US3877297A - Process and apparatus for determining the infinitesimal-hardness behaviour of synthetic materials, coatings and ductive materials - Google Patents

Process and apparatus for determining the infinitesimal-hardness behaviour of synthetic materials, coatings and ductive materials Download PDF

Info

Publication number
US3877297A
US3877297A US421484A US42148473A US3877297A US 3877297 A US3877297 A US 3877297A US 421484 A US421484 A US 421484A US 42148473 A US42148473 A US 42148473A US 3877297 A US3877297 A US 3877297A
Authority
US
United States
Prior art keywords
improvement
indentor
penetration
materials
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US421484A
Inventor
Kurt Martin Oesterle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH1770272A external-priority patent/CH548619A/en
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3877297A publication Critical patent/US3877297A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0098Tests specified by its name, e.g. Charpy, Brinnel, Mullen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen

Definitions

  • the process is characterized in that there is employed the continual penetration at a narrowly defined location on a layer of an indentor for the continual recording of the therewith associated penetration depth, whereby this penetration by the indentor may take place in a normal or in a particularly formed atmosphere.
  • the penetration and, respectively, the loading sequence must be so controlled, whereby the sequence of the continually varying loads and the therewith associated continual penetration values may be digitally recorded in small incremental steps.
  • the present invention relates to a process and apparatus for the rapid determination of the infinitesimalhardness behaviour (IHV) of plastic or synthetic materials, coatings and ductile materials.
  • IHV infinitesimalhardness behaviour
  • the novel aspect of the IHV-process lies in that the quotient F/y is recorded in dependence on the load F, as set forth in the curves persuant to FIG. 2, from which there similarly is obtained a parameterdependent quotient curve.
  • this particular boundary transition has been found to be parameterindependent to greatest possible extend. Consequently, this value has been characterized as a particularly distinguished value as the IHV-value. having the equation lHV c 475' wherein I C a finely variable value, dependent upon, the particular material and condition of the test object;
  • the lHV-values thereby also encompass the interactions between. for example, pigment and plastic material interiorly of heterogeneous and quasihomogeneous plastic material-matrices; interactions, which again lead to further results respecting the structure, build-up and relationships of the materials.
  • the IHV-value is a decidedly outer surface value, which is, however, also determined in a certain degree by the immediate or contiguously adjoining lower layers. Since plastic material and coating outer surfaces react quite rapidly in response to external conditions, the IHV- value also immediately responds to changes in the exterior conditions of the plastic material, and the like. Such external conditions may be, for example, those of exterior weathering, artificial weathering, gas, steam and liquid applications, electrical, mechanical, magnetic and radiation conditions, and so forth.
  • the artificial weathering may be effected in a suitable climatized chamber, or in a sealed climatized chamber containing the materials to be tested.
  • the chamber may be heated so as to provide suitable temperature conditions.
  • the teasting conditions may also be created through treatment of the materials with acid fumes.
  • acid fumes such as of inorganic acids, i.e. HCl, H S0,, HNO or organic acids such as HCOOH, CH COOH, ditric acid, lactic acid or chloracetic acid.
  • the fumes or vapors may also be constituted of water, alcohol. esters, ethers, acetates, aromatic and aliphatic carbohydrates.
  • Aggressive gases, such as S0 HCl and HF may also be employed.
  • the electrical influences or effects for conditioning the materials may comprise high-frequency currents.
  • light beams including infrared, ultraviolet. radioactive.
  • All of the aforementioned conditioning and afflicting elements may be used individually, collectively. or in various combinations. as required for the particular evaluation tests.
  • the predetermined loads and the thereby obtained penetration depth values were divided by each other, and the quotient Fly plotted on a Cartesian coordinate graph as functions of the loads F.
  • the extrapolation of the limit-value F resulted by means of a regression curve through the quotient values Fly.
