Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3875476 A
Publication typeGrant
Publication dateApr 1, 1975
Filing dateJan 10, 1974
Priority dateJan 10, 1974
Also published asCA1029095A1, DE2500414A1
Publication numberUS 3875476 A, US 3875476A, US-A-3875476, US3875476 A, US3875476A
InventorsCrandall William B, Shipley Linden E
Original AssigneeHoneywell Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Igniter element
US 3875476 A
Abstract
A heat-resistant ceramic electric igniter element has a plurality of compositions in a continuous unitary body structure including a central or igniting zone of a composition having a relatively high electrical resistance flanked by end zones of a composition having a lower electrical resistance to which the leads are attached. Gradual transitions from one composition to the other are provided which compensate for any differences in the coefficient of expansion between the two compositions and minimize migration between the two compositions.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Crandall et al. Apr. 1, 1975 [5 1 lGNlTER ELEMENT 3.607.475 9/1971 Schrewclius 156/6 1 n1 g a 5] e rs William B. crandan' eamm 3.fi6.., -/l97 Ra 317/98 Linden E. Shipley, Evanston. both v of m PIIIHUI) Lrummer-Volodymyr Y. Mayewsky Attorney, Agent, or FirmCharles G. Mersereau [73] Assigneez Honeywell Inc., Minneapolis. Minn.

[22] Filed: Jan. 10, 1974 [57] ABSTRACT I PP 2. 5 A heat-resistant ceramic electric igniter element has a plurality of compositions in a continuous unitary body U.S v l6 SU'UCIUI'E including a central Ol' igniting 20116 of 21 com- 333/33d 431/258v position having a relatively high electrical resistance 5 l] Int. Cl. i 23 7/10 flanked by end Of composiion having a [58] new of Search 338/275 219/552 electrical resistance to which the leads are attached. 219/553. 252/516. 264/65. Bl/258' Gradual transitions from one composition to the other i are provided which compensate for any differences in 56] References cued the coefficient of expansion between the two composi- UNITED STATES PATENTS tions and minimize migration between the two compo= sitions. 1992959 7/l96l Schrcwelius 338/330 X 3.321.727 5/l967 Schrcwclius 338/330 3 Claims. 2 Drawing Figures moosoo-

soo-

TEMPERATURE (Fl ITIIIIIIIII 0. L0

llrlllllllllll 1.5 L0 05 O DISTANCE FROM CLOSEST END (INCHES) PATENIEDAPR 1 1975 FIG.I

O O o Q 0 o 0 o 8 6 4 2 may mmnk mmn=amh DISTANCE FROM CLOSEST END (INCHES) FIG.2

IGNITER ELEMENT BACKGROUND OF THE INVENTION The present invention relates generally to electrical resistance-type ceramic igniter elements for igniting gaseous fuels and the like, and, more particularly. to an improved continuous service element utilizing a plurality of ceramic compositions in a unitary structure.

DESCRIPTION OF THE PRIOR ART In the prior art it has long been known to utilize vari ous heat-resistant oxidation-proof ceramic materials for resistance-type electric igniter elements. It is also known that an igniter may be made utilizing a plurality of ceramic Compositions having different electrical resistivities. An example ofthat concept is shown in a patent to Schrewelius US. Pat. No. 3.321 .727 issued May 23. I967. That disclosure illustrates and describes an igniter element made up of separate segments of differ ent materials which are subsequently joined together to provide such a composite structure.

While such structures have met with partial success. they suffer from several serious drawbacks. First. at the junction point between the diverse compositions there is an abrupt compositional change which does not allow for inherent differences in the coefficients of expansion between the two materials. This inherent difference in coefficients of expansion resistance coupled with the fact that the higher-resistance center portion reaches afar greater temperature than the end portions when a current is applied to the structure. may result in a mechanical failure of the igniter element at one or more of the junction points after a number of heating and cooling cycles. Second. the use ofdistinct segments in the manufacture of such an element. necessitates separate moldings of the sections and subsequent assembly of the element which adds to the cost and com plexity of its manufacture.

SUMMARY OF THE INVENTION According to the present invention. the problems associated with the prior art muIti-composition electricalresistance type igniter elements are solved by the provision of a unitary structure having a gradual compositional transition from one composition to another. This overcomes the problems created by differences in the coefficient of expansion and molecular migration across the juncture between adjacent compositions and simplifies the manufacture of the element by eliminating extra molding and assembly steps. The heatresistant ceramic electric igniter element of the present invention has a plurality of compositions in a continuous unitary body structure including a central or igniting zone of a composition having a relatively high electrical resistance flanked. in gradual transition, by end zones of a composition having a lower electrical resistance to which the electrical leads are attached. Thus. when an electrical current is applied across the element the central or igniting portion will reach a much higher temperature than the two end portions.

