Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3878085 A
Publication typeGrant
Publication dateApr 15, 1975
Filing dateJul 5, 1973
Priority dateJul 5, 1973
Also published asDE2431832A1, DE2431832B2
Publication numberUS 3878085 A, US 3878085A, US-A-3878085, US3878085 A, US3878085A
InventorsCorbani John F
Original AssigneeSloan Technology Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cathode sputtering apparatus
US 3878085 A
Abstract
Cathode sputtering apparatus for operation within an evacuable enclosure for coating a substrate which is also contained within the enclosure. The apparatus includes a cathode which carries a face of material to be sputtered. Magnetic means is placed adjacent to the cathode at a side thereof opposite from the face, and the magnetic means includes a pair of magnetic poles, between which there are developed magnetic lines of force. At least some of these lines of force enter and leave the face at spaced-apart intersections therewith and include segments which extend between the intersections and are spaced from the face whereby to form a boundary, along with the face, of a closed area in the plane of the respective lines of force. An anode is placed in proximity to the cathode. Connector means is provided to connect the cathode and anode to a source of electrical potential. Preferably, at least one of the magnetic poles is elongated and generally aligned with the face so as to generate a magnetic field wherein closed areas are continuously and contiguously formed over a substantial distance along the face whereby to form a tunnel-like path within which charged particles tend to be retained, and along which they tend to move. Preferably, this tunnel-like path is closed upon itself to form a continuous path without beginning or end.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Corbani [52] US. Cl 204/298; 204/192 [51] lint. Cl. C23c 15/00 [58] Field of Search 204/298, 192

[56] References Cited UNITED STATES PATENTS 3,616,450 10/1971 Clarke 204/298 3,711,398 1/1973 Clarke 204/298 Primary Examiner-John H. Mack Assistant Examiner-Wayne A. Langel Attorney, Agent, or Firm-Donald D. Mon

57 ABSTRACT Cathode sputtering apparatus for operation within an evacuable enclosure for coating a substrate which 18 1 Apr. 15, 1975 also contained within the enclosure. The apparatus includes a cathode which carries a face of material to be sputtered. Magnetic means is placed adjacent to the cathode at a side thereof opposite from the face. and the magnetic means includes a pair of magnetic poles, between which there are developed magnetic lines of force. At least some of these lines of force enter and leave the face at spaced-apart intersections therewith and include segments which extend between the intersections and are spaced from the face whereby to form a boundary, along with the face. of a closed area in the plane of the respective lines of force. An anode is placed in proximity to the cathode. Connector means is provided to connect the cathode and anode to a source of electrical potential. Preferably. at least one of the magnetic poles is elongated and generally aligned with the face so as to generate a magnetic field wherein closed areas are continuously and contiguously formed over a substantial distance along the face whereby to form a tunnel-like path within which charged particles tend to be retained, and along which they tend to move. Preferably, this tunnel-like path is closed upon itself to form a continuous path without beginning or end.

37 Claims, 20 Drawing Figures CATHODE SPUTTERING APPARATUS This invention relates to apparatus for use in cathode sputtering. Cathodic sputtering is widely known and extensively used. especially for the application of thin films of material onto substrates. The process involves the transport of a material from a cathode to a substrate via the vapor phase. The ejection of the material into the vapor phase is accomplished by bombarding the cathode (sometimes called a target) with ions of sufficient energy to accomplish this. The target surface disintegrates primarily as a result of momentum transfer between the incident ions and the cathode face. The ejected particles traverse the evacuable enclosure and subsequently condense onto a substrate to form a thin film.

The process of sputtering is ably described in US. Pat. No. 2.l46.025. issued to Penning on Feb. 7. 1939. and in U.S. Pat. No. 3.282.816. issued to Kay on Nov. l. 1966. In addition. two relatively more recent patents are of general interest. US. Pat. Nos. 3.616.450 and 3.711.398. issued to Clarke on Oct. 26. l97l. and Jan. 16. I973. respectively. Because the physics of sputtering techniques are generally well-understood and are ably described in the Penning and Kay patents. a full description of the basic theory and operation of sputtering apparatus is unnecessary to an understanding of this invention.

While devices for sputtering have been intensively developed. still it is found that the purity and cohesiveness of films are subject to improvement. as is the production rate of deposition. This invention enables cathode sputtering to take place at substantially increased production rates and at convenient pressure levels. while producing films of greater purity and adhesiveness to the substrate. The device operates economically. is rugged in construction. and is simple to service and to maintain.

A persistent problem in prior art sputtering devices is that charged particles have been able to escape from the cathode region. When that occurs. efficiency drops. and so does the quality of the coating. If charged particles are used efficiently. then lower chamber pressures and fewer ions are needed for the sputtering process. Under these circumstances. fewer stray particles are in the chamber where they might contaminate the product. Concomitantly. a reduced voltage can be used along with a reduced pressure (ordinarily an incompatible situation). and power consumption is greatly reduced. Reduction of power consumption reduces the need for coolants. and also exposes the substrate being coated to less radiant heat which may tend to curl or otherwise adversely affect the substrate.

It is an object of this invention to provide cathode sputtering apparatus which is efficient in its utilization of charged particles. tending to retain them at the cathode region. thereby attaining the foregoing advantages.

Another persistent problem in the prior art has been the tendency of stray magnetic fields to cause glowing and sputtering at incorrect places. This can damage the equipment and contaminate the product. It is an object of this invention to provide a magnetic structure which concentrates the magnetic field where it is intended to be used. and which inherently inhibits the formation of stray magnetic fields in the magnetic structure.

A further improvement of function is secured by this invention in many of its embodiments. It is a considerable advantage to utilize as much as possible of the light from the glow which is present during the sputtering process. for causing electron emission. Most electron emission is caused by photoexcitation. and in many of the embodiments of this invention. a cathode structure is utilized wherein the light from the glow at one region is received by another region and utilized there for emission of electrons.

Still another improvement is attainable with many of the embodiments of this invention. Because the vaporized particles can move in all directions. including away from the substrate. it is an advantage to generate them in such a manner that their initial paths are directed as much as possible toward the substrate to be coated. In many of the emodiments of this invention. the cathode face opens (or faces) in a direction toward the substrate to be coated. and is excluded from initial paths in the opposite direction. thereby substantially increasing the yield and production rate. This is a particularly important advantage when the material being sputtered is expensive. for example. gold.