  • the crossing point of the regression curve with the F/ -ordinates axis then provided the lI-IV-value.
  • the present invention eliminates the disadvantages encountered in the described prior art methods with numerous manually effected steps through improvement and acceleration thereof. while requiring a completely new concept for the obtention of the IHV-value.
  • the inventive process is thereby characterized, in that there is employed the continual penetration at a narrowly defined location of an indentor for the continual recording of the therewith associated penetration depth, whereby this penetration by the indentor may take place in a normal or in a particularly formed atmosphere.
  • the penetration and, respectively, the loading sequence must be so controlled, whereby the sequence of the continually varying loads and the therewith associated continual penetration values may be digitally recorded in small incremental steps.
  • FIG. 1 is a graphical illustration showing the plot of load with respect to penetration depth for two coating thicknesses for a prior art penetration measurement
  • FIG. 2 is a graphical illustration similar to FIG. 1 utilizing the lHV-process according to the present invention.
  • FIG. 3 is a schematic view of an apparatus for effecting the IHV-process according to the present invention.
  • the penetrating sequence of the indentor is effected without interruption at a continually increasing load, and the therewith associated penetration depths are thereby continuously digitally recorded and evaluated.
  • a family of new curves (F/ F) is thus obtained which, in comparison with the curves from the previous methods, lies somewhat more elevated, but which must lead, on the basis of mathematical boundary transition concepts, to the same IHV-value.
  • FIG. 3 an apparatus constructed in accordance with the principle of FIG. 3 may be employed.
  • 1 defines the support for a probe 1a
  • 2 defines the indentor
  • 3 and 4 the control system for the indentor, which may be either electrical or mechanically and pneumatically operated,
  • 4 and 5 comprise the recording means for the penetration depth of the indentor 2.
  • the load values and the penetration depth values are amplified by, respectively, elements 6 and 8, and recorded through component 9, and from which there may be ascertained the balancing parabola and the crossing point with the F/y axis in a computerized manner.
  • Component 7 symbolically illustrates the Zero-position-adjustment installation for the indentor, and similarly component 10 symbolically illustrates the power supply circuit for the apparatus.
  • This alternative is particularly suitable for application to materials having a low modulus of elasticity.
  • a method must be sought in which the penetrating process is braked, but will nevertheless still lead to a measurable limit-value.
  • This may be attained in that there may be placed in opposition to the alternative a of steering the load of the penetrating indentor a larger continuous operation, which is to be handled in the material.
  • This may be effected by constructing the indentor as a wheel having conically ground periphery, so that the object to be tested is moved in a translatory manner below this loaded wheel.
  • the wheel may be formed as a starwheel, having peripheral wedgeshaped segments.
  • F/ vF curves are obtained which lie higher, but occasionally also lower, than the values obtained through the Alternative (a).
  • An improvement as claimed in claim 1, comprising subjecting said test material to thermal conditioning, cincluding selective heating and cooling thereof.
  • An improvement as claimed in claim 1, comprising conditioning said test materials through climatizing preceding the penetration testing thereof; and imparting additive specialized conditioning to said test materials.
  • said acid fumes being one or more inorganic acids selected from the group consisting of HCl, H 80, and HNO 9.
  • said acid fumes being one or more organic acids selected from the group consisting of citric acid, lactic acid and chloracetic acid.
  • An improvement as claimed in claim 7 comprising imparting said specialized conditioning to said test materials through aggressive gases, said gases being one or more gases selected from the group consisting of S0 HCl, HF.
  • An improvement as claimed in claim 7, comprising imparting said specialized conditioning to said test materials through electrical and electromagnetic treatment, such as, high-frequency currents, light beams, infrared light, ultraviolet light, radioactive rays, and X-ray electron beams.
  • An improvement as claimed in claim 7, comprising concurrently imparting a combination of specialized conditioning treatments to said test materials.

