Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3873271 A
Publication typeGrant
Publication dateMar 25, 1975
Filing dateJan 2, 1974
Priority dateJan 2, 1974
Also published asCA1053132A1, DE2461585A1, DE2461585C2, DE2463212C2
Publication numberUS 3873271 A, US 3873271A, US-A-3873271, US3873271 A, US3873271A
InventorsJr John F Coburn, Alfred H Miller, Dale A Young
Original AssigneeExxon Research Engineering Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for detecting free water in hydrocarbon fuels
US 3873271 A
Abstract
A method and apparatus for detecting the presence of free water in hydrocarbons in which the water reacts with freshly ground fuchsia dye and calcium carbonate having an average particle size of less than 10 microns and a surface area of 5-8 square meters per gram. The reagents are prepackaged in an evacuated glass vial. A sample of the hydrocarbon is admitted to the interior of the evacuated vial by a cannula mounted in a special receptacle adapted to receive the vial. The sample is drawn into the vial by the vacuum and reacts with the dye and carbonate to indicate the presence or absence of free water in the hydrocarbon.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

nited States atent [191 Young et al.

[111 3,873,271 '[451 Mar. 25, 1975 Exxon Research and Engineering Company, Linden, NJ.

Filed: Jan. 2, 1974 Appl. No.: 429,973

[73] Assignee:

References Cited UNITED STATES PATENTS 10/1947 King 23/254 X ll nl 1/1969 Reichle et a] 23/292 X 4/1970 Caldwell 23/230 Primary E.\'aminer--R. E. Serwin Attorney, Agent, or FirmHarold N. Wells; Byron O. Dimmick [57] ABSTRACT A method and apparatus for detecting the presence of free water in hydrocarbons in which the water reacts with freshly ground fuchsia dye and calcium carbonate having an average particle size of less than 10 microns and a surface area of 5-8 square meters per gram. The reagents are prepackaged in an evacuated glass vial. A sample of the hydrocarbon is admitted to the interior of the evacuated vial by a cannula mounted in a special receptacle adapted to receive the vial. The sample is drawn into the vial by the vacuum and reacts with the dye and carbonate to indicate the presence or ab sence of free water in the hydrocarbon.

11 Claims, 3 Drawing Figures BACKGROUND OF THE INVENTION Detection of free (undissolved) water in hydrocarbon fuels is of particular importance with regard to turbojet fuels for aircraft which, operating at high altitudes, are subject to fuel system plugging by ice crystals. To minimize this hazard, it is normal practice to inspect all fuel for the presence of free water as it is being loaded into aircraft. In general, less than about parts per million of free water is satisfactory, but 30 parts per million is too high. Special filter separators are used for removing free water from jet fuels, but testing of individual cargoes is necessary to check their performance. U.S. Pat. No. 3,505,020 disclosed an improved composition for reacting with free water present in jet fuels and producing a pink color which indicates the presence of excessive free water. That composition comprised a small amount of fuchsia dye (3 amino-7(dimethylamino-S-phenylphenazinium chloride) mixed with a major portion of a finely divided anhydrous solid which was selected from the group consisting of calcium carbonate, barium carbonate, barium sulfate, magnesium carbonate, and combinations thereof. The preferred anhydrous solid for the water detection composition is calcium carbonate.

In the prior art, it was disclosed that the dye particles should have a diameter less than 200 microns in order to be effective and, in particular, a weight average particle size of 44 microns was preferred. The particularly preferred composition would limit the dye particle size to under 74 microns with about 40-60 wt. of the particles having a diameter of less than about 44 microns. The dye is conventionally used in the textile industry and is commonly referred to as Methylene Violet, Basic Violet Five, Color Index 50205, fuchsia and so forth. A further description of the dye may be found in Color Index, the American Association of Textile Chemists and Co/orists, second edition 1956), at pages 1,635 and 3,4 l 4.

Also in the prior art, it was disclosed that the anhydrous solid particles should be less than 10 microns in size and technical grade crystalline powder.

In addition, the portions of anhydrous solid to dye would range between and 10,000 and preferably between 50 and 2,000 parts by weight. One part by weight of dye to about 400 to 1,000 parts by weight of anhydrous solid was particularly preferred.

