodiment the foam 14, is an open-cell resilient polyurethane. The skin with a coated reinforcing fabric is best shown in FIG. 7 where skin 12 has reinforcing fabric 32 and flexible impervious coating 34a and 34b. The skin 12, is a nylon fabric coated or impregnated with a flexible polyurethane. The foam is placed between the skins, compressed, the skins pulled taut, and the surfaces of the skins extending beyond the foam are heat sealed together. Next the compression is removed and heat applied to the area of the skins in contact with the two largest surface areas of the foam to bond the skins to the foam. The heat may be applied by platens, rollers, an iron or by hot gases. In this embodiment an iron at about 350 was applied for about 15 seconds to effect a good bond. A small area of the surfaces of the skins extending beyond the foam was left unbonded and a valve with a polyurethane tube was heat sealed between the skins in that area.

In one preferred embodiment the foam is compressed about 75 to 90 percent before sealing the extending surfaces of the skins and the skins are sealed with a tee type of joint as shown in FIG. 3. This facilitates rolling the pad.

In yet another preferred embodiment the foam is compressed about 20 percent before sealing the extending surfaces of the skins and the skins are sealed with a lap type of joint 32, as shown in FIG. 6.

Due to the advantages of the resilient open-cell polyurethane foams a series of samples have been made and evaluated using various skin materials.

EXAMPLE 1 A four inch by six inch pad one inch thick was made using 0.9 pound per cubic foot open-cell resilientpolyurethane foam (Caliform production code 0909CM) and 0.0015 inch thick Tedlar coated nylon balloon cloth. The valve was of 3/16 inch vinyl tubing plugged with a piece of metal. The bonding was accomplished with A. B. Boyd neoprene cement, type B1. This sample displayed good rollability and cushioning characteristics. It was not tested as a liquid filled pad.

EXAMPLE 2 A 13 inch by 19 inch sample was made with 1 inch thick, 0.9. pound per cubic foot open-cell resilient polyurethane foam, an envelope made up from a skin of 0.004 inch thick Hypalon rubber impregnated nylon cloth (Duracoat Corp. 600-1 lH Form A) and a inch vinyl tube and 3M contact cement number 2215 (a neoprene base adhesive). This sample had a soft feel and had good resistance to damage.

When filled with water the cushioning effect was similar to that when filled with air except that when compressed it had a viscous lag probably due to the resistance of the foam to the flow of water.

EXAMPLE 3 EXAMPLE 4 A 2 foot by 6 foot pad was prepared using the same materials for the foam and the flexible envelope as in example 2. A rigid inch internal diameter polyurethane tube was used and fitted with a stopper having a A inch vinyl tube inserted for fine adjustment of internal air quantity and pressure. Metal was used as a plug for the A inch tubing.

The cushioning and rolling characteristics were very good. The pad rolled to a 3 /2 inch diameter. The com-' pression thickness of the pad was only 0.050 inches but the wrinkling of the inner skin prevented full compression of the roll. After being rolled for several days the large stopper exposing the 4 inch tube was removed and the pad self inflated within two minutes.

EXAMPLE 5 A pad 20 inches by 72 inches was prepared using a 1% inch thick 0.9 pound per cubic foot open-cell resilient polyurethane foam, the flexible skin for the envelope was a one ounce per square yard nylon impregnated with 3% ounces per square yard of a polyurethane rubber and a inch inside diameter rigid polyurethane tube with stopper for the tube. The foam was bonded to the skins by heat sealing with a household iron. The foam was placed between taut skins, the foam compressed and the surfaces of the skins extending beyond the foam were heat sealed. Compression forces were removed from the foam and the foam was heat sealed at its upper and lower surface to the stretched skins. The valve assembly extended through and was heat sealed to the fluid impervious skins.

A high strength fluid impervious bond was obtained.

This 1% inch pad was very comfortable when used as a camping mattress.

EXAMPLE 6 EXAMPLE 7 A 21 inch by 16 inch pad was prepared using a 2 inch thick, 1.5 pound per cubic foot open-cell resilient polyurethane foam and an envelope from skins as in example 5. An automobile tire valve was bonded to the envelope and 5 p.s.i. of air was introduced into the pad. A 20 pound load placed in the middle of the pad when supported on 18 inch centers deflected V2 inch. A 2 pound load caused the same amount of deflection when the test was repeated with zero pressure inside the envelope. When the pad was placed on edge it buckled at 6 pounds of load with zero pressure inside and at 130 pounds of load with 5 p.s.i. of internal air pressure. The top skin of a pad with 5 p.s.i, of internal air pressure deflected about inch when placed on the floor and stepped on by a 150 pound man.