Abstract

A process and apparatus for the rapid determination of the infinitesimal-hardness behaviour of plastic materials, coatings and ductile materials. The process is characterized in that there is employed the continual penetration at a narrowly defined location on a layer of an indentor for the continual recording of the therewith associated penetration depth, whereby this penetration by the indentor may take place in a normal or in a particularly formed atmosphere. In connection therewith, the penetration and, respectively, the loading sequence must be so controlled, whereby the sequence of the continually varying loads and the therewith associated continual penetration values may be digitally recorded in small incremental steps.

Description

United States Patent 11 1 1111 ,877,297
Oesterle Apr. 15, 1975 PROCESS AND APPARATUS FOR 1,903,524 4/1933 Webster 73/81 DETERMINING THE 2,491,667 12/1949 Kent 3,805,598 4 1974 Corcoran 73/81 INFINITESIMAL-I-IARDNESS BEHAVIOUR OF SYNTHETIC MATERIALS, COATINGS AND DUCTIVE MATERIALS Inventor: Kurt Martin Oesterle, 88
Goldbacherstrasse, 8700 Kusnacht, Switzerland [22] Filed: Dec. 3, 1973 [21] Appl. No.: 421,484
[30] Foreign Application Priority Data Dec. 4, 1972 Switzerland 17702/72 [52] U.S. Cl. 73/81 [51] Int. Cl. G0ln 3/48 [58] Field of Search 73/81, 85
[56] References Cited UNITED STATES PATENTS 1,192,670 7/1916 Moore et a1. 73/81 1,457,214 5/1923 Davis 73/81 1,770,046 7/1930 Shore 73/81 Primary ExaminerJames J. Gilu Assistant Examiner-Anthony V. Ciarlante Attorney, Agent, or FirmHaseltine, Lake & Waters [57] ABSTRACT A process and apparatus for the rapid determination of the infinitesimal-hardness behaviour of plastic materials, coatings and ductile materials. The process is characterized in that there is employed the continual penetration at a narrowly defined location on a layer of an indentor for the continual recording of the therewith associated penetration depth, whereby this penetration by the indentor may take place in a normal or in a particularly formed atmosphere. In connection therewith, the penetration and, respectively, the loading sequence must be so controlled, whereby the sequence of the continually varying loads and the therewith associated continual penetration values may be digitally recorded in small incremental steps.
15 Claims, 3 Drawing Figures PROCESS AND APPARATUS FOR DETERMINING THE INFINITESIMAL-I-IARDNESS BEHAVIOUR OF SYNTHETIC MATERIALS, COATINGS AND DUCTIVE MATERIALS FIELD OF THE INVENTION The present invention relates to a process and apparatus for the rapid determination of the infinitesimalhardness behaviour (IHV) of plastic or synthetic materials, coatings and ductile materials.
The IHV-process, as such. was first made public by the applicant in 1968 in Brussel, Belgium and, concurrently, an illustration of associated manually controlled apparatus and methods of evaluation. If. under normal penetration hardness-measurement, F defines the load under which an indentor, -pyramid-tip, shere, conical point and the like, penetrates into the upper surface of the material being tested to a penetration depth y, then these reciprocal relationships are normally represented by a diagram represented by the curves in FIG. 1, as discussed in datail hereinbelow. This type of curve. however. showed itself to be dependent upon the load time duration, the configuration and outer surface characteristics of the indentor and, for thin coatings and lacquer layersyadditional dependence upon the thickness of the layer.
In lieu of characterizing the hardness of an outer surface by means of these curves, it has also been attempted to use the penetration surface for this purpose, in effect. circular or rectangular, which is left by the correspondingly shaped indentor after completion of the penetrating process. Thusly, the Brinell-hardness was expresses as H F/A, wherein F designates the load. and A the penetration surface. However, this method of hardness measurement also evidenced the disadvantage of the above-mentioned parameterdependencies.
The novel aspect of the IHV-process, however. lies in that the quotient F/y is recorded in dependence on the load F, as set forth in the curves persuant to FIG. 2, from which there similarly is obtained a parameterdependent quotient curve. However, inasmuch as the crossing point of this curve with the ordinate axis forms a so-called boundary or limit-value, this particular boundary transition has been found to be parameterindependent to greatest possible extend. Consequently, this value has been characterized as a particularly distinguished value as the IHV-value. having the equation lHV c 475' wherein I C a finely variable value, dependent upon, the particular material and condition of the test object;
and E the modulus of elasticity of the material of the test object.
