Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3878157 A
Publication typeGrant
Publication dateApr 15, 1975
Filing dateJun 4, 1973
Priority dateSep 9, 1971
Publication numberUS 3878157 A, US 3878157A, US-A-3878157, US3878157 A, US3878157A
InventorsFranciszek Olstowski, Donald B Parrish
Original AssigneeDow Chemical Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Non-elastomeric polyurethane compositions
US 3878157 A
Abstract
Mixtures comprising a low molecular weight polyol having a functionality of from 3 to about 8, a liquid modifier compound having a boiling point about 150 DEG C, such as an halogenated aliphatic compound, a polyisocyanate and a non-amine-containing catalyst, instantly set, after a brief induction period, to a solid, dense, non-elastomeric polymeric product which can be demolded within a period of from less than about 1 minute to about 5 minutes.
Images(19)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 Olstowski et a1.

1*Apr. 15, 1975 4] NON-ELASTOMERIC POLYURETHANE COMPOSITIONS [75] Inventors: Franciszek Olstowski, Freeport;

Donald B. Parrish, Lake Jackson, both of Tex.

[73] Assignee: The Dow Chemical Company,

Midland, Mich.

The portion of the term of this patent subsequent to July 17, 1990, has been disclaimed.

[22] Filed: June 4, 1973 [21] Appl. No.: 366,835

Related U.S. Application Data [63] Continuation-in-part of Ser. No. 179,149, Sept. 9,

1971, abandoned.

[ Notice:

[56] References Cited UNITED STATES PATENTS 3,146,220 8/1964 l-lindersinn et a1. 260/77.5

3,164,558 l/1965 Eichorn 260/33.8 3,165,483 l/l965 Gemcinhardt et a1. 260/33.8 3,326,855 6/1967 Matzner et a1 260/3l.8

3,372,083 3/1968 Evans et a1. 260/33.8

3,378,511 4/1968 Newton 260/318 3,449,320 6/1969 Knopf 260/77.5

3,489,723 1/1970 Kraft 260/77.5 3,542,740 11/1970 Pumpelly et a1... 260/77.5 3,617,330 11/1971 Pellstockcr 260/45.95 3,660,502 5/1972 Case 260/77.5

Primary Examiner-Donald E. Czaja Assistant Examiner-Eugene C. Rzucidlo Attorney, Agent, or Firm,lames G. Carter [57] ABSTRACT Mixtures comprising a low molecular weight polyol having a functionality of from 3 to about 8, a liquid modifier compound having a boiling point about 150C, such as an halogenated aliphatic compound, a polyisocyanate and a non-amine-containing catalyst, instantly set, after a brief induction period, to a solid, dense, non-elastomeric polymeric product which can be demolded within a period of from less than about 1 minute to about 5 minutes.

13 Claims, No Drawings NON-ELASTOMERIC POLYURETHANE COMPOSITIONS This application is a continuation-in-part of our copending application Ser. No. 179,149. filed Sep. 9, 1971 now abandoned.

This invention relates to polyurethane compositions and more particularly relates to rapid-setting. solid, dense, nonelastomeric polyurethane compositions.

Rapid setting. dense. opaque polyurethane compositions have been taught in US. Pat. No. 3,378,51 1. Such compositions employ, as one of the essential ingredients, a liquid plasticizer which is a dicarboxylic acid ester. These compositions while useful in many applications, have some disadvantages in that they are not readily paintable and are susceptible to degradation in such common solvents as acetone, methyl isobutylketone, methylene chloride, ethylene dichloride. ethyl acetate, tetrahydrofuran and the like.

The present invention provides one or more of the following advantages over the prior art, i.e. improved detail reproduction in ornamental castings having intricate detail, improved paintability, improved solvent resistance, improved lubricity in cast gears and other machine clements and the like.

It is an object of the present invention to provide a rapid-setting, dense, rigid polyurethane composition.

Another object of the present invention is to provide rapid-setting, non-elastomeric, opaque polyurethane compositions.

A further object of the present invention is to provide rapid-setting, dense, non-elastomeric, transparent polyurethane compositions.

These and other objects will become apparent from a reading of the following detailed specification.

The present invention concerns a composition which comprises a polyether polyol, an organic polyisocyanate and a non-amine-containing catalyst for urethane formation, characterized in that it contains a liquid modifier compound having a boiling point above about 150C selected from the group consisting of hydroxylcontaining and non-hydroxyl-containing polyoxyalkylene compounds, ester-modified polyoxyalkylene compounds, fatty acids, naturally occurring fatty oils, organic phosphates, organic phosphites, organic phosphonates, cyclic ethers, non-ester-containing aromatic compounds, partially hydrogenated aromatic compounds. organic carbonates, halogenated aliphatic compounds, cyclic sulfones and mixtures thereof.

All the liquid modifier compounds have at least two points in common. They are 1 and apparent ability to act as a heat sink to prevent excessive bubbling which would result from the heat generated by the exothermic heat of reaction and (2) they have boiling points at atmospheric pressure above about 150C.