The reagent mixture would be added to a fuel sample, about 0.05 to 2 grams of the mixture to 100 milliliters of hydrocarbon fuel. The preferred range would be between 0.1 and 0.5 gram of mixtureto each 100 milliliters of hydrocarbon.

As indicated in the prior art patent, this mixture gives satisfactory results. However, experience has shown that the method is subject to some practical difficulties. It has been heretofore typical to package the mixed dye and solids in closed containers of a size suitable for testing of individual fuel cargoes. It has been found that deterioration of the reagents occurs over a period of time and shelf life is limited. Accordingly, results after an extended period of storage may be erratic. In addition, it has been found that the composition of the mixture had to be adjusted before being placed into the closed containers in order to provide a uniform response. The

foregoing disadvantages have been overcome by the method and apparatus of the present invention.

SUMMARY OF THE INVENTION An improved composition for detection of free water in hydrocarbon fuels is obtained by introducing product quality standards for both the anhydrous carbonate and the fuchsia dye not heretofore known. It has been found that the fuchsia dye is more sensitive if it is finely ground immediately prior to being packaged rather than simply being screened and then packaged from the material as received from the supplier. As to the anhydrous carbonate, it has been found that, not only particle size, but effective surface area of the carbonate is important in obtaining a suitable sensitivity. In particular, effective surface areas in the range of 5 to 8 square meters per gram have been found to be preferred for this use. Surface areas greater than this range are generally not sensitive enough and surface areas smaller than the recommended range are too sensitive and neither will produce the desired results.

In the present invention, both carbonate and dye are prepackaged in an evacuated glass vial. The glass vial serves two functions: first, to protect the quality of the chemical reagents used and second, to provide a means for drawing a fuel sample into the vial for reaction with the reagents without ever exposing them to moisture in the air. In order to accomplish the introduction of fuel into the evacuated vial, a special receptacle is provided, mounting a small cannula which pierces a flexi ble closure at one end of the vial and provides a passageway for the fuel.

In field use, a small sample of fuel is drawn from a fueling line into a small container as an aircraft is being loaded, the receptacle is placed inside the container so that the open end of the cannula is suspended above the bottom of the fuel container, and thereafter the glass vial is inserted into the receptacle. The cannula punctures the flexible closure provided at one end of the vial, thereby providing a passageway between the fuel in the container and interior of the vial. The fuel is drawn in by the vacuum present within the container where it reacts with the reagents, producing a pink color should an excessive amount of free water he present, or remaining clear if less than 10 ppm free water is present.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of the apparatus of the invention prior to its assembly.

FIG. 2 illustrates the apparatus of FIG. 1 in the assembled condition immediately prior to admitting a fuel sample into the glass vial.

FIG. 3 is a vial according to the invention after having received a fuel sample in the manner indicated in FIG. 2.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates the three main parts of the apparatus. A small cylindrical container 10 is provided for receiving a small sample of fuel from the loading line. The container 10 has no special requirements except that it should contain sufficient sample to fill the vial 12 which is to be discussed hereinafter. The container 10 should preferably be made of a clear plastic material in order to avoid breakage and to permit observation as to the visual quality of the fuel drawn in, that is, whether it is clear or cloudy and whether it contains any suspended solids. Either of these conditions may indicate a failure of the fuel filter separator which would be located upstream of the sampling point.

The receptacle 14 consists of a cylindrical tube 16 with a flange 18 at one end for convenience in handling and open at either end. Mounted within the tube 16 is a transverse disc 20 which supports a cannula 21 mounted thereon. The cannula 21 provides a narrow passageway and, being blunt at one end 21a where fuel is drawn in and pointed at the opposite end 21b for piercing the flexible closure of the glass vial 12. A slot (or other perforation) is provided in the side of the receptacle 14 below disc 20 in order to permit fuel to pass freely into the interior of the tube 16 and be drawn into the blunt end 21a of the cannula. It is preferred that the cannula 21 not touch the bottom of the container in order that any extraneous materials which might be drawn in are not admitted to the vial and, therefore, the blunt end 21a of the cannula 21 is positioned approximately one-half inch above the bottom of the receptacle 14.