The lHV-values thereby also encompass the interactions between. for example, pigment and plastic material interiorly of heterogeneous and quasihomogeneous plastic material-matrices; interactions, which again lead to further results respecting the structure, build-up and relationships of the materials. The IHV-value is a decidedly outer surface value, which is, however, also determined in a certain degree by the immediate or contiguously adjoining lower layers. Since plastic material and coating outer surfaces react quite rapidly in response to external conditions, the IHV- value also immediately responds to changes in the exterior conditions of the plastic material, and the like. Such external conditions may be, for example, those of exterior weathering, artificial weathering, gas, steam and liquid applications, electrical, mechanical, magnetic and radiation conditions, and so forth. Thus, the artificial weathering may be effected in a suitable climatized chamber, or in a sealed climatized chamber containing the materials to be tested. The chamber may be heated so as to provide suitable temperature conditions. The teasting conditions may also be created through treatment of the materials with acid fumes. such as of inorganic acids, i.e. HCl, H S0,, HNO or organic acids such as HCOOH, CH COOH, ditric acid, lactic acid or chloracetic acid. The fumes or vapors may also be constituted of water, alcohol. esters, ethers, acetates, aromatic and aliphatic carbohydrates. Aggressive gases, such as S0 HCl and HF may also be employed.
The electrical influences or effects for conditioning the materials may comprise high-frequency currents. light beams including infrared, ultraviolet. radioactive. X-ray and electron beams.
All of the aforementioned conditioning and afflicting elements may be used individually, collectively. or in various combinations. as required for the particular evaluation tests.
When a so-treated exterior surface is removed from the conditioning or treating zone, it builds back mostly quite rapidly, but not fully reversibly. Thereby it becomes advantageous to create possibilities which permit the test objects to also be measured also during the presence of these conditions.
DISCUSSION OF THE PRIOR ART Heretofore, exterior weathering tests required durations of one to two years in order to provide definite results. Through the application of the rapid and sensitively reacting IHV-methods only hours, days or a few weeks are required therefor. In addition, it is not necessary to apply falsified elevated conditions which, for example, are impressed on the probes by means of the Weather-o-meter.
For reception of the measuring values leading to the IHV-value, heretofore there have been employed usual or known rnicrohardness-indentation measuring apparatus such as, for example, the Wallace-Indentation- Tester. 'or the lCI-apparatus. The process entailed that a Vickers-pyramid subjected to variable loads was pressed into the plastic material being tested for a freely selected but constant time period, and in which the particular and time-constant penetration depth was measured or registered in dependence upon the particular load. However, from penetration to penetration, the test member had to be displaced for a minutely small distance. so as to avoid erroneous measurements caused by the previous measurement of the particular location. The predetermined loads and the thereby obtained penetration depth values were divided by each other, and the quotient Fly plotted on a Cartesian coordinate graph as functions of the loads F. The extrapolation of the limit-value F resulted by means of a regression curve through the quotient values Fly. The crossing point of the regression curve with the F/ -ordinates axis then provided the lI-IV-value.
SUMMARY OF THE INVENTION The present invention eliminates the disadvantages encountered in the described prior art methods with numerous manually effected steps through improvement and acceleration thereof. while requiring a completely new concept for the obtention of the IHV-value.
Basically it must thereby be determined that there is provided a consistency in the values, which afford a new limit-transition toward the lHV-value. The inventive process is thereby characterized, in that there is employed the continual penetration at a narrowly defined location of an indentor for the continual recording of the therewith associated penetration depth, whereby this penetration by the indentor may take place in a normal or in a particularly formed atmosphere. In connection therewith, the penetration and, respectively, the loading sequence must be so controlled, whereby the sequence of the continually varying loads and the therewith associated continual penetration values may be digitally recorded in small incremental steps.
BRIEF DESCRIPTION OF THE DRAWINGS Reference may now be had to the following detailed description of the invention, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a graphical illustration showing the plot of load with respect to penetration depth for two coating thicknesses for a prior art penetration measurement;
FIG. 2 is a graphical illustration similar to FIG. 1 utilizing the lHV-process according to the present invention; and
FIG. 3 is a schematic view of an apparatus for effecting the IHV-process according to the present invention.
DETAILED DESCRIPTION Referring to the drawings, the apparatus disclosed therein facilitates the application of the method b means of two alternatives:
Alternative (a):
The penetrating sequence of the indentor is effected without interruption at a continually increasing load, and the therewith associated penetration depths are thereby continuously digitally recorded and evaluated. A family of new curves (F/ F) is thus obtained which, in comparison with the curves from the previous methods, lies somewhat more elevated, but which must lead, on the basis of mathematical boundary transition concepts, to the same IHV-value. Such a recording with rapidly changing values is unthinkable for a manual peration, and positively retards the automation.
In order to effect the inventive concept, an apparatus constructed in accordance with the principle of FIG. 3 may be employed. IN the drawing, 1 defines the support for a probe 1a, 2 defines the indentor, 3 and 4 the control system for the indentor, which may be either electrical or mechanically and pneumatically operated,