The term non-elastomeric polyurethane as employed herein is defined as a polyurethane product having an elongation value of less than 80 percent and the term dense is defined as a density of at least about 1 gram/cc.

Non-elastomeric, rapid-setting, polyurethane compositions are obtained by intimately admixing together a composition comprising A. a polyether polyol which is the adduct of a polyhydric initiator compound having a functionality of from 3 to about 8 with a vicinal epoxy compound,

said polyol having a hydroxyl equivalent weight of at least about and less than about 230;

B. an organic polyisocyanate;

C. a liquid modifier compound having a boiling point above about C at atmospheric pressure including for example hydroxyl-containing and non-hydroxyl-containing polyoxyalkylene compounds, ester-modified polyoxyalkylene compounds, fatty acids, naturally occurring fatty oils, organic phosphates, organic phosphites. organic phosphonates. cyclic ethers. non-ester-containing aromatic compounds, partially hydrogenated aromatic compounds, organic carbonates, halogenated aliphatic compounds, cyclic sulfones. and mixtures thereof in any combination, and

D. a non-amine containing catalyst for urethane formation;

and wherein Components A anc B are present in amounts so as to provide an NCOzOH ratio of from about 0.821 to about 2:1 and preferably from about 0.95:1 to about 1.1:]; Component C is present in quantities of from about 20-50 percent and preferably from about 3050 percent by weight of the sum of Components A, B and C; and D is present in quantities offrom about 0.2 to about 10 percent, preferably from about 0.2 to about 3 percent, and most preferably from about 0.5 to about 3 percent by weight of the sum of the weights of Components A, B and C; with proviso that when Component C is a halogenated aliphatic compound. it is employed in a range of from about 0.2 to about 50 percent by weight of the sum of the weights of A, B, and C, that when the halogenated aliphatic compound also contains hydroxyl groups and has an OH equivalent weight of less than about 500, it is employed in quantities of from about 0.2 to about 5 percent by weight based upon the sum of the weights of A, B, and C, and that when Component C is a non-ester-containing aromatic containing catalyst, Component D, is employed in quantitites of from about 0.01 to about 10 percent by weight of the combined weights of Components A, B, and C.

Suitable initiator compounds having from 3 to 8 hydroxyl groups which can be employed to prepare the polyols (Component A) employed in the present invention include, for example, glycerine, trimethylolpropane, pentaerythritol, sorbitol, sucrose, mixtures thereof and the like.

Suitable vicinal epoxy compounds which may be reacted with the initiator compounds to prepare the polyols employed as Component A in the present invention include, for example, the lower alkylene oxides and substituted alkylene oxides such as ethylene oxide, 1,2- propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, epibromohydrin, epiodohydrin, styrene oxide, mixtures thereof and the like.

Suitable polyoxyalkylene compounds which may be employed as the liquid modifier compound (Component C) include, for example 1 a liquid, totally-capped or non-hydroxyl-containing block or randomly formed polyoxyalkylene glycol represented by the general formula 1 R2 n wherein R and R are independently selected from saturated and unsaturated hydrocarbon groups having .the residue, excluding the carboxyl groups, of an inter- 3 4 from about 1 to about 6, preferably from about 1 to thereof and mixtures thereof, each R is a substituent about 3, carbon atoms; R, R- and R,, are indepenindependently selected from hydrogen atoms, an alkyl dently hydrogen. an aryl group, an alkyl group or haloradical having from 1 to 20 carbon atoms, a halomethyl alkyl group, said alkyl or haloalkyl group having from radical, a phenyl radical. and a phenoxymethyl radical, about 1 to about 2 carbon atoms with the proviso that 5 an alkoxymethyl radical with the proviso that one of when R, R. R,, is a haloalkyl group, it is present the R substituents must be hydrogen, R4018 hydrogen in minor amounts i.c., a ratio of from about 0 to about or a saturated or unsaturated aliphatic group having percent of the total R, R R,, groups. and X, from 1 to carbon atoms, m has an average value of X X,, are integers, such that the boiling point of from about 1.0 to 2.0, n has a value from about 1 to the liquid capped polyalkylene glycol is above about I() about 5, x has a value from about 1 to about 8 and y 150C; has a value of 1 or 2 and wherein said ester-modified 2 a liquid partially capped, block or randomly formed polyether compound has ahydroxyl equivalent weight polyoxyalkylene compound represented by the above about 500 when 3 or more hydroxyl groups are general formula present and when 2 hydroxyl groups are present, an

wherein R and R, R R,, are as defined in formula 20 average equivalent Weight of above about 700 and 1 above and x, x. x,, are integers, the sum of e zero or one y y group is presentamolecuwhich provides the partially capped polyoxyalkylene Q abollt compound with a molecular weight of at least about Sulmble lhltlflmrs which y be p y P p 700; the liquid polyoxyalkylene and ester-modified polyoxy- 3 a liquid, block or randomly formed polyoxyalkylalkylehe modifier Compounds (Components of the l l represented b h general f l present invention include compounds having from 1 to III. H(o-cH -cH-)--(o-cn -cH) (O-CH -CH-)-OH I I x2 I n 2 n wherein R, R R,, are as defined in formula 1 about 8 y y groups Such r for example metha' above and X, X; X,, are integers, the sum of which ethanol Propahol, butfinol, ethylene g y P ep)" provides the polyoxyalkylene glycol with an equivalent lehe glycol, butylehe y r 1,6-heXflne 0 g y me. weight of at least about 700, d trimethylolpropane, pentaerythritol, sorbitol, sucrose,