The improved reagents are enclosed in an evacuated glass vial 12 which is sealed at one end by a flexible closure 22. This closure 22 serves at least two purposes: first, to prevent breaking of the vacuum which was created in the tube at the time the reagents were sealed inside it and second, to provide a means for ready access of fuel to the reagents when the test is made without ever exposing the reagent to the atmosphere. Use of an evacuated tube permits not only protection of the quality of the reagents, but provides for taking the required amount of fuel sample. In addition, an indication of the quality of the reagents is obtained, for should the vacuum be lost, no fuel sample would be drawn through the cannula, indicating that the quality of the reagents was suspect and should not be used.

In general, the particle size of the fuchsia dye is essentially the same as that indicated in the prior art, but it has been found that freshly ground dye is particularly sensitive and that the sensitivity can be retained by packaging under vacuum. Table I illustrates the significant improvement in sensitivity of the dye when it is freshly ground as compared with the as-received material.

TABLE I Free Water Content It will be noted that when as received dye is only sieved that only a small color change can be found, whereas the same dye when freshly ground has a much wider color change, which is easily seen and permits some interpolation between ppm and 40 ppm free water. This greater sensitivity can be maintained if the dye is kept sealed and away from moisture and air as in the evacuated vial of the invention. Use of an inert gas in filling the vials will further improve the stability of the dye sensitivity.

As has been mentioned heretofore, it was necessary to empirically adjust the relative quantities of dye and anhydrous solid in order to provide a uniformity of response. It has been found that this irregularity in response of the as received materials was due, not to the particle size which was heretofore thought to be important, but rather to the effective surface area of the solid. It has been found that a relatively low surface area in the range of 0.1 to 4.5 square meters per gram is too sensitive and should not be used. Also, a relatively high surface area in the range of 8.5-10 square meters per gram or more is insensitive and should also not be used. While 58m /gm is the preferred range, small deviations outside this range ca. down to 4.5 or up to 8.5m /gm could be used. However, added adjustments to the dye to carbonate ratios may be necessary at these outer limits and the desired sensitivity response is bordering on the too sensitive and/or the insensitive areas.

It has been found that a preferred critical range of the order of 5-8 square meters per gram provides good sensitivity and permits the accurate proportioning of dye to solid. The relative sensitivity to surface area of the solid and the merits of restricting the surface area of the solid used to the recommended range will be evident from the data given in Table II below.

FIG. 2 shows the principal components of the invention in assembled form. Fuel 23 has been placed inside the cylindrical container 10 in a quantity sufficient to more than fill the vial, but leaving some residual amount in the container after the vial has been filled. The receptacle 14 has been placed within the container 10 where it rests on the bottom and fuel is free to pass through the slot 16a or other openings placed in the side of the receptacle 14. The evacuated via] 12 containing the improved reagents 24 has been placed within the receptacle 14 with the point of the cannula 21b resting lightly against the flexible closure 22.

It will be apparent that once the indicated downward motion is made, the cannula 21 will pierce the flexible closure 22 and admit fuel, assuming vacuum within the glass vial, into the vial 12 for reaction with the improved reagents 24. Once this downward motion has taken place, fuel rushes through the cannula 21 into the glass via] 12 which fills extremely rapidly owing to the presence of the vacuum present inside and quickly mixing the desired amounts of reagent and fuel.

In FIG. 3, a vial 12, after it has received a fuel sample, has been withdrawn from the receptacle, the flexible closure 22 sealing behind the cannula 21 as it is withdrawn, thereby retaining the fuel sample therein. The vial 12 may be shaken lightly to mix the reagents and fuel although this is essentially completed by the rapid inrush of fuel as it displaces the vacuum. After a short period, approximately 2 minutes, the color of the dye has developed if the fuel contains free water in excess of 10 parts per million. In general, the quantities of reagent and the sensitivity of the reagents are adjusted so that no color change develops when the free water content is parts per million or below but a pink color develops above that level which may be compared with a known standard. If an excessively dark pink color has developed during the 2-minute period, indicating that more than 30 ppm is present, the fuel must be rejected and reprocessed in order to remove free water present therein. Such standards were used in the results shown in Tables I and II.