4 and 5 comprise the recording means for the penetration depth of the indentor 2. The load values and the penetration depth values are amplified by, respectively, elements 6 and 8, and recorded through component 9, and from which there may be ascertained the balancing parabola and the crossing point with the F/y axis in a computerized manner. Component 7 symbolically illustrates the Zero-position-adjustment installation for the indentor, and similarly component 10 symbolically illustrates the power supply circuit for the apparatus.
Alternative (b):
This alternative is particularly suitable for application to materials having a low modulus of elasticity. In
this instance, a method must be sought in which the penetrating process is braked, but will nevertheless still lead to a measurable limit-value. This may be attained in that there may be placed in opposition to the alternative a of steering the load of the penetrating indentor a larger continuous operation, which is to be handled in the material. This may be effected by constructing the indentor as a wheel having conically ground periphery, so that the object to be tested is moved in a translatory manner below this loaded wheel. The wheel may be formed as a starwheel, having peripheral wedgeshaped segments. In accordance with the type of material, F/ vF curves are obtained which lie higher, but occasionally also lower, than the values obtained through the Alternative (a). The limit-value must coincide, however, when employing the same material for Alternatives (a) and (b), again due to the limiting requirements excluding boundary transition. Above all, the apparatus here becomes considerably complicated, since for the Alternative (a), there is still added the translation of Alternative (b).
While there has been shown what is considered to be the preferred embodiment of the invention, it will be obvious that modifications may be made which come within the scope of the disclosure of the specification.
What is claimed is:
1. In a process for determining the infinitesimalhardness behaviour of plastic materials, in particular coatings and ductile materials, including penetrating a test material layer with an indentor in dependence upon a load exerted on the indentor; and recording the extent of penetration; the improvement comprising: continually effecting said penetration by said indentor in small steps at narrowly defined locations on said layer, concurrently and continually increasing the load on said indentor; operatively connecting a process calculator and computer to a portion of said indentor providing measurement values of the depth of penetration in dependence upon the load exerted on said indentor, said calculator and computer continuously recording depths of penetration y in dependence upon loads F exerted on said indentor, transforming this relationship into F/y-quotients, plotting a curve through these Flyquotients in dependence upon loads F and determining the crossing-point with the Fly-ordinate axis so as to indicate the value of the lnfinitesimal-Hardness- Behaviour II-IV.
2. An improvement as claimed in claim 1, said process being effected under a normal atmospheric environment.
3. An improvement as claimed in claim 1, said process being effected in a climatized chamber.
4. An improvement as claimed in claim 1, comprising subjecting said test material to thermal conditioning, cincluding selective heating and cooling thereof.
5. An improvement as claimed in claim 1, comprising conditioning said test materials through climatizing preceding the penetration testing thereof; and imparting additive specialized conditioning to said test materials.
6. An improvement as claimed in claim 5, said specialized conditioning comprising mechanical treatment of said test materials.
7. An improvement as claimed in claim 5, comprising imparting said specialized conditioning to said test materials through the intermediary of acid fumes.
8. An improvement as claimed in claim 7, said acid fumes being one or more inorganic acids selected from the group consisting of HCl, H 80, and HNO 9. An improvement as claimed in claim 7, said acid fumes being one or more organic acids selected from the group consisting of citric acid, lactic acid and chloracetic acid.
10. An improvement as claimed in claim 7, comprising imparting said specialized conditioning to said test materials through the intermediary of solvent vapours,
such as one or more in combination, water. alcohol, esters, ethers, acetates, aromatic and aliphatic carbohydrates.
11. An improvement as claimed in claim 7 comprising imparting said specialized conditioning to said test materials through aggressive gases, said gases being one or more gases selected from the group consisting of S0 HCl, HF.
12. An improvement as claimed in claim 7, comprising imparting said specialized conditioning to said test materials through electrical and electromagnetic treatment, such as, high-frequency currents, light beams, infrared light, ultraviolet light, radioactive rays, and X-ray electron beams.
13. An improvement as claimed in claim 7, comprising concurrently imparting a combination of specialized conditioning treatments to said test materials.
14. An improvement as claimed in claim 1, said narrowly defined location on said layer comprising a single point of initial contact between said indentor and said testing material layer.
15. An improvement as claimed in claim 1, said indentor comprising a spherical penetration member.