We claim:

1. A pad comprising: a resilient foamed open-celled material, having a density of from about 0.5 to 1.5 pounds per cubic foot; a pair of taut skins, of reinforcing fabric coated with flexible fluid tight material, covering and bonded to the foamed material to form an envelope with the surface of the skins that extend beyond the foamed material joined together; and a first valve communicating with the inside of the envelope through which a fluid may be introduced, removed or retained, said valve having a diameter sized to the thickness of the foamed material to permit rapid movement of fluid therethrough, and a second smaller valve within the first valve comprising an extended flexible tube having a stopper to allow for fine adjustment of the fluid flow therethrough.

2. A pad as in claim 1 further comprising a tee type joint between the extending surfaces of the skins.

3. A pad as in claim 2, wherein the fluid is water.

4. A pad as in claim 2, wherein the fluid is air at a pressure of at least 5 p.s.i.

5. A pad as in claim 1, further comprising a lap type joint between the extending surfaces of the skins.

6. A pad as in claim 5, wherein the fluid is water.

7. A pad as in claim 5, wherein the fluid is air at a pressure of at least 5 p.s.i.

8; A self inflating pad capable of being compressed and retained in the compressed state for space saving in transit or in storage comprising: a resilient foamed material of about 0.5 to 1.5 poundsper cubic foot, having a multitude of interconnecting interstices; a pair of flexible fluid tight taut skins covering and bonded to the foamed material to form an envelope with the surface of the skins extending beyond the foamed material joined all around in a tee type joint; the resilience of the foamed material, the flexibility of the taut envelope and the tee type joint allows the pad to be compressed; and a valve within a valve communicating with the inside of the envelope permits air to be expelled from the pad during compression while the valve is open, prevents air entering the compressed pad when the valve is closed, allows air to enter and self inflate the compressed pad to the resilience of the foamed material when the valve is open, and holds the air in and the inflated pad firm when the valve is closed, said valve within a valve further comprising; a tube bonded to the envelope and having one end of the tube inside the envelope and the other end outside the envelope; a removable first stopper for the tube, having a plugged hole therethrough, said plug comprising a flexible tube inserted into and extending beyond the first stopper; and a second removable stopper in the flexible tube such that removal of the second stopper gives fine adjustment of fluid flow and removal of the first stopper gives maximum fluid flow.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1159166 *Mar 24, 1915Nov 2, 1915Harry O BrawnerSprinkler for bottles.
US2834970 *Aug 7, 1957May 20, 1958Nappe MoritzSealed pad
US2997100 *Jun 9, 1958Aug 22, 1961Toyad CorpPneumatic foam structures
US3323151 *Feb 3, 1965Jun 6, 1967Milbern CompanyPortable pads
US3378864 *Feb 18, 1966Apr 23, 1968Phil M. CornesAtmospherically self-inflating buoyant device
US3537116 *Sep 26, 1968Nov 3, 1970Kain Calvin LVersatile folding pad
US3611455 *Apr 29, 1969Oct 12, 1971Jobst InstituteFlotation pad
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4119267 *Aug 18, 1976Oct 10, 1978Agis Frank KydonieusBlood and intravenous solution bag
US4370768 *Apr 25, 1980Feb 1, 1983Saloff William SDamped fluid displacement support system
US4411033 *Sep 26, 1980Oct 25, 1983United Foam CorporationWaveless waterbed
US4479275 *May 24, 1982Oct 30, 1984Richard FraigeWaterbed mattress with functionally nonredundant inner bladder means for wave attenuation
US4517692 *Mar 3, 1983May 21, 1985Ardo International MarketingAnti-decubitus waterfloatation system
US4694515 *Jun 26, 1986Sep 22, 1987Parma CorporationSelf-inflatable air mattress in a foldable support
US4768247 *Mar 14, 1988Sep 6, 1988Beier John KTravel Pillow