Cathode sputtering apparatus according to this invention is intended to be utilized in an evacuable enclosure for coating a substrate which is also contained within the enclosure. This apparatus comprises a cathode which carries a face of material to be sputtered. Magnetic means is provided adjacent to the cathode and to the side thereof opposite from the face. The magnetic means includes a pair of magnetic poles. between which there are developed magnetic lines of force. at least some of which enter and leave the face at spaced-apart intersections therewith. and which include arched segments which are spaced from the face and which extend between the intersections. thereby to form a boundary. along with the face. of a closed area in the plane of each respective line of force. An anode is placed in proximity to the cathode. and connector means is provided for the cathode and anode so that they may be connected to a source of electrical potential.

According to a preferred but optional feature of the invention. at least one of the magnetic poles is elongated and generally aligned with the face. whereby to generate a magnetic field in which a tunnel-like path is formed within which charged particles tend to be retained. and along which they tend to move.

According to still another preferred but optional feature of the invention, the cathode is held by a cathode support in surface-to-surface abutment therewith. and cooling means is provided for the cathode support to cool both it and the cathode.

According to yet another preferred but optional feature of the invention. the magnetic means includes a pair of pole pieces which embrace the cathode support and which is abut said of the cathode. The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings in which:

FIG. 1 is an axial cross-section of the presently preferred embodiment of the invention;

FIG. 2 is a cross-section taken at line 2-2 of FIG. 1;

FIG. 3 is an axial cross-section of a modification of FIG. 1;

FIG. 4 is an axial cross-section of yet another modification of FIG. 1;

FIG. 5 is a lateral cross-section of another embodiment of the invention taken at line 5-5 of FIGS. 6 and 8;

FIG. 6 is a top view taken at line 6-6 of FIG.

FIG. 7 is a lateral cross-section of still another embodiment of the invention taken at line 77 of FIG. 9;

FIG. 8 is a top plan view of another embodiment of the invention whose lateral cross-section. like that of the embodiment of FIG. 6 is shown in FIG. 5:

FIG. 9 is a top plan view of the embodiment of FIG. 7;

FIG. 10 is a fragementary-cross-section of a modification of the cathode suitable for use with this invention;

FIG. 11 is a fragmentary cross-section showing another type of magnetic means usable with this invention;

FIG. 12 is an axial cross-section of another suitable cathode construction;

FIGS. 13 and 14 are perspective views of the embodiments of FIGS. 9 and I6, respectively. showing their magnetic fields in greater detail;

FIG. 15 is a fragmentary cross-section showing yet another usuable cathode shape:

FIG. 16 is a cross-section taken at line 16-16 in FIG. 14:

FIG. 17 is a fragmentary cross-section of another modification of FIG. 1;

FIG. I8 is a perspective view of yet another embodiment of the invention; the device of FIG. 9; and

FIG. 20 is a cross-section showing another suitable form of magnetic means.

In FIG. I there is shown cathode sputtering apparatus 20 enclosed within an cvacuable enclosure 21. The encloure has a top section 22 and a bottom section 23 which are schematically shown joined together at a hermetic seal 24.

An opening 25 in top section 22 is provided for receiving a closure plate 26, which both closes opening 25 and supports the cathod sputtering apparatus. Plate 26 may. if desired. be made of insulating material. A substrate support 27 supports a substrate 28 whose upper surface 29 is to be coated by the use of this invention. A vacuum pump 30 is provided to evacuate the enclosure to the desired pressure. Should it be de sired to inject gases into the enclosure. it may be done through conduit 31 which is controlled by valve 32.

Closure plate 26 acts as a suport for the sputtering apparatus and is itself sealed to the inside surface 35 of the enclosure by sealing ring 36. Plate 26 is fastened in place by fasteners 37. A metal anode 38 is supported by plate 26. A sealing ring 39 surrounds a conductive support stem 40 which supports the anode. The stem constitutes connector means for connecting the anode to a source of electrical potential. As shown. anode potential will be that of the enclosure. Alternatively. the stem may be insulated from the closure plate where it passes through it by means such as an insulating grommet. and anode potential applied to the stem which is different from that of the enclosure.

A metal conduit 42 is provided for supplying coolant fluid. It also constitutes conductor means for connecting the cathode to a source of electrical potential. This conduit passes twice through closure plate 26 for the entry and exit of coolant fluid. It is brazed and sealed by brazing at joint 44 to a first plug 45. A second plug 46 is opposed thereto, and these plugs are drawn toward one another by fasteners 47. An insulating spacer 48 is fitted under second plug 46, and a sealing plate 49 is placed between the first plug and the closure. Sealing plate 49 carries a pair of sealing rings 50, 51. Accord- 4 ingly, the plugs. spacer and sealing plate form a hermetically sealed pass-through for metal conduit 42.

A cathode 55, having a face 56 of material to be sputtered. is formed in this embodiment as a right circular cylinder having a central axis 57. It has a cylindrical face 56 and a cylinderical outer wall 58. The cylindrical face is concave curved surface.

A cathode support 59 surrounds the cathode and has an inner wall 60 which is in contiguous. surface-tosurface contact with the outer wall 58 of the cathode. In its outer wall 61, the support has a groove 62 in which conduit 42 is seated in heat-transfer relationship to the cathode support. Coolant fluid passing through conduit 42 cools the cathode support and through it cools the cathode. It also is in intimate electrically conductive contact therewith so as to apply cathode potential to the cathode support and through the conductive cathode support to the cathode itself.

A magnetic means 65 surrounds the cathode and also surrounds the cathode support. In the embodiment shown in FIG. 1, this means comprises a plurality of permanent magnets 66, each of which has a pair of inherent magnetic poles 67 and 68 (north and south). Because all of the magnets are alike. only one will be described. All of the upper poles in FIG. I will have the same polarity, and all of the lower poles therein will have the opposite polarity. The magnets are grouped substantially continuously around the cathode so as to form a magnetic field inside the cathode. Because in this invention it is desired to particularly place and shape the mamgnetic field. pole pieces 69, 70 are provided which act as the poles of the magnetic means. They are rings of magnetizable material. and are attached to the top and the bottom of the magnets and are held together by supports 71 which also hold the cathode assembly spaced from the cover plate 26. Accordingly. pole pieces 69 and 70 comprise extensions of the magnets and are referred to as poles of the magnetic means. Each has a different polarity from the other. They embrace the cathode support. At least one,

as to be in a good heat-transfer relationship with one another. When the cathode becomes heated, and the support is cooled, the cathode expands into a tighter fit therewith.

