Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3873454 A
Publication typeGrant
Publication dateMar 25, 1975
Filing dateMar 22, 1974
Priority dateMar 22, 1974
Publication numberUS 3873454 A, US 3873454A, US-A-3873454, US3873454 A, US3873454A
InventorsAndrew G Horodysky, Henry Raich
Original AssigneeMobil Oil
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lubricant composition
US 3873454 A
Abstract
Lubricant compositions containing in an amount sufficient to impart antiwear and extreme pressure properties, a compound having the structure:
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Horodysky Mar. 25, 1975 LUBRICANT COMPOSITION [75] Inventor: Andrew G. Horodysky; Henry Raich. both of Cherry Hill, NJ.

[73] Assignee: Mobil Oil Company, New York,

22 Filed: Mar. 22, 1974 21 Appl. No.: 453,609

Primary ExuminerW. Cannon Attorney, Agent, or FirmCharles A. Huggett', Raymond W. Barclay; Benjamin l. Kaufman [57] ABSTRACT Lubricant compositions containing in an amount sufficient to impart antiwear and extreme pressure properties, a compound having the structure:

This compound is particularly useful as an extreme pressure additive in lubricant composition.

13 Claims, N0 Drawings LUBRICANT COMPOSITION BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to lubricant compositions and, in one of its aspects, relates more particularly to lubricating compositions such as lubricating oils and greases which exhibit insufficient antiwear and extreme pressure properties, under conditions of use.

2. Description of the Prior Art It is known that extreme pressure properties can be incorporated in lubricant compositions such as liquid hydrocarbons and greases by incorporating therein sulfurized olefins as extreme pressure additives. Such additives are capable of imparting good extreme pressure and antiwear properties, but they contain relatively high corrosive sulfur contents, a deficiency which limits their use. Absence of corrosive sulfur content would be desirable. In additives of this type it is also highly desirable, from a commercial standpoint, that they be odorless and colorless. These latter characteristics have also been found lacking in present commercial sulfurized extreme pressure additives.

SUMMARY OF THE INVENTION and separating the compound thus produced from the aforesaid reaction mixture. The compound thus produced is found to have a melting point of approximately 254C.

In general. the aforementioned reactions are conducted at ambient temperature. In most operations the reactions are conducted at a temperature from about to about 150C. and preferably at a temperature from about to about 60C. Insofar as the production of the adduct is concerned. sufficient sulfur halide is employed to react with all of the isobutylene. In general, for most operations, isobutylene and the sulfur halide are reacted in a mole ratio of from about 0.511 to about 25:1 and preferably in a mole ratio of from about 1:1 to about 2:1, by weight. Insofar as the reaction between the adduct and the alkali metal mercaptide is concerned, sufficient alkali metal mercaptide is employed to react with all of the adduct. In general, for most operations, the adduct and the alkali metal mercaptide are reacted in a mole ratio of from about 1:1 to about 1:5 and preferably in a mole ratio of from about 1:1 to about 12.5 by weight. Any sulfur monohalide may be employed for reaction with isobutylene and may include sulfur monochloride, or a combination of a sulfur dihalide and elemental sulfur to produce the corresponding sulfur monohalide may also be employed as a reagent. Any alkali metal mercaptide may be employed for reaction with the adduct, as hereinbefore described, and may include sodium mercaptide, potassium mercaptide, lithium mercaptide or calcium mercaptide.

Any non-reactive liquid medium may be employed for carrying out the reaction betweenthe adduct and the alkali metal mercaptide and may include lower alcohols such as methanol, ethanol, propanol or butanol.

The resulting antiwear extreme pressure compound, suitable for use as an extreme pressure lubricant additive is found to have a sulfur content of about 50 percent, by weight, and is odorless and colorless. This.

compound represents about 45 percent, by weight, of the product resulting from the reaction of the aforementioned adduct and the alkali metal mercaptide. The remaining portion of the aforementioned product .comprises about 55 percent, by weight, a mixture of unsaturated sulfides and polysulfides.