The foregoing test is primarily used in the field as a go/no-go test in aircraft fueling. It is within the scope of the invention, however, to package quantities of dye in measured quantities so as to permit a series of such tests to make a more accurate determination of the precise level of water contained. This may be necessary to satisfy both military and commercial standards and to closely measure the quantity of water when a go/no-go test is insufficient.

The foregoing description of the preferred embodiments is for illustration of the invention only and should not be deemed to limit the scope thereof which is defined by the claims which follow.

What is claimed is:

1. An apparatus for detecting the presence of free water in hydrocarbons which comprises in combination:

a. an evacuated tube containing chemicals sensitive to the presence of said free water, said tube being closed at one end and sealed at the other end by a pierceable closure to maintain said vacuum;

b. a receptacle means for receiving said tube of (a);

c. a cannula having an inlet end and an outlet end mounted on said receptacle and disposed to pierce said closure when said tube is inserted into said receptacle, thereby providing a conduit into the evacuated interior of said tube.

2. The apparatus of claim 1 further comprising a container for a sample of said hydrocarbons adapted to receive said tube receptacle means whereby-said cannula is enabled to admit hydrocarbons from said container into said tube as urged by the vacuum therein.

3. The apparatus of claim 1 wherein said receptacle means is a cylidner open at both ends and having a transverse partition intermediate said ends for mounting said cannula whereby said cannula serves as a passageway through said partition.

4. The apparatus of claim 3 wherein one of said cylinder ends extends beyond the inlet end of said cannula,

thereby preventing said cannula from touching the bottom of said container when said receptacle is inserted therein.

5. The apparatus of claim 4 wherein the cylindrical wall adjacent the inlet end of said cannula contains area of 58m /gm selected from the group consisting of calcium carbonate, barium carbonate, barium sulfate, magnesium carbonate, and combinations thereof;

b. freshly ground fuchsia dye having a particle size between 44 and 74 microns.

7. The apparatus of claim 6 wherein the weight ratio of said solid to fuchsia dye is within the range of 20:1 to 10,00011.

8. A method for detecting free moisture in hydrocarbons comprising:

a. obtaining a sample of said hydrocarbons in a container;

b. placing in said container a receptacle for receiving a means for withdrawing a portion of said sample, said receptacle being adapted to receive an evacu ated sample vial containing moisture sensitive chemical reagents, said sample vial being closed at one end and sealed at the other end with a pierceable closure;

c. piercing said closure with a cannula mounted on said receptacle and admitting a portion of said hy drocarbon through said cannula into said vial as urged by the vacuum therein;

d. reacting said hydrocarbon portion drawn into said vial with said moisture sensitive chemical reagents and thereby producing a color proportional to the free water present in said hydrocarbon portion;

e. comparing the color produced in said hydrocarbon portion drawn into said vial with known standards and thereby determining theamount of free water contained in said hydrocarbon portion.

9. The method of claim 8 wherein said moisturesensitive chemicals comprise:

a. a finely-divided anhydrous solid having a surface area of 5-8m lgm and selected from the group consisting of calcium carbonate, barium carbonate, barium sulfate, magnesium carbonate, and combi' nations thereof; b. freshly ground fuchsia dye having a particle size between 44 and 74 microns and in a weight ratio to said solid within the range of 1:20 and 1110,000. 10. A packaged liquid useful for the detection of free water in a liuqid hydrocarbon which comprises a mixture of:

a. a finely divided anhydrous solid having a surface area of from 5 to 8 square meters per gram, said solid being selected from the group consisting of calcium carbonate, barium carbonate, barium sulfate, magnesium carbonate, and mixtures thereof; and b. freshly ground fuchsia dye having a particle size between 44 and 74 microns; the weight ratio of said dye to said solid being within the range of 1:20 to 1110,000;

said mixture having been both prepared and sealed off from contact with moisture and air at the time of grinding said dye.