US4912789 *Feb 6, 1989Apr 3, 1990Hi Life Products, Inc.Waterbed mattress
US4930171 *May 3, 1989Jun 5, 1990International Healthcare Products, Inc.Contour retaining support cushion
US4942634 *Aug 31, 1983Jul 24, 1990Lumex, Inc.Damped fluid displacement support system and method for making the same
US4951335 *Jun 5, 1989Aug 28, 1990Donan Marketing CorporationMattress assembly
US4960304 *Feb 7, 1990Oct 2, 1990Internatinal Healthcare Products, Inc.Contour retaining back support cushion
US4995124 *Oct 20, 1988Feb 26, 1991Sustena, Inc.Constant pressure load bearing air chamber
US5033133 *Sep 13, 1990Jul 23, 1991Nissen Sports Academy, Inc.Seat cushion
US5044030 *Jun 6, 1990Sep 3, 1991Fabrico Manufacturing CorporationMultiple layer fluid-containing cushion
US5105488 *Apr 18, 1990Apr 21, 1992Simmons CompanyBedding configuration having variable support characteristics
US5117517 *Aug 13, 1991Jun 2, 1992Su Ping HungSelf inflating camping mattress
US5152018 *Dec 15, 1989Oct 6, 1992Cascade Designs, Inc.Batting filled self inflatable body
US5189745 *Mar 27, 1991Mar 2, 1993Burke Mobility Products, Inc.Mattress construction for support structure containing human waste collection system
US5190350 *Aug 14, 1990Mar 2, 1993Goodway CorporationSeating arrangement
US5196242 *May 29, 1991Mar 23, 1993Vicino Robert KSelf-inflating foam structure
US5300105 *Jun 30, 1993Apr 5, 1994Vesture CorporationTherapeutic pad and method
US5303435 *Jan 27, 1993Apr 19, 1994Haar James MSelf-inflating camping mattress having a tapered profile
US5329656 *Dec 3, 1992Jul 19, 1994Dennis V. LeggettInsulated puncture resistant inflatable mattress
US5424519 *Sep 21, 1993Jun 13, 1995Battelle Memorial InstituteMicrowaved-activated thermal storage material; and method
US5452487 *Jul 18, 1994Sep 26, 1995Leggett; Dennis V.Insulated puncture resistant inflatable mattress
US5500010 *Oct 14, 1993Mar 19, 1996Owens; Byron C.Heat application method
US5545198 *Sep 25, 1995Aug 13, 1996Vesture CorporationMethod of heating seat cushion with removable heating pad
US5552205 *Mar 21, 1994Sep 3, 1996Cascade Designs, Inc.Batting filled inflatable body and method of making the same
US5575812 *Apr 24, 1995Nov 19, 1996Vesture CorporationCooling pad method
US5584085 *Oct 7, 1994Dec 17, 1996Surgical Design CorporationSupport structure with motion
US5630959 *Aug 21, 1995May 20, 1997Vesture CorporationMicrowavable heating pad for warming food and method
US5636396 *Oct 4, 1995Jun 10, 1997L&P Property Management CompanyMattress inner spring core
US5700284 *Oct 15, 1996Dec 23, 1997Vesture CorporationHeat application method
US5806928 *Jul 14, 1997Sep 15, 1998Mccord Winn Textron Inc.Inflatable air cell having improved cell-to-air tube connection
US5817149 *Oct 29, 1996Oct 6, 1998Vesture CorporationHeat application method
US5817150 *Oct 4, 1996Oct 6, 1998Vesture CorporationTherapeutic pad and method
US5893184 *May 1, 1998Apr 13, 1999Comfortex Health Care SurfacesPressure reducing backrest cushion with selective pressure point relief
US5942305 *Sep 22, 1997Aug 24, 1999Porter Athletic Equipment CompanyFire retardant wall padding
US5948013 *Jul 15, 1997Sep 7, 1999Swezey; Robert L.Self-inflating back pillow and cold therapy device
US5989286 *Oct 15, 1996Nov 23, 1999Vesture CorporationTherapeutic pad and method
US6038722 *Jan 8, 1999Mar 21, 2000Giori; Gualtiero G.Pressure adjustable, anatomically contoured mattress
US6065166 *Oct 17, 1996May 23, 2000O.R. Comfort, LlcSurgical support cushion apparatus and method
US6108835 *Jun 23, 1999Aug 29, 2000Goodway CorporationCamping mat arrangement
US6154908 *Sep 15, 1998Dec 5, 2000L&P Property Management CompanyBedding or seating product with edge support
US6158071 *Feb 23, 2000Dec 12, 2000L&P Property Management CompanyBedding or seating product with edge support
US6190486 *May 27, 1998Feb 20, 2001Switlik Parchute Co., Inc.Method for making self-inflatable mattresses and cushions
US6202238Nov 18, 1999Mar 20, 2001L&P Property Management CompanyBedding or seating product with edge support
US6209159 *Jan 10, 1997Apr 3, 2001Comfortex Health Care SurfacesPressure reducing cushion with selective pressure point relief