Of particular significance, in accordance with the present invention, is the ability to impart improved antiwear and extreme pressure properties to lubricants comprising liquid hydrocarbon oils in the form of either mineral oils or synthetic oils, or in the form of a grease in which any of the aforementioned oils are employed as a vehicle, in conjunction with a thickening agent. In general, mineral oils employed as the lubricant or grease vehicle, may be of any suitable lubricating viscosity range, as for example, from about 45 SSU at F. to about 6000 SSU at 100F., and preferably from about 50 SSU at 210F. to about 250 SSU at 210F. These oils may have viscosity indices varying from below 0 to about 100 or higher. The average molecular weights of these oils may range from about 250 to about 800. Where the lubricant is to be employed in the form ofa grease, the lubricating oil is generally employed in an amount sufficient to balance the total grease composition after accounting for the desired quantity of the thickening agent and other additive components to be included in the grease formulation. In instances where synthetic oils, or synthetic oils employed as the vehicle for the grease, are desired in prefe'rance to mineral oils or in combinations therewith.

various compounds of this type'may be successfully utilized. Typical synthetic vehicles include polyisobutylene, 'polybutenes, hydrogenated polydecenes. polypropylene glycol, polyethylene glycol, trimethylol propane esters, neopcntyl and penta-e'rythritol esters, di (2- 'ethylhexyl) sebacate. di (Z-ethyl hexyl) adipate, dibutyl phthalate, fluorocarbons. silicate esters. silanes esters of phosphorous-containing acids, liquid ureas, ferrocene derivatives, hydrogenated mineral oils, chain-type polyphenyls, siloxanes and silicones (polysiloxanes), alkyl-substituted diphenyl ethers typified by a butylsubstituted bis (p-phenoxy phenyl) ether, phenoxy phenylethers, etc.

With respect to imparting improved antiwear and extreme pressure properties to greases, which contain the above-described novel extreme pressure additives, any thickening agent normally employed in grease formulations may be successfully utilized. Particularly preferred are greases which contain in minor properties, such conventional thickening agents as lithium hydroxystearate, lithium complexes, calcium complexes, claybased thickening agents, polyurea based thickening agents and a wide variety of other metallic soaps and thickeners normally employed in the grease-making art. In addition, other additives, normally employed for imparting extreme pressure properties may also be incorporated in the novel greases and may therefore include such extreme pressure additives as chlorinated paraffins, phosphorous-containing, calcium carbonate, calcium acetate or zinc phosphorodithioate-containing additives.

The following data and examples will serve to illustrate the marked degree in antiwear and extreme pressure improvement imparted by the novel additives of the present invention to lubricant compositions. It will be understood, however, that it is not intended the invention be limited to the particular lubricant compositions disclosed nor the particular additive for imparting extreme pressure properties. Various modifications thereof can be employed and will be readily apparent to those skilled in the art.

EXAMPLE 1 Sulfur monochloride l013g, 7.5 moles) was charged into a3-L. 4-necked reaction flask equipped with a mechanical stirrer, condenser (drying tube attached) a thermometer, and a sub-surface gas sparger. While keeping the temperature between 4550C., isobutylene was passed over 60g of methanol into the reaction flask over an 8-hour period, during which 716g (12.8 moles) of isobutylene was consumed. The reaction mixture was then purged at 40C. with a stream of nitrogen for 30 minutes and then filtered to yield l579g of a light amber liquid.

Sodium mercaptide, l200g) and 1250 ml of ethanol were charged into a 5-L. reaction flask fitted with a stirrer, condenser, (drying tube attached) thermometer and an addition funnel. After stirring to get a good dispersion of the solids, 620g of the above, isobutylenesulfur monochloride adduct was added rapidly and carefully at first to attain a temperature of 45C. and then dropwise from the addition funnel. The addition took about 2 hours. By carefully regulating the addition, the temperature was kept at close to 40C. and excessive foaming (H 8 evolution) was avoided.

Following the aforementioned addition, the reaction mixture was heated, while stirring at 4550C. for an additional 3 hours. After cooling to room temperature, it was filtered, the solids washed with hexane, with water and ether and a water insoluble white solid product was collected. The filtrate was allowed to stay overnight under house vacuum. The solid product which precipitated from the filtrate was collected and washed several times with water and ether and dried. The combined solids were further purified by stirring vigorously in water and a little ether, collected and dried to yield 250g of white solid product, having a sulfur content of 53 percent. This product was found to have the structure hereinbefore described.