It is a feature of this magnetic means which enter and leave the said face at intersections 76, 77, which are spaced apart by a portion of the face. Each line of force includes a continuously arched segment 78 which is spaced from the face. With the face. each segment forms the boundary of a closed area 79. It will be understood that there is an infinite numer of lines of force through any axial plane, and that their curvatures. and therefore the closed areas which they define, will differ. What is intended to be defined is a region contiguous to the face, closed and bounded by the face and by the curved lines of force. Because at least one of the poles is elongated, there is formed a tunnel-like path within which charged particles tend to be retained, and along which they tend to move. In this embodiment. the tunnel-like path is closed on itself to form a continuous path without beginning or end. Geometrically speaking. this path is a volume of revolutions with the closed area as a generator moved around the central axis 57.

The use of the pole pieces concentrates the intersections at peripheral band-shaped regions which are axially aligned with the pole pieces. Because the magnetic field is substantially continuous around its periphery. an infinite number of said closed areas is formed contiguous to and continuous with one another. whereby a ring-shaped. tunnel-like region of magnetic force is provided which tends to trap charged particles and prevent their escape. Instead. it causes them to whirl around the inside of the ring adjacent to the face. whereby to increase the efficiency of sputtering. This overcomes the objections found in much of the prior art. especially in the Clarke patents. wherein it is possible for charged particles to escape from the magentic region. and those devices therefore operate at considerably lesser efficiency.

FIG. I shows a construction wherein the cathode sputtering apparatus is entirely contained within the evacuable enclosure. and the cover plate is substantially flush with the enclosure. FIG. 3 shows a construction wherein cathode sputtering apparatus 85. which is generally similar to that shown in FIG. I, is supported on the outside of an evacuable enclosure 86 and above a substrate 87 to be coated. The cathode structure bears numbers used in FIG. I for similar parts. It is sandwiched between two sealing plates 88. 89 which are provided with appropriate sealing rings 90. 91. 92. 93 and are pressed together in a pile by a closure plate 94 and fasteners 95.

Anode 38 passes through end plate 94 as it passes through closure plate 26 in FIG. 1. Apart from this difference in details of construction. and the fact that the cathode support itself forms part of the hermetic enclosure. the devices of FIGS. 1 and 3 are basically identical. Again. plate 94 can be made of insulating material. or the anode stern insulated from the plate. if anode potential is to be different from that of the enclosure.

FIG. 4 shows a construction which differs from FIG. 1 in certain details. wherein and anode 100 is at the same potential as that of the evacuable enclosure 101 and is more rigidly attached thereto. The means attaching the anode to the enclosure is the connector means for it. In this case. and adapter plate 102 is utilized to mount both the anode and the cathode construction which bear indentical numerals to those used in FIG. 1. An insulating spacer 103 spaces the cathode from anode potential.

The cathode in this embodiment is made in two parts. One is a central sleeve 104 having a face 104a of material to be sputtered. and the other is a ring 105 which closely fits inside the cathode support. and in which the sleeves fits. A flange 106 on the ring is located adjacent to the magnetic means when the ring is in place. A magnetizable ring 107 is shrunk onto flange I06, and holds ring 105 in place because it is attracted by the magnets. The cathode can therefore readily be removed and replaced in the support. and a new sleeve can readily be fitted into ring 105. The fit is close enough that heat conductivity and electrical condutivity are assured. even when cold. When the cathode is heated in operation. it expands to make a tighter fits in the cathode support.

A ring-shaped shield 108 is placed just below the lower end of the cathode to form a physical shield that protects the cathode from stray charged particles. This protects the end of the cathode from erosion. This shield may be maintained at anode potential by a conductive connection 108a. and is supported in place by means not shown.

The foregoing sputtering devices are ring-shaped. and the faces of the cathodes are concave surfaces. for example. right circular cylinders. although it will be understood that tapered surfaces and the like may also be used. In FIG. 12. a frustoconical cathod 109 is shown which can be used with an appropriately shaped cathode support. An economy of use of the light generated in this construction is accomplished when concave surfaces are used. because all portions of the face are exposed to the light from other portions of the face. and this light is utilized in the photoemission of electrons.

FIGS. 5-9. 13. I4, 18 and 19 illustrate that the construction of the apparatus need not be circular. by may be linear or curvilinear instead.

FIGS. 5 and 6 show a linear (straight-line) cathode sputtering apparatus 110. It is intended that this device be contained in an evacuable enclosure during sputtering operation. It has as its objective to coat a substrate 111 suitably supported in the enclosure. The device may be operated in any position. As shown. it is arranged so its ejected material cannot move downwardly. but principally upwardly. in order to coat lower surface 112 of the substrate. An anode 113 is provided in the form of a plate-like strip running parallel to the sturcture. and conductive means 114 provides for applying an electrical potential to it. As in the other embodiments of the invention. a metal conduit I15 for conducting coolant fluid also operates as conductive means 116 to apply electrical potential to the cathode.

The structure includes a metal cathode 117. having a face 118 of material to be sputtered. The cathode has a side 119 opposite from the face in contiguity with a cathode support 120. The cathode support is embraced by a pair of magnetic pole pieces 12]. 122 which also embrace a permanent magnet 123. The pole pieces extend longitudinally for substantially the full lenth of the structure. as will the magnet itself. Therefore. the pole pieces are of opposite magnetic polarity.

Side frame members 124, I25 clamp the aforesaid members together and include lips 127, 128 which form channels into which the cathode may be slid or snapped. The cathode when installed is preferably a bent plane. of which the example shown is the axial fragment of a cylinder. The cathode extends parallel to a linear axis 129. Similarly. the magnetic means extends axially behind the cathode and generates magnetic lines of force 130 which enter and leave the said face at intersections 131, 132 and include continuously arched segments 133. all as heretofore described. A closed area 134 is formed at every section line similar to FIG. 5-5 along the length of the device.

In the devices of FIGS. 5-9, l3, 14. I8, and 19, the face of the cathode opens in a direction generally opposite side 119. i.e.. the side of the cathode which abuts the cathode support. This is to say that they do not make a complete circle. and parts of the magnetic structure and parts of the face do not face in the same direction. Instead. the fact is directed in a principal direction (upwardly in FIG. 5 and there is no possibility that sputtered material will be projected downwardly.

This contrasts with FIGS. l-4' wherein the cathode opens in a direction wherein the face faces toward itself. and the ejected material can migrate both upwardly and downwardly. Parenthetically. it is noted here that ejected material which simply files from one part of the face in FIG. 1 to another part of the face represents a lesser efficiency of operation. Such a condition can occur in FIG. 5 only in a very narrow range of angles.

FIGS. 7, 8, 9 and 14 utilize the principles of FIG. 6, except that the tunnel-like path-formed by the magnetic lines of force closes on itself. and has no beginning or end. In FIG. 6, the path has a beginning and an end. and an accompanying disadvantage which will later be discussed.