The central zone is normally made of a composition having a negative temperature coefficient of electrical resistance (an electrical resistance which decreases with an increase in temperature) and the end or lead attachment zones of a material having a positive temperature coefficient of electrical resistance (an electrical resistance which increases with an increase in temperature). One successful version of the igniter of the invention and which is described in the preferred embodiment. below. has a central or igniting zone having a composition including from about 25 percent to about 88 percent green SiC various meshes. from about I percent to about 8 percent ferro-silicon. from about I percent to about It) percent TiO- from about I percent to about 20 percent ZrO from about 5 percent to about 30 percent pyrex-type glass (defined below) and from about 5 percent to about 30 percent fused silica. The end zones have a positive temperature coefficient of electrical resistance and are made of a mixture including from about 40 percent to about percent green SiC of various meshes. from about I percent to about It) percent of fcrro-silicon. from about I percent to about 20 percent TiO and from about 5 percent to about 30 percent pyrex-type glass.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:

FIG. 1 illustrates a heating element made in accor dance with the present invention and.

FIG. 2 is a schematic representation of temperature profile produced with the igniter of FIG. 1.

DESCRIPTION OF A PREFERRED EMBODIMENT Turning now to FIG. I. we see a representative illustration of the igniter of the present invention. The ig niter has a unitary body It], which may be in the shape of a hairpin as illustrated. or in any other shape desired for the particular application ofthe device. The unitary structure 10, is divided by composition into a central or igniting zone I] and two end or lead-attachment zones I2 and 13 to which electrical leads I4 and I5 may be attached as at 16 and 17. The changes in composition between zones 12 and I3 and zone II have been indi cated for illustration purposes along lines I8 and I9 which represent a gradual change from one composi tion to the other.

In the selection of the compositions utilized for both the high and low resistance portions of the igniter of the preferred embodiment, considerations such as cost. electrical resistance properties. life or stability. at elevated operating temperatures. and forming suitabilities had to be considered.

After considerable experimentation involving a large number of possible components, optimum values for a high resistance mixture for the ignition zone and a lower resistance mixture for the lead-attachment zones which would produce a long-life, relatively inexpensive and easily fabricated igniter have been developed and can be found in Table I below:

TABLE LContinued In the particular combination of components selected for both the lead-attachment zones and the ignition zones of the igniter of the present invention. a composite is produced which may be regarded as consisting of two intercalated networks. one of which supplies the electrical conduction mechanism and the other bonding mechanism. The bulk of the electrical conduction mechanism is provided by the silicon carbide and the ferro'silicon components and the basic bonding mechanism provided by the titanium dioxide, zirconium dioxide and glass components. It has also been theorized that the oxides of titanium and zirconium do contribute some electrical conductivity to the final glassy silicate bond. especially at elevated temperatures.

To be compatible with most safety circuitry. the mixtures of components of the ignition zone and lead attachment zones were also selected such that the igni tion zone has a negative coefficient of electrical resistance with increasing temperature and the leadattachment zones have a positive coefficient ofelectrical resistance.

While it is contemplated that other possible mixtures of components which provide the necessary combination of properties required for the igniter ofthe present invention including some containing MoSi or other compounds not found in Table l. the combinations illustrated for the preferred embodiment have been found to provide an excellent igniter combining low power consumption with a desired temperature operat ing range in both the ignition zones and lead attachment zones.

ln addition to providing an excellent bonding material. pyrex glass utilized in the composition of both the igniter and lead-attachment zones of the igniter of the present invention is thought to provide an additional advantage which is ofgreat benefit in adding to the longevity of the igniter. The elevated temperatures wherein the igniters are normally operated, it appears that the inclusion of what amounts to a film borosilicate glass aids in inhibiting any further oxidation of the system which would lead to a degradation of the igniter composition and ultimate failure of the igniter. in this manner. the inclusion of the basically borosilicatcpyrex composition seems to actually extend the life of the igniter.