An SAE solvent-refined Mid-Continent oil having a pour point of 25F. was next subjected to the standard Four-Ball Wear Tests for determining improvement in antiwear properties. This test is described in US Pat. No. 3,423, 316. In general, in this test, three steel balls of 52100 steel are held fixed in a ball cup. The test lubricant is added to the ball cup and acts as a lubricant. A similar fourth ball positioned on a rotatable vertical spindle is brought into contact with the three balls and is rotated against them for a known time. The force with which the fourth ball is pressed against the three stationary balls may be varied to give a desired load. The temperature of the ball cup, stationary balls and lubricant may be brought to a desired temperature and held constant during the test. At the end of the test, the three stationary steel balls are examined for wear-scar diameter. The extent of scarring represents the antiwear effectiveness of the lubricant; the smaller the wear scar at the same load, speed, temperature and time, the more effective the antiwear characteristics of the lubricant. ln the data of Table l, are shown the results obtained in which the aforementioned base stock oil was subjected to Four-Ball Wear Tests.

TABLE l 4-Ball Wear Test-Scar Diameter (mm) /4" Balls, 52l00 Steel, 60 Kg load, A: hr.

Lubricant: SAE 90 Base Oil Ex- Temp. Speed ample F. 500 RPM 1000 RPM 1500 RPM 2000 RPM 2 Room 0.50 0.60 0.88 2.34 3 200 0.60 1.06 L86 2.23

The above-described product of Example I was next incorporated into the base stock lubricating oil of Table l in a concentration of 0.5 percent, by weight, and then subjected to the aforementioned Four-Ball Wear Tests. The results obtained are shown in the following Table ll.

TABLE ll 4-Ball Wear Test-Scar Diameter (mm) W Balls, 52100 Steel, 60 Kg load, V2 hr. Lubricant: SAE 90 Base Oil 0.5% (WL) of Product of Example I Ex- Temp Speed ample "F 500 RPM 1000 RPM 1500 RPM 2000 RPM 4 Room 0.46 0.50 0.60 0.80 5 200 0.50 0.63 0.75 0.90

TABLE III Grease Characteristics Additive of Consistency Thermal Stability 4-Ball EP 'lcst Base Grease Example I Change With at 300F. Load Wear Weld Ex. Thickcner Fluid Wt. 71' Color Odor Additive Odor Consistency Index, kg Load kg 6 Baragel Clay Synthetic Cream None None No softening 32.9 Hi0 Hydrocarbon 7 Baragel Clay do. 3.5 Cream None Slight None No softening 82.3 500 Thickening 8 Baragcl Clay do. 0.8 Cream None None No softening 52.5 3l5 9 Calcium Complex Paraffinic 3.5 Cream None Slight None No softening 141.7 800 Thickening l0 Calcium Complex do. 0.8 Cream None None No softening 75. 00 l l Lithium Hydroxystearate Naphthenic/ 4 Tan None Slight None No softening 48.6 3L

Bright Stock Thickening l2 Lithium do. 1 Tan None Slight None No softening 33.7 250 Hydroxystearate Thickening l3 Lithium Complex do. 0 Tan None None No softening 24.3 let) l4 Lithium Complex do. 35 Tan None Slight None No softening 55.] 400 Thickening In Table [I], the synthetic hydrocarbon fluid of examples 6, 7 and 8 comprised 89 percent of the base grease.

The Baragel clay thickener of examples 6, 7 and 8 comprised l 1 percent of the base grease, by weight.

The paraffinic mineral oil fluid of examples 9 and I0 comprised 83 percent of the base grease, by weight.

The calcium complex thickener of examples 9 and 10 comprised 17 percent of the base grease, by weight.

The naphthenic bright stock mineral oil blend of examples ll and I2 comprised 90 percent of the base grease, by weight.

The lithium hydroxystearate thickener of examples ll and 12 comprised 10 percent of the base grease, by weight.

The naphthenic bright stock mineral oil fluid of examples l3 and 14 comprised 90 percent of the base grease, by weight.