Claims (15)

1. In a process for determining the infinitesimal-hardness behaviour of plastic materials, in particular coatings and ductile materials, including penetrating a test material layer with an indentor in dependence upon a load exerted on the indentor; and recording the extent of penetration; the improvement comprising: continually effecting said penetration by said indentor in small steps at narrowly defined locations on said layer, concurrently and continually increasing the load on said indentor; operatively connecting a process calculator and computer to a portion of said indentor providing measurement values of the depth of penetration in dependence upon the load exerted on said indentor, said calculator and computer continuously recording depths of penetration y in dependence upon loads F exerted on said indentor, transforming this relationship into F/y-quotients, plotting a curve through these F/y-quotients in dependence upon loads F and determining the crossing-point with the F/y-ordinate axis so as to indicate the value of the Infinitesimal-Hardness-Behaviour IHV.
2. An improvement as claimed in claim 1, said process being effected under a normal atmospheric environment.
3. An improvement as claimed in claim 1, said process being effected in a climatized chamber.
4. An improvement as claimed in claim 1, comprising subjecting said test material to thermal conditioning, cincluding selective heating and cooling thereof.
5. An improvement as claimed in claim 1, comprising conditioning said test materials through climatizing preceding the penetration testing thereof; and imparting additive specialized conditioning to said test materials.
6. An improvement as claimed in claim 5, said specialized conditioning comprising mechanical treatment of said test materials.
7. An improvement as claimed in claim 5, comprising imparting said specialized conditioning to said test materials through the intermediary of acid fumes.
8. An improvement as claimed in claim 7, said acid fumes being one or more inorganic acids selected from the group consisting of HCl, H2SO4 and HNO3.
9. An improvement as claimed in claim 7, said acid fumes being one or more organic acids selected from the group consisting of citrio acid, lactic acid and chloracetic acid.
10. An improvement as claimed in claim 7, comprising imparting said specialized conditioning to said test materials through the intermediary of solvent vapours, such as one or more in combination, water, alcohol, esters, ethers, acetates, aromatic and aliphatic carbohydrates.
11. An improvement as claimed in claim 7 comprising imparting said specialized conditioning to said test materials through aggressive gases, said gases being one or more gases selected from the group consisting of SO2, HCl, HF.
12. An improvement as claimed in claim 7, comprising imparting said specialized conditioning to said test materials through electrical and electromagnetic treatment, such as, high-frequency currents, light beams, infrared light, ultraviolet light, radioactive rays, and X-ray electron beams.
13. An improvement as claimed in claim 7, comprising concurrently imparting a combination of specialized conditioning treatments to said test materials.
14. An improvement as claimed in claim 1, said narrowly defined location on said layer comprising a single point of initial contact between said indentor and said testing material layer.
15. An improvement as claimed in claim 1, said indentor comprising a spherical penetration member.
US421484A 1972-12-05 1973-12-03 Process and apparatus for determining the infinitesimal-hardness behaviour of synthetic materials, coatings and ductive materials Expired - Lifetime US3877297A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1770272A CH548619A (en) 1972-02-21 1972-12-05 METHOD OF RECORDING ACOUSTIC OR MICROWAVE HOLOGRAMS.

Publications (1)

Publication Number Publication Date
US3877297A true US3877297A (en) 1975-04-15

Family

ID=4427439

Family Applications (1)

Application Number Title Priority Date Filing Date
US421484A Expired - Lifetime US3877297A (en) 1972-12-05 1973-12-03 Process and apparatus for determining the infinitesimal-hardness behaviour of synthetic materials, coatings and ductive materials

Country Status (1)