In FIG. 2 there is pictured an experimentallyobtained picture profile of a typical igniter fabricated in accordance with the present invention. The profile illustrated was obtained by electrically energizing such an igniter allowing sufficient time for the igniter to reach a state of temperature equilibrium. The particular profile shown in FIG. 2 was obtained by applying 60 Hz. AC (90 v. rms and 0.34 a rms) power to an igniter similar to that of FIG. 1. in normal ignition operation, the igniter is operated at a peak ignition zone temperature of about l.200 C but a substantially similar temperature profile obtains.

it can readily be seen by the temperature profile of FIG. 2 that the temperature varies from approximately 1,250" F at a point close to the tip of the igniter. The reason for the highest temperature not being precisely located at the tip is not fully understood; however. that variation is probably well within the limits of experimental error. The effect of the gradual transition from the lead attachment zone composition to that of the ignition zone is readily reflected in the general slope noted in the temperature profile. As explained above. this eliminates any abrupt change in temperature between adjacent segments of the igniter and prevents any problems associated with such abrupt changes.

in the fabrication of the igniter of the invention. the proper mixtures for both the ignition and leadattachment zone are premixed in the cold state. Quantities of these mixtures are then placed in a pressing die normally made of graphite, in the desired shape of the igniter in a manner which allows overlap of the components as illustrated in FIG. I. The die is then raised to pressing temperature of approximately l.500 C and the igniter is pressed in the die at a pressure of approximately 5.000 psi for about 15 minutes in a well known manner. The temperature-pressurc-time combination utilized in the hot pressing step also enables the igniter to achieve the desired density of greater than 99 per' cent theoretically possible density and it is this high density which is theoretically responsible for much of the excellent oxidation resistance achieved by the igniter of the present invention. The formed igniters are then allowed to cool in the dies and are subsequently removed and the electrical leads attached by one of several techniques which are well known in the art.

As explained above the preferred method of fabricating the igniter of the invention is a hot pressing process. Other methods of fabrication have been attempted with less success. Thus. some experimental igniters have been fabricated by cold pressing and subsequent sintering. igniters made in that manner although exhibiting the appropriate resistivity in both the lead-attachment zones and the ignition zone. had a high porosity which severely limited the useable life of such igniters as by oxidation. Other techniques such as chemical vapor deposition. pack cementation and hot isostatic pressing were also attempted as methods to fabricate the igniter of the invention. The third technique. hot isostatic pressing is also an acceptable method, but appears to be much more expensive than the hot pressing tech nique described with regard to the preferred embodiment.

The embodiments ofthe invention in which an exclusive property or right is claimed are defined as follows:

1. A continuous unitary body formed in a single segment. said body containing a plurality of heat and oxidation resistent, electrically conductive ceramic material compositions wherein said compositions comprise: An igniting zone having a composition exhibiting a relatively high electrical resistance. zones flanking said igniting zone. said flanking zones having a composition exhibiting a lower electrical resistance than said igniting zone; wherein the compositional transition between said igniting zone and said flanking zone is a gradual transition; and

wherein said compositions of both said igniting zone and said flanking zones comprise principly of silicon carbide and pyrex-type glass. and electrical leads attached to said flanking zones. 2. The continuous unitary body of claim I wherein said ignition zone has a negative temperature coefficient of electrical resistance and wherein said flanking zones have a positive temperature coefficient olelectrical resistance.

3. The continuous unitary body of claim 1 wherein said ignition zone comprises:

from about to about 88 percent silicon carbide.

from about i to about 8 percent term-silicon.

from about 1 to about percent of oxides from a group consisting of oxides oititianium and zirco-