The lithium complex thickener of examples l3 and 14 comprised 10 percent of the base grease, by weight.

It will be apparent, also, from the comparative data ,of Table III that the aforementioned novel additives of the present invention, are markedly effective extreme pressure agents in grease formulations, as evidenced by imparting increased Load Wear Index and Weld Load Values.

As previously indicated, other extreme-pressure additives may be incorporated in the novel lubricant formulations such as chlorine-containing, phosphorouscontaining, calcium-carbonate or calcium acetate conrtaining additives, which may tend to enhance the extreme pressure characteristics of the lubricant formula- :tion. Apart from the excellent extreme pressure prop-' erties exhibited in grease formulations, it should also be noted that superior extreme pressure characteristics may also be imparted in the use of the aforementioned sulfur material as a dispersion or emulsion in fluids, oils, synthetic hydrocarbon fluid, esters, fatty oils, and water emulsion lubricants. The novel high sulfur solid extreme pressure additive furthermore exhibits superior extreme pressure characteristics when employed as a finely divided powdered, solid lubricant and as part of a dry solid film lubricant. This additive also imparts extreme pressure characteristics when used as a dispersion or base in such media as cutting oils, metal processing and metal-working oils and in related applications such as extrusion compounds.

While this invention has been described with reference to preferred compositions and components therefore, it will be understood by those skilled in the art, that departure from the preferred embodiments can be effectively made and are within the scope of the specification.

We claim:

I. A lubricant composition containing lubricating amounts of a member selected from the group consisting of mineral oil of lubricating viscosity, synthetic lubricating oils, greases and water emulsion lubricants based on said oils containing, in an amount sufficient to impart antiwear and extreme pressure properties, a compound having the structure:

2. A composition as defined in claim 1 wherein said composition comprises an oil of lubricating viscosity.

3. A composition as defined in claim 1 wherein said composition comprises an oil of lubricating viscosity within the range of 45 SSU at lO0F. to about 6000 SSU at F.

4. A composition as defined in claim 1 wherein said composition comprises anoil of lubricating viscosity within the range of from about '50 SSU at 210F. to about 250 SSU at 210F.

5. A composition as defined in claim 1 wherein said composition comprises a grease.

6. A composition as defined in claim 1 wherein said composition comprises a grease containing, in minor proportion, lithium hydroxystearate as a thickening agent. i

7. A composition as defined in claim 1 wherein said composition comprises a grease containing. in minor proportion, a lithium complex as a thickening agent.

8. A composition as defined in claim 1 wherein said composition comprises a grease containing. in minor proportion, a calcium complex as a thickening agent.

composition.

12. A composition as defined in claim 1 wherein said compound is present in an amount of from about 0.1 to about 10 percent, by weight, of the total weight of said composition.