FIGS. 7, 9 and 13 illustrate a cathode sputtering apparatus 134 generally similar to that of FIG. 5 wherein two sets of closed areas 152, 153 are provided. In this arrangement. the cathode 135 is held by side plates 136, 137 against three pole pieces 138, 139, 140 and two cathode supports 141, 142. An anode 143, similar to anode 113 (of FIG. 5 is similarly provided and conductive metal conduit 144 passes through both of the cathode supports to apply electrical potential and to cool the cathode.

The permanent magnets 145, 146 are oppositely magnetically oriented so that the outer two pole pieces are of the same polarity. and the central pole piece is of opposite polarity. Two sets of magnetic lines of force 147, 148 are provided. each of which intersects the face 149 at spaced-apart intersections forming continuously arched segments 150, 151 and two sets of closed areas 152, 153 which contiguously and continuously extend in the form of a tunnel-like path for the full length of the linear device. With this arrangement, the charged particles in each of the sets of segments will travel in opposite direction. It is noted here that. if the construction of FIG. 7 is used to form only a linear path as is done in FIG. 6, then the arrangement of polarity of the magnets may instead be made so that they are similarly directed. In this event. the polarity of the outer pole pieces will be different from one another. and the direction of travel of charged particles will be the same.

The embodiment of FIG. 6 has the disadvantage that its path has a beginning and an end. and that charged particles will be ejected from the end. Also. since there is a beginning. sputtering will not occur for an intial length of the path. and part of the device is not functional for generation of sputtered material.

The devices of FIGS. 7, 8, 9, 13, 14, 18 and 19 overcome this deficiency. FIG. 8 shows a "racetrack" shaped cathode sputtering apparatus 155, a lateral cross-section taken anywhere normal to the path being substantially indentical to that of FIG. 5. It is simply the straight device of FIG. 5 wrapped into the shape shown so that the tunnel-like path (dotted line 156 shows the orientation of the path) is closed on itself so that it has neither beginning nor end.

Now to return to the embodiment of FIGS. 7 and 9. Because the direction of travel of charged particles through areas 152 and 153 are opposite from one another. by interconnecting their ends. a continuous ovular path can be established. This can readily be accomplished by providing end pieces 157, 158 which comprise semi-circular pieces that include a continuation of the magnets, the outer side plates. and outer poles pieces, but not the inside pole piece 139. The effect is to create a dish-shaped cathode support and cathode with side plates 136 and 137, pole pieces 138 and 140, and cathode supports 141, 142 joined as part of a continuation ovular structure supports 141, 142 joined as part of a continuous ovular structure around pole piece 139 as a center. The path 159 of charged particles is then as shown in FIGS. 9 and 13. The outer pole piece in FIGS. 13 and 14 is sometimes called a "peripheral pole piece.

The dish-shaped cathode may be provided as a central straight section with a semi-circular section adjacent to each end. or it may be made as a single piece. and the side plate made in two pieces held together by removable fasteners 159a, 15%. as shown in FIG. 7, to permit removal and replacement of the cathode by lifting off the top part.

FIG. 10 illustrates that, while the preferred embodiment of cathode is that of a concave surface in order to make maximum use of the light from the glow. a planar surface will also function, although with less efficiency as to the use of the glow. In this embodiment. a cathode sputtering apparatus is shown with side plates 166, 167 embracing a pair of pole pieces 168, 169. a permanent magnet 170, and a cathode support 171. The effect of this arrangement is to generate magnetic lines of force 172 as aforesaid to create a closed area 173 with the face 174 of the electrode. and this construction may be utilized in a ring or ovular shape as shown in the other embodiments. suitably modified to support a flat surface.

FIG. 11 illustrates the substitution in cathode sputtering apparatus 175 of an electromagnetic 176 in place of a permanent magnet. FIG. 11 may be considered a lateral cross section taken in FIG. 1, or in any of the other embodiments. with the direct substitution of an electromagnet for the permanent magent disclosed in those embodiments. In order to generate magnetic lines of force 177 with best shape for this device. the electromagnet should be spaced from the cathode far enough that the irregularties in the field caused by the windings 178 will not affect the field shape inside the cathode.

FIG. 12 shows a frustoconical cathode face 109 which can be utilized with obvious modification of supporting structure. This shape provides an improved downward concentration of sputtered material. compared to the devices of FIGS. 1-4.

FIG. 15 is a modification generally similar to that of FIG. 10 showing the use in a cathode sputtering apparatus 180 of a cathode 181 with a convex face 182, in which lines of force 183 are generated to form a tunnellike path. The comments pertinent to FIG. 10 as to the non-concavity of the cathode face and the utility of the modification are pertinent here.

FIGS. 14 and 16 show a circular cathode sputtering apparatus 210. It includes a central magnetic pole piece 211 formed as a post, a peripheral pole piece 212 formed as a cylinder. and a ring-shaped magnet 213 between them. magnetized with a pole adjacent to each pole piece. A ring-shaped cathode support 214 lies between the pole pieces and includes a conductive metallic coolant conduit 215 for cooling and providing cathode potential. A cathode 216 is held in the groove 217 in a side plate 218 which surrounds the structure. Magnetic lines of force 219 are generated and from a circu- Iar path 220 all as heretofore described, with intersections 22], 222, with the cathode. and continuously arched segments 223. A ring-shaped anode 224 (shown only in FIG. 16) is placed adjacent to the cathode. and has connector means (not shown) for providing anode potential.

In the devices of FIGS. 1-12. and 16. the material to be sputtered will ordinarily be metallic and nonmagnetic. such as copper or gold. It is also possible with this invention to sputter insulating materials. and also magnetic materials. A modification which makes sputtering of magnetic material feasible is shown in FIG. 17. An electromagnet 190 and a cathode support 191 are embraced by a pair of magentic pole pieces 192. 193. A pair of anode shields 194. 195 extend parallel to the pole pieces. and overlap the edges of cathode 196. whose face 197 faces away from side 198 where the magnetic means is placed. The anode shields are conductively interconnected by a lead I99. Instead of abutting the cathode. the pole pieces are spaced from it to leave air gaps 200, 201. When the cathode is made of a magentic material. the edges will become polarized. and lines of force 202 will be provided as in the other embodiments. and the field can be made strong enough that the cathode will have become magnetically saturated.

When insulating material is to be sputtered. radiofrequencies on the order of about 13.5 megacycles are utilized for the anode-cathode potential, rather than d.c. voltages as in the other applications already discussed. The structures. except for the gap portion will be otherwise indentical.