US6327724Feb 1, 2000Dec 11, 2001O.R. Comfort, LlcInflatable positioning aids for operating room
US6397417 *Nov 8, 2000Jun 4, 2002Stanley SwitlikSelf-inflatable apparatus
US6494243 *Nov 8, 2000Dec 17, 2002Stanley SwitlikApparatus for making self-inflatable apparatus
US6510574Dec 7, 2001Jan 28, 2003O. R. Comfort, LlcInflatable positioning aids for operating room
US6537003Aug 21, 2000Mar 25, 2003Michael David RostokerLoad restraint system and method
US6610031 *Apr 18, 2001Aug 26, 2003Origin Medsystems, Inc.Valve assembly
US6767060May 3, 2001Jul 27, 2004Pent Products, Inc.Article of furniture having a support member with an adjustable contour
US6769848 *Feb 4, 2003Aug 3, 2004Michael David RostokerLoad restraint method
US6922863 *Sep 17, 2002Aug 2, 2005Gualtiero G. GioriAdjustable foam mattress
US7007356Sep 22, 2003Mar 7, 2006Phoenix Performance Products, Inc.Cushioning pads and the formation of cushioning pads
US7009835 *Jul 16, 2003Mar 7, 2006Olixir Technologies Corp.Energy dissipative device and method
US7043787 *Jun 11, 2002May 16, 2006Shizuko Kimura, legal representativeFluid bedding
US7225486 *Aug 22, 2005Jun 5, 2007Jackson Iii Avery MTherapeutic seat cushion
US7491064 *May 19, 2004Feb 17, 2009Barton Mark RSimulation of human and animal voices
US7509698 *Jan 8, 2007Mar 31, 2009Kreg Medical, Inc.Therapeutic mattress
US7536739 *Feb 8, 2006May 26, 2009Kreg Medical, Inc.Therapeutic mattress
US7716766Mar 23, 2009May 18, 2010Kreg Medical, Inc.Therapeutic mattress
US8510885Apr 2, 2010Aug 20, 2013Casey A. DennisAnatomical, pressure-evenizing mattress overlay and associated methodology
US8584287 *Dec 15, 2010Nov 19, 2013Johnson Outdoors Inc.Air mattresses
US20110154574 *Dec 15, 2010Jun 30, 2011Johnson Outdoors Inc.Air mattresses
US20110296617 *Jun 5, 2011Dec 8, 2011Alfred Gustave WendlerSelf Inflating Seat Cushion with Cover
US20120011656 *Mar 17, 2010Jan 19, 2012Patrick Noel DalyCushion, kit and method of manufacture
US20120101635 *Feb 8, 2010Apr 26, 2012Koninklijke Philips Electronics N.V.Floor construction with variable grade of resilience
US20130217973 *Feb 12, 2013Aug 22, 2013Applied Medical Resources CorporationWound retraction apparatus and method
DE102009043730A1Sep 30, 2009Sep 30, 2010Daly, Patrick Noel, ShanagarryKissen, Ausstattung und Herstellungsverfahren
DE202009013139U1Sep 30, 2009Mar 11, 2010Daly, Patrick Noel, ShanagarryKissen und Ausstattung
EP2030533A2Feb 13, 2008Mar 4, 2009Patrick Noel DalyA mattress assembly
WO1985000960A1 *Aug 31, 1983Mar 14, 1985William Samuel SaloffDamped fluid displacement support system and method for making the same
WO1992004846A1 *Sep 13, 1991Apr 2, 1992George P NissenSeat cushion
WO1996010938A1 *Oct 6, 1995Apr 18, 1996Surgical Design CorpSupport structure with motion
WO1998030133A1 *Jan 12, 1998Jul 16, 1998Comfortex Health Care SurfacesPressure reducing cushion with selective pressure point relief
WO1999060895A1 *May 26, 1999Dec 2, 1999Switlik Parachute Co IncMethod and apparatus for making self-inflatable mattresses and cushions
WO2000065962A1 *May 5, 2000Nov 9, 2000Cascade Designs IncComposite foam mattress having multiple laminate construction
WO2000071070A1 *May 12, 2000Nov 30, 2000Thomas Matthew CaveneyMethod and device for raising loads
WO2003037145A1Oct 7, 2002May 8, 2003Gualtiero GioriPressure adjustable foam support apparatus
WO2004034852A1Sep 23, 2002Apr 29, 2004Gualtiero GioriFoam and coil mattress combination
WO2005008445A2 *Jul 15, 2004Jan 27, 2005Olixir Technologies CorpRuggedized host module
WO2008020259A1 *Aug 16, 2007Feb 21, 2008Attila KovacsAir mattress
WO2010106103A1Mar 17, 2010Sep 23, 2010Patrick Noel DalyCushion, kit and method of manufacture
WO2011139259A1 *May 5, 2010Nov 10, 2011Mjd Innovations, L.L.C.Anatomical, pressure-evenizing mattress overlay and associated methodology
WO2013139857A1Mar 20, 2013Sep 26, 2013Enmed Ip Ltd.A cushion assembly
Classifications
U.S. Classification5/671, 5/709, 5/682
International ClassificationA47C27/08, A47C27/18
Cooperative ClassificationA47C27/18, A47C27/088, A47C27/084
European ClassificationA47C27/08A8, A47C27/08H, A47C27/18