, 13. A composition as defined in claim 1 wherein said composition contains a chlorinated paraffin in an amount sufficient to impart additional extreme pressure properties.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2213804 *Feb 23, 1938Sep 3, 1940Continental Oil CoLubricating oil
US2744070 *Dec 22, 1952May 1, 1956Continental Oil CoSoluble cutting oil
US3481871 *Apr 24, 1967Dec 2, 1969Mobil Oil CorpDithioethane derivatives and organic compositions containing the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4013571 *Jan 24, 1975Mar 22, 1977Phillips Petroleum CompanyExtreme pressure lubricating composition containing thiosulfinate extreme pressure agents
US4194980 *Dec 15, 1978Mar 25, 1980Mobil Oil CorporationReaction product of sulfurized olefin with cyclic polydisulfide; extreme pressure
US4204969 *Oct 10, 1978May 27, 1980Edwin Cooper, Inc.Lubricant composition containing sulfurized olefin extreme pressure additive
US4217232 *Dec 21, 1978Aug 12, 1980Mobil Oil CorporationAntioxidant compositions
US4240958 *Dec 20, 1978Dec 23, 1980Mobil Oil CorporationProcess of preparing sulfurized olefins
US4839069 *Oct 16, 1987Jun 13, 1989Institut Francais Du PetroleOlefin polysulfide compositions their manufacture and use as additives for lubricants
US6884855Jan 30, 2003Apr 26, 2005Chevron Oronite Company LlcMolecular weight control of polymers with wear resistance and oxidation resistance of methylvinylene polymers for lubricants
US7414013Nov 23, 2004Aug 19, 2008Chevron Oronite Company Llcpolyisobutyl-1,2-dithiole-4-cyclopentene-3-thione compounds useful in lubricating oils; extreme pressure lubricants; relative to the conventional sulfurized isobutylene, do not have a strong odor, and improved stability in acids
US7601676Jul 1, 2005Oct 13, 2009Afton Chemical CorporationSulfonate compositions
US7615519Jul 19, 2004Nov 10, 2009Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
US7615520Mar 14, 2005Nov 10, 2009Afton Chemical CorporationBase oil of lubricating viscosity and hydrocarbon soluble metal compound effective to provide a reduction in oxidation of lubricant composition; metal of the metal compound is selected from titanium, zirconium, and manganese; essentially devoid of sulfur, phosphorus, and phenolic antioxidant compounds
US7682526Dec 22, 2005Mar 23, 2010Afton Chemical Corporationconcentrate may include a reaction product of a fatty acid, an alkylene polyamine, a hydrocarbyl succinic acid or anhydride, and an alkoxylated alkylphenol component and from about 2 to about 50 wt. % alkyphenol component; suitable for pipeline fluid, drilling fluid; storage stability
US7709423Nov 16, 2005May 4, 2010Afton Chemical CorporationAdditives and lubricant formulations for providing friction modification
US7767632Dec 22, 2005Aug 3, 2010Afton Chemical CorporationAdditives and lubricant formulations having improved antiwear properties
US7776800Dec 9, 2005Aug 17, 2010Afton Chemical CorporationFully formulated lubricating oil comprising a succinimide dispersant, a Calcium detergent, anantioxidant, and a hydrocarbon soluble titanium carboxylate; improved sludge reducing properties compared oil without the titanium compound; antisludge agents; antideposit agents; oxidation resistance
US7897548Mar 15, 2007Mar 1, 2011Afton Chemical CorporationAdditives and lubricant formulations for improved antiwear properties
DE3634330A1 *Oct 8, 1986Apr 21, 1988Magyar Asvanyolaj Es FoeldgazPolysulphide EP additives for lubricating oils etc. prepd. - by chloromethylating aromatic hydrocarbon to degree depending on additives intended use, and reacting prod. with metal polysulphide
DE3634336A1 *Oct 8, 1986Apr 21, 1988Magyar Asvanyolaj Es FoeldgazProdn. of alkyl-aromatic polysulphide cpds. useful as ep additives - by reaction of corresp. halide with alkali or alkaline earth metal polysulphide cpd. formed initially in mixed solvent
DE3818364A1 *May 30, 1988Dec 15, 1988Cosmo Oil Co LtdFluessigkeitszusammensetzung fuer eine fluessigkeitskupplung
DE102007056248A1Nov 22, 2007Jul 10, 2008Afton Chemical Corp.Additive und Schmiermittel-Formulierungen für verbesserte Antiverschleißeigenschaften
DE102008005874A1Jan 24, 2008Sep 18, 2008Afton Chemical Corp.Additive und Schmiermittelformulierungen für verbesserte Antiverschleißeigenschaften
EP0236022A2 *Feb 20, 1987Sep 9, 1987Hitachi, Ltd.Lubricating composition for plastic working and articles worked by using the same
EP0271368A1 *Oct 9, 1987Jun 15, 1988Institut Francais Du PetrolePolysulfurized olefin compositions, their preparation and their use as lubricant additives
EP1443061A1 *Dec 22, 2003Aug 4, 2004Chevron Oronite Company LLCSulfurized polyisobutylene based wear and oxidation inhibitors
EP1857474A2 *Dec 22, 2003Nov 21, 2007Chevron Oronite Company LLCSulfurized polyisobutylene based wear and oxidation inhibitors
EP2287210A2Dec 22, 2003Feb 23, 2011Chevron Oronite Company LLCSulfurized polyisobutylene based wear and oxidation inhibitors