FIG. 13 is a perspective view of the device of FIG. 9, which shows the trough-like cathode face overlaid by the tunnel-like path formed by the face and the magnetic lines of force.

FIG. 14 is intended to show in perspective the tunnellike path of the device of FIG. 16.

FIG. 18 shows a modification wherein the tunnel-like path 205 lies on a curved plane 206, rather than on a plane as in FIG. 10. This arrangement can provide something of a focusing action for the sputtered material Plane 206 can. of course. be convex instead of concave. at the sacrifice of some of the advantages of concavity.

FIG. 19 illustrates an advantageous modification adaptable to the embodiments of FIGS. 1-18. An examination of these embodiments will show that. while they provide magnetic poles adjacent to the cathode. they also provide them adjacent to the other ends of the pole pieces. While this does not adversely affect the sputtering operation. it does provide in a vacuum system a useless field which might be the source of mischief. This is avoided by providing the outer pole pieces in such form that they form part of a single piece with a U-shaped lateral cross-section.

FIG. 19 is a lateral cross-section of the device of FIG.-

7. bearing like reference numbers. However. pole pieces I38 and 140 are formed integrally with a bight section 225. The bight section prevents a magentic field from being formed at its end of the magnetic structure. This scheme can be applied to any of the embodiments of the invention (other than FIG. 20 which inherently has it).

FIG. 20 shows a permanent magnet 230 whose legs 23], 232 are oppositely polarized, adjacent to a cathode 233, forming magnetic lines of force 234 as in the other embodiments. This type of magnetic construction can be substituted for the multiple piece constructions heretofore discussed.

FIG. 20 illustrates that the term "pole pieces" is not limited to parts which are separable from a magnet. although they may be. but instead is intended to define structure which directs magnetic flux to locations adjacent to the cathode where the desired magnetic field will be developed.

The pole pieces will. of course. be made of magnetizable material. Also. all of the devices described herein will have anode means in close enough proximity to generate the necessary electrical field. and the anode and cathode will have connector means for the application of the necessary potential for this function.

The dimensions for the various embodiments are readily determinable by persons skilled in the art of sputtering. Many of the dimensions will be selected as a consequence of a desired production rate or bulk of the device. The device of FIG. I is drawn substantially to scale. with the diameter of face 56 equal to about three inches. A magnetic field of about 1.000 gauss. and a dc. electrical potential of about 600 volts. are utilized in the illustrated device. A pressure of about 5 to 10 microns is used in the cvacuable enclosure.

An advantage of this invention is that the pole pieces provide an exact definition of location of the field and the area of erosion. and magnetic components of other sputtering apparatus which may be located in the same chamber. or of other parts of the same system. cannot substantially interfere to cause stray erosion. This has been a problem in known devices. The field lines in this device which are utilized in sputtering are not appreciably affected to stray fields.

It will be noted that in this construction. charged particles cannot escape from the field in the direction of the substrate. They are trapped in tlfe tunnel-like paths by a barrier between them and the substrate. Substantially all charged particles are retained by the magnetic field and cannot bombard or contaminate the article being coated. The particles which neutral escape'past the visible glow region are netural and are in the sputtered material. The substrate can be located anywhere in the chamber. which constitutes a great advantage in design and operation. When the devices wherein the cathode faces open on one side are used. there is a considerable potential saving of expensive material obtained from the directional effect. because there is a major sector toward which the material will not migrate.

Accordingly. it will be particularly noted that there exists a magnetic field between the cathode and the substrate which acts as a barrier to the passage of charged particles. Further. because these constructions have closed magnetic fields. it is unimportant where the anode is located. It merely needs to be sensibly close to the cathode. but the ability to locate it in any desired location gives considerable versatility to where the substrate may be located for coating.

When curved concave structure is utilized, the light generated in the operation of the system is effectively utilized for electron emission by photoexcitation. The use of a flat or convex surface would be a less efficient use of this glow, but such shapes may have advantages in other design trade-offs."

Still another advantage will be noted in every embodiment where a concave cathode is used. because when the concave cathode plate is heated. its material will expand to press against the cooled cathode support which acts as a heat sink. The hotter the cathode gets. the tighter it fits against the sink to be cooled. thereby increasing the efficiency of thermal transfer and also of electrical potential.

In the operation of the device of FIG. 1. a ringshaped glow will be noted around the entire periphery of the inside of the cathode. and erosion will be substantially uniform throughout its entire periphery. The same is true of the operations in the other embodiments wherein the path is closed on itself. because there is a continuous path for the electrons without beginning or end. However. in the device of FIG. 6. which is a purely linear device. it will be found that near one end there will be substantially no erosion. and the erosion area grows toward the other end. Should it be desired to stop the beam. insulated dielectric material may be placed in its path for this purpose. In the closed-path devices. the glow extends along the entire length of the path.

The operation of the devices will be readily understood by persons skilled in the art and requires no further detailed description. other than to observe that by causing the magnetic lines of force to intersect the wall of the cathode in two spaced-apart locations connected by a continuous and continuously arched segment of the magnetic lines of force. there are defined closed areas within which the charged particles tend to be retained and along which they travel. whereby they are most efficiently utilized in this device.

This invention is not to be limited by the embodiments shown in the drawings and described in the description. which are given by way of example and not of limitation. but only in accordance with the scope of the appended claims.

I claim:

I. Cathode sputtering apparatus for operation within an evacuable enclosure. for coating a substrate which is also contained within said enclosure. said apparatus comprising: a cathode having a face of material to be sputtered; magnetic means adjacent to the cathode and at a side thereof opposite from the face. said magnetic means including a pair of magentic poles. at least one of which is elongated. and between which there are developed magnetic lines of force. at least some of said lines of force entering and leaving said face at spacedapart intersections therewith. and including continuously arched segments extending between said inter-,

sections which are spaced from the face. said face to gether with said lines of force forming a boundary of a closed area in the plane of each of the respective lines of force. a tunnel-like path within which charged particles tend to be retained. and along which they tend to move; an anode in proximity to the'cathode; and connector means whereby said cathode and said anode can be connected to a source of electrical potential.

2. Cathode sputtering apparatus according to claim 1 in which the tunnel-like path is closed on itself. whereby to form a continuous path without beginning or end.

3. Cathode sputtering apparatus according to claim 2 in which the face opens in a direction generally opposite from said side.