Country Link
US (1) US3877297A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956925A (en) * 1974-12-30 1976-05-18 Smith Samuel C Hardness tester
JPS52147485U (en) * 1976-05-04 1977-11-08
US4094188A (en) * 1975-12-16 1978-06-13 Societe Nationale Des Poudres Et Explosifs Apparatus for monitoring the application of a force to a solid body
US4577493A (en) * 1982-01-25 1986-03-25 Oesterle Kurt M Device for performing micromechanical measurements of the surface of test objects
CZ305016B6 (en) * 2013-08-08 2015-03-25 České Vysoké Učení Technické V Praze, Fakulta Strojní, Ústav Materiálového Inženýrství Method of developing material microstructure for evaluating grain site and apparatus for making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1192670A (en) * 1915-05-04 1916-07-25 Westinghouse Electric & Mfg Co Hardness-testing apparatus and method.
US1457214A (en) * 1919-04-26 1923-05-29 Donald C Davis Machine for testing hardness of materials
US1770046A (en) * 1925-04-04 1930-07-08 Shore Instr & Mfg Co Apparatus for measuring the hardness of materials
US1903524A (en) * 1929-04-17 1933-04-11 Robert A Webster Hardness testing device
US2491667A (en) * 1945-11-15 1949-12-20 American Machine & Metals Hardness tester
US3805598A (en) * 1971-12-06 1974-04-23 Bell Telephone Labor Inc Indenting rheometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1192670A (en) * 1915-05-04 1916-07-25 Westinghouse Electric & Mfg Co Hardness-testing apparatus and method.
US1457214A (en) * 1919-04-26 1923-05-29 Donald C Davis Machine for testing hardness of materials
US1770046A (en) * 1925-04-04 1930-07-08 Shore Instr & Mfg Co Apparatus for measuring the hardness of materials
US1903524A (en) * 1929-04-17 1933-04-11 Robert A Webster Hardness testing device
US2491667A (en) * 1945-11-15 1949-12-20 American Machine & Metals Hardness tester
US3805598A (en) * 1971-12-06 1974-04-23 Bell Telephone Labor Inc Indenting rheometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956925A (en) * 1974-12-30 1976-05-18 Smith Samuel C Hardness tester
US4094188A (en) * 1975-12-16 1978-06-13 Societe Nationale Des Poudres Et Explosifs Apparatus for monitoring the application of a force to a solid body
JPS52147485U (en) * 1976-05-04 1977-11-08
US4577493A (en) * 1982-01-25 1986-03-25 Oesterle Kurt M Device for performing micromechanical measurements of the surface of test objects
CZ305016B6 (en) * 2013-08-08 2015-03-25 České Vysoké Učení Technické V Praze, Fakulta Strojní, Ústav Materiálového Inženýrství Method of developing material microstructure for evaluating grain site and apparatus for making the same

Similar Documents

Publication Publication Date Title
US3222917A (en) Non-destructive testing of objects
CN103344174A (en) Method for measuring non-uniform conductive material surface coating thickness according to eddy currents
US3877297A (en) Process and apparatus for determining the infinitesimal-hardness behaviour of synthetic materials, coatings and ductive materials
GB1451807A (en) Infinitesimal hardness value measuring
JPH0556474B2 (en)
RU2478947C1 (en) Method of controlling quality of materials by acoustic emission
CN107764869A (en) The cannot-harm-detection device of the solvable salt content of Movable Cultural Relics
US4408482A (en) Method and apparatus for the determination of moisture content of fibrous and granular materials
GB939266A (en) Measurement of constituent chemical potentials
US3259994A (en) Drying method and apparatus
Freeman et al. The Measurement of Crack Length During Fracture at Elevated Temperatures Using the D. C. Potential Drop Technique
RU2677259C1 (en) Diffusion coefficient in sheet orthotropic capillary-porous materials determining method
Kireenko et al. Polymer fractography and fracture kinetics: 1. The relationship between fracture surface relief and the kinetics of main crack growth
US3160753A (en) Method and means for measuring hardness
SU555329A1 (en) A method of making standards for flaw detection
CN102445491A (en) Method for evaluating stress concentration degree of remanufactured blank by using self-emission magnetic signal
JPH02212753A (en) Flaw detection
SU121857A1 (en) Method for determining the depth of penetration of an electromagnetic field into a metal
SU748208A1 (en) Method of measuring thermal-conductivity coefficient
Belyaev et al. Nondestructive Testing Methods for Studying the Diffusion Coefficient in thin Porous Materials: Comparison of Metrological Characteristics
Guest Fracture Toughness Testing Using Short-Rod Specimens Illustrated by Controlled Temperature Tests on M 2 High-Speed Tool Steel
Chichigin et al. Study and quantitative assessment of the structural inhomogeneities parameters of composite materials
Vengrinovich New trends in non-destructive evaluation of surface hardened layers and coatings
Sukegawa et al. Fundamental Study on Non-Destructive Detection of Creep Damage for 18 Cr--8 Ni SUS 304 Steel
Oesch et al. In-situ analysis of water transport in concrete completed using x-ray computed tomography