11. Packaged composition as defined by claim 10 wherein said mixture is maintained in a vacuum.

UNITED STATES PATENT @FFIGE @ERHHCATE M @QRQTWN Patent NO. 3 87x271 Dated March 25, 1975 Inventor(s) Dale A. Young, Alfred H Miller and John F, Coburn, Jr

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

11-111; 5, line 44, cancel "cylidner" and substitute cylinder Col 6, line 43, cancel "liquid" and substitute liuqid" and substitute compositionline 44, cancel -=-liquid--=.,

ESEAH Arrest:

v U'B'H Q MASON v (I. MARflME-L DAWN Attesling Officer (ommissioner ol'Parems and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2429694 *Mar 29, 1944Oct 28, 1947Little Inc AMethod and equipment for indicating the water content of a gas
US3421857 *Jan 14, 1966Jan 14, 1969Bayer AgPyrolysis and reaction chamber for gas and chromatography
US3505020 *Mar 5, 1968Apr 7, 1970Exxon Research Engineering CoMethod and composition for detecting free water
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3976572 *Jan 8, 1975Aug 24, 1976Michael EbertAircraft fuel contaminant tester
US3996001 *May 12, 1975Dec 7, 1976Battelle Memorial InstituteMethod of and device for the analysis of liquids
US4089652 *May 12, 1977May 16, 1978August Bartold PedersenReaction with water to form a gas
US4151256 *May 8, 1978Apr 24, 1979Mobil Oil CorporationEspecially useful for marine diesel engine circulating lubricants
US4198207 *Mar 26, 1979Apr 15, 1980Mobil Oil CorporationDetermination of water content in presence of oils
US4231752 *Feb 28, 1979Nov 4, 1980Mobil Oil CorporationExtraction, reaction with silver chromate
US4257775 *Jul 30, 1979Mar 24, 1981Mobil Oil CorporationDetermination of water content in various systems
US4272245 *Dec 4, 1978Jun 9, 1981Transidyne General CorporationAnalyzing, testing, potentials
US4537747 *Mar 16, 1983Aug 27, 1985Chemetrics, Inc.Disposable device for sampling and diluting
US4557899 *Oct 15, 1984Dec 10, 1985Hach CompanyWater-in-oil testing apparatus
US4578357 *Jun 27, 1983Mar 25, 1986Atlantic Richfield CompanyStabilized water indicating paste composition
US4596780 *Dec 26, 1984Jun 24, 1986Chemetrics, Inc.Process for sampling and diluting
US4668634 *Sep 16, 1985May 26, 1987Marquest Medical Products, Inc.Analysis of blood gases,
US4699885 *May 2, 1983Oct 13, 1987Melpolder Frank WPaste including indicator dye
US4717671 *Jan 3, 1986Jan 5, 1988Pony Industries, Inc.Stabilized water indicating paste composition
US4929562 *Aug 20, 1986May 29, 1990The Regents Of The University Of CaliforniaMethod and apparatus for detecting gem-polyhalogenated hydrocarbons
US5286453 *Apr 2, 1992Feb 15, 1994Pope Carolyn MDevice for dispensing a biological fluid from a sealed vacuum tube
US5491345 *Oct 3, 1994Feb 13, 1996Associated Universities, Inc.Sealed vacuum canister and method for pick-up and containment of material
US6376250Aug 17, 2000Apr 23, 2002Nabil J. MohtadiComposition and probe for detection of water
US7354768 *Apr 14, 2005Apr 8, 2008Phase Dynamics, Inc.Volume-differential assay using hydrophilic gel
US7407625 *Apr 14, 2005Aug 5, 2008Phase Dynamics, Inc.Volume-differential water assay system using hydrophilic gel
US8409508Apr 23, 2003Apr 2, 2013Biofire Diagnostics, Inc.Sample withdrawal and dispensing device
Classifications
U.S. Classification436/40, 206/524.8, 436/165
International ClassificationG01N31/22, G01N33/22, G01N31/00, G01N33/28, G01J3/00, G01N21/03
Cooperative ClassificationG01N33/2847, G01N31/222
European ClassificationG01N31/22C, G01N33/28G2