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2992959 *Feb 20, 1958Jul 18, 1961Kanthal AbProduction of shaped bodies from heat resistant oxidation proof materials
US3321727 *Dec 9, 1964May 23, 1967Kanthal AbHeat-resistant and oxidationproof materials
US3607475 *Oct 24, 1967Sep 21, 1971Kanthal AbMethod of manufacturing electrical resistance elements and elements manufactured by the method
US3662222 *May 7, 1970May 9, 1972IttElectric resistance wire igniter with a cooling terminal posts construction
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4328529 *Sep 27, 1979May 4, 1982Emerson Electric Co.Silicon carbide igniters
US4433233 *Oct 23, 1981Feb 21, 1984Emerson Electric Co.Thermistors
US4486651 *Jan 24, 1983Dec 4, 1984Nippon Soken, Inc.Ceramic heater
US4555358 *May 24, 1983Nov 26, 1985Hitachi, Ltd.Electrically conductive sintered ceramics and ceramic heaters
US4633064 *May 30, 1985Dec 30, 1986Nippondenso Co., Ltd.Sintered ceramic electric heater with improved thermal shock resistance
US4634837 *Mar 29, 1985Jan 6, 1987Nippon Soken, Inc.Molybdenum silicide and silicon nitride, diesel engine glow plug
US4644133 *Feb 25, 1986Feb 17, 1987Nippondenso Co., Ltd.Ceramic heater
US4671058 *Nov 15, 1984Jun 9, 1987Nippondenso Co., Ltd.Heating device
US4741692 *Oct 1, 1985May 3, 1988Babcock-Hitachi Kabushiki KaishaBurner igniter with a ceramic heater
US4935118 *Mar 21, 1986Jun 19, 1990Norton CompanySelf heated sensor package
US5045237 *Oct 14, 1988Sep 3, 1991Norton CompanyRefractory electrical device
US5085804 *Feb 25, 1991Feb 4, 1992Norton CompanySintered mixture of molybdenum disilicide, silicon carbide and silicon nitride; igniter
US5130055 *Mar 26, 1990Jul 14, 1992Yoshiyuki YasutomiCeramic composite and process for the production thereof
US5191508 *May 18, 1992Mar 2, 1993Norton CompanyCeramic igniters and process for making same
US5322824 *May 27, 1993Jun 21, 1994Chia Kai YElectrically conductive high strength dense ceramic
US5472337 *Sep 12, 1994Dec 5, 1995Guerra; Romeo E.Method and apparatus to detect a flame
US5498855 *Aug 16, 1994Mar 12, 1996Philip Morris IncorporatedElectrically powered ceramic composite heater
US5804092 *May 31, 1995Sep 8, 1998Saint-Gobain/Norton Industrial Ceramics CorporationModular ceramic igniter with metallized coatings on the end portions thereof and associated terminal socket
US5880439 *Mar 12, 1996Mar 9, 1999Philip Morris IncorporatedElectric cigarette lighter with composite heater of an insulator or semiconductor, silicon nitride, and an electically conductive material, molybdenum silicon (mosi2); low creep rate, excellent oxidation, corrosion resistance
US6841439 *Jul 15, 1998Jan 11, 2005Texas Instruments IncorporatedHigh permittivity silicate gate dielectric
US7061363 *Apr 11, 2003Jun 13, 2006Robert Bosch GmbhPassive, high-temperature-resistant resistor element for measuring temperature in passenger and commercial vehicles
US7115461Dec 17, 2004Oct 3, 2006Texas Instruments IncorporatedHigh permittivity silicate gate dielectric
US7329837 *Mar 4, 2002Feb 12, 2008Saint-Gobain Ceramics & Plastics, Inc.Ceramic igniters
US7342201 *Nov 25, 2000Mar 11, 2008Nanogate AgSilcon carbide element
US8402976Apr 17, 2009Mar 26, 2013Philip Morris Usa Inc.Electrically heated smoking system
US8794231Apr 29, 2009Aug 5, 2014Philip Morris Usa Inc.Electrically heated smoking system having a liquid storage portion
DE3235841A1 *Sep 28, 1982Apr 21, 1983Norton CoPoroeser feuerfester gegenstand mit einer oxidations-schutzschicht
EP0095720A2 *May 25, 1983Dec 7, 1983Hitachi, Ltd.Electrically conductive sintered ceramics and ceramic heaters
EP0486009A1 *Nov 13, 1991May 20, 1992Norton CompanyCeramic igniter and method of making electrical connections thereto
EP0570914A2 *May 18, 1993Nov 24, 1993Norton CompanyCeramic igniters and process for making same
EP0818657A2 *May 18, 1993Jan 14, 1998Norton CompanyProcess for making ceramic igniters
EP2427412A1 *May 3, 2010Mar 14, 2012Sandvik Intellectual Property ABHeating element
WO1986005882A1 *Mar 24, 1986Oct 9, 1986Norton CoSelf heated sensor package
WO1995012093A2 *Oct 17, 1994May 4, 1995Scott R AxelsonActive metal metallization of mini-igniters by silk screening
WO1996011361A1 *Oct 5, 1995Apr 18, 1996Saint Gobain Norton Ind CeramiHigh voltage ceramic igniter
WO2002070955A2 *Mar 4, 2002Sep 12, 2002Saint Gobain Norton Ind CeramiCeramic igniters
WO2010128935A1 *May 3, 2010Nov 11, 2010Sandvik Intellectual Property AbHeating element
Classifications
U.S. Classification361/264, 252/516, 431/258, 219/553, 338/330, 219/270
International ClassificationF23Q7/22, H01C7/02, F23Q7/00
Cooperative ClassificationF23Q7/22, H01C7/02
European ClassificationH01C7/02, F23Q7/22