4. Cathode sputtering apparatus according to claim 3 in which the path is a closed loop.

5. Cathode sputtering apparatus to claim 4 in which the path includes straight and curved portions.

6. Cathode sputtering apparatus according to claim 4 in which the path is circular.

7. Cathode sputtering apparatus according to claim 4 in which the path lies on a plane.

8. Cathode sputtering apparatus according to claim 4 in which the path lies on a curved surface.

9. Cathode sputtering apparatus according to claim 2 in which the magnetic means is formed as a closed loop.

10. Cathode sputtering apparatus according to claim 9 in which the magnetic means includes a central pole piece. a peripheral pole piece. and a magnet extending between them. the cathode lying adjacent to the pole pieces whereby to form said closed path.

11. Cathode sputtering apparatus according to claim 10 in which the peripheral pole piece is closed by a bight section to suppress a magnetic field except at the cathode.

l2. Cathode sputtering apparatus according to claim 2 in which the face comprises a curved surface with a central axis which it and the magnetic means surround.

l3. Cathode sputtering apparatus according to claim 1 in which the magnetic means comprises a permanent magnet.

l4. Cathode sputtering apparatus according to claim 13 in which the magnetic means includes a pair of magnetizable pole pieces placed adjacent to the magnet and forming said magnetic poles. and disposed adjacent to the said side of the cathode. whereby the said magnetic lines of forces are principally directed through the said cathode.

l5. Cathode sputtering apparatus according to claim 14 in which a cathode is disposed between and is embraced by said pole pieces. and which supports said cathode in surface-to-surface contiguous contact therewith.

16. Cathode sputtering apparatus according to claim 15 in which cooling means is provided to cool said cathode support.

17. Cathode sputtering apparatus according to claim 14 in which the magnetizable pole pieces abut said side of the cathode.

l8. Cathode sputtering apparatus according to claim 14 in which the magnetic pole pieces are continuously joined to one another at their sides on the opposite side of the magnet from the cathode.

-19. Cathode sputtering apparatus according to claim 14 in which the magnetizable pole pieces are spaced from said side of the cathode whereby to leave an air.

gap therebetween.

- 20. Cathode sputtering apparatus according to claim 1 in which the magnetic means comprises an electromagnet adapted to be energized to generate said magnetic lines of force.

21. Cathode sputtering apparatus according to claim 20 in which the magnetic means includes a pair of magnetizable pole pieces placed adjacent to the magnet and forming said magnetic poles. and disposed adjacent to the said side of the cathode. whereby the said magnetic lines of force are principally directed through the said cathode.

22. Cathode sputtering apparatus according to claim 21 in which the magnetizable pole pieces abut said side of the cathode.

23. Cathode sputtering apparatus according to claim 21 in which the magnetizable pole pieces are spaced from said side of the cathode whereby to leave an air gap therebetween.

24. Cathode sputtering apparatus according to claim 21 in which the magnetic pole pieces are continuously joined to one another at their sides on the opposite side of the magnet from the cathode.

25. Cathode sputtering apparatus according to claim 1 wherein said face comprises a curved surface.

26. Cathode sputtering apparatus according to claim 25 in which the face has a central axis which it and the magnetic means surround.

27. Cathode sputtering apparatus according to claim 26 in which the face is a circular cylinder.

28. Cathode sputtering apparatus according to claim 25 in which the curved surface is concave.

29. Cathode sputtering apparatus according to claim 25 in which the curved surface is convex.

30. Cathode sputtering apparatus according to claim 1 in which a conductive cathode support supports said cathode in surface-to-surface contiguous contact therewith.

31. Cathode sputtering apparatus according to claim 30 in which the cathode support forms a recess. and in which the cathode closely fits in said recess. whereby when the cathode temperature increases and the cathode expands. the cathode is pressed into firm contact with the cathode support.

32. Cathode sputtering apparatus according to claim 30 in which said cathode support includes abutment means adapted to engage a pair of opposite edges of said cathode. whereby when the cathode temperature increases and the cathode expands. the cathode is pressed into firm contact with the support.

33. Cathode sputtering apparatus according to claim 1 in which the face comprises a curved surface on which one and only one straight line can be drawn through each and every point thereon. said lines being normal to the plane of the closed area. all of said lines being parallel to one another.

34. Cathode sputtering apparatus according to claim 1 in which the face opens in a direction generally opposite from the said side.-

35. Cathode sputtering apparatus according to claim 1 in which the face is planar.

36. In combination: an evacuable enclosure: means for evacuating said closure; a substrate support in said enclosure; and cathode sputtering apparatus according to claim 1 in said enclosure.

37. A combination according to claim 36 in which the tunnel-like path is closed on itself. whereby to form a continuous path without beginning or end.

Page 1 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,878,085 DATED April 15, 1975 |NVENT0R(5) i John F. Corbani It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col, 2 line 54 cancel "is" line 54: after "said" insert --side-- lines 54-57, "The abovefloin which:" should be separate paragraph Col. 3 line 6 after 6 insert a comma line 26), "usuable" should read --usable-- line 26 cancel "the device of Fig. 9; and" line 265, insert --Fig. 19 is a lateral cross-section ofda modification of the device of Figo 9; an line 36, "cathod" should read --cathodeline 44, "suport" should read --support-- 001,, 4, line 7, after "is" insert --a-- line 31, mamgnetic" should read --magnetic-- line 44, 'cathod' should read --cathode-- line 46, "magent" should read "magnet-- line 55, after "magnetic" insert --construction that lines of force 75 are formed by the magnetic" line 61, 'numer" should read --number-- Col, 5, line 19, "magentic" should read magnetic-- line 44, "and: should read --an-- line 48, and should read --an-- line 64, "condutivity should read --conductivity-- line 66, :Ifitg" should read --fit- Col, 6 line 12 cat od should read --cathode-- line 20: "by" should read --but-- Q line 65 fact should read "face-- C01,, 7, line 5, "files" should read --flies-- line 48, "intial" should read --initial-- line 67, "poles" should read --pole-- Page 2 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3, 73,035

DATED April 15, 1975 INVENTOR(S) John F, Corbani It is certified that error appears in the ab0ve-identified patent and that said Letters Patent are hereby corrected as shown below: Col, 8, lines 4-5, cancel "joined as part of a continuation ovular structure supports 141, 142" line 33, "electromagnetic" should read--electromagnet-- line 63, "the' should read --a-- line 65, "from" should read --form-- Colo 9, line 12, "magentic" should read --magnetic-- line 20, "magentic" should read --magnetic-- line 30, "indentical" should read -identical-- line 42, after rial insert a period line 59, "ma%entic" should read --magnetic-- C010 10, line 33, to should read --by-- line 40, ''neutral" should read --do-- line 41, "netural" should read --neutral-- same line, cancel "in" line 59, "When" should read-'Where-- C010 11, line 43, "magentic" should read magnetic-- 0 (c1, 1 line 7 CO1. l, line 52, before "a" insert -thereby forming-- (Cl. 1, line 16) Signed and Scaled this twenty-eight Day Of October 1975 {SEAL} Arrest:

RUTH c. MASON c. MARSHALL DANN Arresting ()ffite Commissioner of Patents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3616450 *Nov 7, 1968Oct 26, 1971Clark Peter JSputtering apparatus
US3711398 *Feb 18, 1971Jan 16, 1973Clarke PSputtering apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3956093 *Dec 16, 1974May 11, 1976Airco, Inc.Planar magnetron sputtering method and apparatus
US4013532 *Mar 3, 1975Mar 22, 1977Airco, Inc.Method for coating a substrate
US4025410 *Aug 25, 1975May 24, 1977Western Electric Company, Inc.Sputtering apparatus and methods using a magnetic field
US4046659 *Jan 10, 1975Sep 6, 1977Airco, Inc.Method for coating a substrate
US4060470 *Dec 19, 1975Nov 29, 1977Clarke Peter JSputtering apparatus and method
US4116791 *May 18, 1977Sep 26, 1978Battelle Memorial InstituteMethod and apparatus for forming a deposit by means of ion plating using a magnetron cathode target as source of coating material
US4116806 *Dec 8, 1977Sep 26, 1978Battelle Development CorporationTwo-sided planar magnetron sputtering apparatus
US4155825 *May 2, 1977May 22, 1979Fournier Paul RIntegrated sputtering apparatus and method
US4162954 *Aug 21, 1978Jul 31, 1979Vac-Tec Systems, Inc.Uniformity of cathode erosion
US4166018 *Jan 31, 1974Aug 28, 1979Airco, Inc.Sputtering process and apparatus
US4175030 *Sep 22, 1978Nov 20, 1979Battelle Development CorporationTwo-sided planar magnetron sputtering apparatus
US4180450 *Sep 27, 1978Dec 25, 1979Vac-Tec Systems, Inc.Planar magnetron sputtering device
US4183797 *Dec 22, 1978Jan 15, 1980International Business Machines CorporationTwo-sided bias sputter deposition method and apparatus
US4194962 *Dec 20, 1978Mar 25, 1980Advanced Coating Technology, Inc.Cathode for sputtering
US4204936 *Mar 29, 1979May 27, 1980The Perkin-Elmer CorporationMethod and apparatus for attaching a target to the cathode of a sputtering system
US4219397 *Nov 24, 1978Aug 26, 1980Clarke Peter JMagnetron sputter apparatus
US4247383 *Aug 2, 1978Jan 27, 1981Leybold Heraeus GmbhCathodic system with target, for vacuum sputtering apparatus for the application of dielectric or nonmagnetic coatings to substrates
US4312731 *Apr 24, 1979Jan 26, 1982Vac-Tec Systems, Inc.Magnetically enhanced sputtering device and method
US4336119 *Jan 29, 1981Jun 22, 1982Ppg Industries, Inc.Oxide-containing coatings
US4361472 *May 18, 1981Nov 30, 1982Vac-Tec Systems, Inc.Sputtering method and apparatus utilizing improved ion source
US4379040 *Feb 18, 1982Apr 5, 1983Ppg Industries, Inc.Method of and apparatus for control of reactive sputtering deposition
US4385979 *Jul 9, 1982May 31, 1983Varian Associates, Inc.Bonding means such as a silver-epoxy mixture
US4394245 *Feb 8, 1982Jul 19, 1983Hitachi, Ltd.Electrode surface plate of soft magnetic material such as iron or an iron alloy
US4415427 *Sep 30, 1982Nov 15, 1983Gte Products CorporationThin film deposition by sputtering
US4457825 *May 16, 1980Jul 3, 1984Varian Associates, Inc.Sputter target for use in a sputter coating source
US4466872 *Dec 23, 1982Aug 21, 1984At&T Technologies, Inc.Methods of and apparatus for depositing a continuous film of minimum thickness
US4472259 *Oct 29, 1981Sep 18, 1984Materials Research CorporationLow pressure chemical vapor deposition
US4500408 *Dec 27, 1983Feb 19, 1985Varian Associates, Inc.Apparatus for and method of controlling sputter coating
US4500409 *Dec 27, 1983Feb 19, 1985Varian Associates, Inc.Magnetron sputter coating source for both magnetic and non magnetic target materials
US4515675 *Jun 27, 1984May 7, 1985Leybold-Heraeus GmbhMagnetron cathode for cathodic evaportion apparatus
US4517070 *Jun 28, 1984May 14, 1985General Motors CorporationMagnetron sputtering cathode assembly and magnet assembly therefor
US4521287 *Jun 28, 1984Jun 4, 1985General Motors CorporationHigh rate sputtering of exhaust oxygen sensor electrode
US4673480 *Jan 30, 1984Jun 16, 1987Varian Associates, Inc.Electrostatic reflection takes place to confine the glow discharge within tunnel
US4724058 *Aug 13, 1984Feb 9, 1988Vac-Tec Systems, Inc.Method and apparatus for arc evaporating large area targets
US4766813 *Dec 29, 1986Aug 30, 1988Olin CorporationMetal shaped charge liner with isotropic coating
US4865708 *Nov 14, 1988Sep 12, 1989Vac-Tec Systems, Inc.Magnetron sputtering cathode
US4872964 *Aug 26, 1988Oct 10, 1989Fujitsu LimitedPlanar magnetron sputtering apparatus and its magnetic source
US4892633 *Apr 11, 1989Jan 9, 1990Vac-Tec Systems, Inc.Magnetron sputtering cathode
US4933057 *Nov 22, 1988Jun 12, 1990Societa Italiano Vetro - SIV - S.p.A.Apparatus and process for the deposition of a thin layer on a transparent substrate
US4941915 *Feb 7, 1989Jul 17, 1990Nippon Telegraph And Telephone CorporationThin film forming apparatus and ion source utilizing plasma sputtering
US4957605 *Apr 17, 1989Sep 18, 1990Materials Research CorporationMagnetron
US4966677 *Apr 27, 1989Oct 30, 1990Leybold AktiengesellschaftCathode sputtering apparatus on the magnetron principle with a hollow cathode and a cylindrical target
US5073245 *Jul 10, 1990Dec 17, 1991Hedgcoth Virgle LSlotted cylindrical hollow cathode/magnetron sputtering device
US5178743 *Jan 30, 1991Jan 12, 1993Microelectronics And Computer Technology CorporationCylindrical magnetron sputtering system
US5234560 *Apr 16, 1992Aug 10, 1993Hauzer Holdings BvSubstrate-holding space bounded by a multipolar magnetic fields lines of force where interaction of the glow discharge form a homogeneous plasma; vacculum deposition; protective titanium nitride metal coatings
US5262028 *Jun 1, 1992Nov 16, 1993Sierra Applied Sciences, Inc.Glow discharge sputtering and magnetism
US5262032 *Jul 23, 1992Nov 16, 1993Leybold AktiengesellschaftSputtering apparatus with rotating target and target cooling
US5277779 *Apr 14, 1992Jan 11, 1994Henshaw William FRectangular cavity magnetron sputtering vapor source
US5298136 *Aug 18, 1987Mar 29, 1994Regents Of The University Of MinnesotaSteered arc coating with thick targets
US5298137 *Oct 1, 1992Mar 29, 1994Surface Solutions, Inc.Used for producing a thin film on surface of an object
US5328582 *Dec 4, 1992Jul 12, 1994Honeywell Inc.Off-axis magnetron sputter deposition of mirrors
US5334302 *Nov 13, 1992Aug 2, 1994Tokyo Electron LimitedMagnetron sputtering apparatus and sputtering gun for use in the same
US5336386 *Oct 28, 1992Aug 9, 1994Materials Research CorporationTarget for cathode sputtering
US5437778 *Nov 15, 1993Aug 1, 1995Telic Technologies CorporationSlotted cylindrical hollow cathode/magnetron sputtering device
US5441614 *Nov 30, 1994Aug 15, 1995At&T Corp.Method and apparatus for planar magnetron sputtering
US5529674 *Apr 24, 1995Jun 25, 1996Telic Technologies CorporationCylindrical hollow cathode/magnetron sputtering system and components thereof
US5935397 *Apr 30, 1998Aug 10, 1999Rockwell Semiconductor Systems, Inc.Physical vapor deposition chamber
US5985115 *Apr 11, 1997Nov 16, 1999Novellus Systems, Inc.Internally cooled target assembly for magnetron sputtering
US6132566 *Jul 30, 1998Oct 17, 2000Applied Materials, Inc.Device for shielding a plasma energy source from a plasma region during semiconductor processing; method for depositing titanium nitride and titanium onto a workpiece in a plasma chamber
US6152040 *Nov 26, 1997Nov 28, 2000Ashurst Government Services, Inc.Shaped charge and explosively formed penetrator liners and process for making same
US6217716May 6, 1998Apr 17, 2001Novellus Systems, Inc.Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
US6258217Sep 29, 1999Jul 10, 2001Plasma-Therm, Inc.For depositing metal and metal-reactive gas coatings onto a substrate
US6345588Aug 7, 1997Feb 12, 2002Applied Materials, Inc.Use of variable RF generator to control coil voltage distribution
US6436252Apr 7, 2000Aug 20, 2002Surface Engineered Products Corp.Method and apparatus for magnetron sputtering
US6444100Jan 30, 2001Sep 3, 2002Seagate Technology LlcCoated architectural gass and multilayer optical coatings
US6565717 *Sep 15, 1997May 20, 2003Applied Materials, Inc.Exterior coil to activate plasma with radio frequency; dielectric window; shields
US6579426May 16, 1997Jun 17, 2003Applied Materials, Inc.Use of variable impedance to control coil sputter distribution
US6689253 *Jun 13, 2002Feb 10, 2004Seagate Technology LlcFacing target assembly and sputter deposition apparatus
US6758948Aug 26, 2002Jul 6, 2004Tokyo Electron LimitedMethod and apparatus for depositing films
US6761804 *Feb 11, 2002Jul 13, 2004Applied Materials, Inc.Inverted magnetron
US7327089Sep 19, 2003Feb 5, 2008Applied Process Technologies, Inc.Beam plasma source
US7411352Apr 19, 2006Aug 12, 2008Applied Process Technologies, Inc.Dual plasma beam sources and method
US7513982Jun 7, 2004Apr 7, 2009Applied Materials, Inc.Two dimensional magnetron scanning for flat panel sputtering
US7588668Mar 3, 2006Sep 15, 2009Applied Materials, Inc.Thermally conductive dielectric bonding of sputtering targets using diamond powder filler or thermally conductive ceramic fillers
US7628899Dec 12, 2005Dec 8, 2009Applied Materials, Inc.Apparatus and method of positioning a multizone magnetron assembly
US8500975Jul 11, 2006Aug 6, 2013Applied Materials, Inc.Method and apparatus for sputtering onto large flat panels
US8562799Oct 11, 2005Oct 22, 2013Soleras Advanced Coatings BvbaFlat end-block for carrying a rotatable sputtering target
US8698400Apr 22, 2010Apr 15, 2014Leybold Optics GmbhMethod for producing a plasma beam and plasma source
DE3603646A1 *Feb 6, 1986Oct 16, 1986Balzers HochvakuumRetaining device for targets for cathode sputtering
EP0318441A2 *Nov 22, 1988May 31, 1989SOCIETA' ITALIANA VETRO- SIV-SpAApparatus and process for the deposition of a thin layer on a transparent substrate, in particular for the manufacture of sheets of glass
WO2003083161A1 *Mar 27, 2003Oct 9, 2003Isoflux IncSputtering apparatus comprising a concave cathode body
Classifications
U.S. Classification204/298.19, 204/298.21, 204/192.12
International ClassificationH01J37/34, C23C14/36, C23C14/34, H01L21/02, H01J37/32, C23C14/35, H01L21/31
Cooperative ClassificationH01J37/3405, H01J37/34
European ClassificationH01J37/34M2, H01J37/34
Legal Events
DateCodeEventDescription
Oct 29, 1992ASAssignment
Owner name: SLOAN TECHNOLOGY CORPORATION
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SLOAN TECHNOLOGY CORPORATION, A CORP. OF CA;REEL/FRAME:006312/0241
Effective date: 19910729
Oct 29, 1992AS02Assignment of assignor's interest
Owner name: SLOAN TECHNOLOGY CORPORATION A CORP. OF DE 602 EAS
Effective date: 19910729
Owner name: SLOAN TECHNOLOGY CORPORATION, A CORP. OF CA
Feb 6, 1990ASAssignment
Owner name: CHEMICAL BANK, AS AGENT
Free format text: SECURITY INTEREST;ASSIGNOR:VEECO INSTRUMENT ACQUISTION CORP.;REEL/FRAME:005254/0077
Effective date: 19900116