4 a liquid, random or block polyoxyalkylene polyol i ur s thereof and the like.

having a hydroxyl functionality of from 3 to about when the hquld modlfler compound PhIP Cr 8 represented b h genera] f l v is an ester modified polyether polyol, the initiator comwhere R, R R,, are as defined in formula 1 above, pound may also be and is preferably an adduct of the Z is the residue of an initiator compound having from above mentioned initiator compounds and one or more 3 to about 8 hydroxyl groups, X X X,, are inteof the following vicinal epoxide-containing comgers, the sum of which provides the polyoxyalkylene pounds, i.e., the initiator compound is a polyoxyalkylpolyol with a hydroxyl equivalent weight of at least ene compound having 1 to 8 hydroxyl groups, preferaabout 500 and q is an integer having a value of from 3 bly 2 to about 3 or 4 hydroxyl groups.

to about 8. 5O Suitable vicinal epoxide compounds which may be- Suitable ester-modified polyoxyalkylene compounds reacted with the above mentioned initiator compounds which may be employed as the liquid modifier comto prepare the modifier compounds (Component C) pound (Component C) include, for example, those liqemployed in the present invention include, for example, ethylene oxide, l,2propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, epichlorohydrin, epio o bromohydrin, epiodohydrin, styrene oxide, mixtures n n thereof and the like. I

v. A RI The liquid modifier compounds represented by forl I m y n x mulae l-lV and methods for their preparation are well R R known in the art, e.g. US. Pat. Nos. 2,448,664;

. 2,425,755; 2,782,240 and 2,520,611. Methods for the wherein A is the residue of an initiator or starting COITlpreparation f the liquid difi compounds repre- POund having from 1 to about 8 hydroxyl groupsr Z 15 sented by the formula V are given in a copending application Ser. No. 67,233, filed Aug. 26, 1970 by Robert nal anhydride of a saturated or unsaturated acycl c aliw MCAda, f ESTER MOD]F[ED OLY- phatic, a saturated or unsaturated cyclic aliphatic, or ETHER POLYOLS" and in s p No 3502601 uid ester-modified polyethers having a boiling point above about C represented by the general formula 55 aromatic polycarboxylic acid, halogenated derivatives Suitable non-ester containing aromatic compounds .iodobenzene, l-bromo-3-iodobenzene. l-chloro-4- fluorobenzene, o-dibromobenzene, mdibromobenzene, o-dichlorobenzene, mdichlorobenzene, 1,3-dipropoxybenzene. 1-ethyl-4- propylbenzene. l-fluoro-4-iodobenzene. 4-bromo-oxylene, oz-bromo-m-xylene, 4-bromo-m-xylene. a-chloro-m-xylene, 4-ethyl-m-xylene, S-ethyl-m-xylene. 2-

oil, tung oil, fish oil, soya oil and the like and such acids as are produced as byproducts in chemical processes including for example, tall oil, the byproduct resulting from the conversion of wood pulp to paper by the sulfate process, mixtures of any of the above and the like.

Also operable as the liquid modifer compound are the naturally occurring fatty oils having boiling points above about 150C including, for example, linseed oil, castor oil, tung oil, fish oil, soya oil, and the like.

Suitable organophosphorus compounds which may be employed as the liquid modifier compound. Component C, include, for example, organo phosphates, organo phosphites and organo phosphonates having boiling points above about 150C.

Organo phosphates, phosphites and phosphonates which may be employed as the liquid modifer compound include those liquid compounds represented by the formulae bromo-p-xylene. a-chloro-p-xylene. 2-ethyl-p-xylene, Z-ethyl-p-xylene. o-bromo-toluene. m-bromotoluene,

o-. a-bromostyrene, B-bromostyrene. a-chlorostyrene, B-chlorostyrene, mixtures thereof and the like.

The above compounds may be represented by the following general formula provided it is understood that such compounds represented by the formula are liquids and have boiling points at atmospheric pressure above about 150C.

wherein R R and R are independently selected from an alkyl group having from about 1 to about 18 carbon atoms, an alkenyl group having from 2 to about 3 carbon atoms, a halogen, an alkoxy group, an aromatic group and hydrogen.

Other suitable aromatic compounds which may be employed as the liquid modifier compound (Component C) in the present invention include liquid multiring compounds having a boiling point above about 150C such for example, l-chloronapthalene, 1- bromo-naphthalene, mixtures thereof and the like.

Suitable partially hydrogenated multi-ring aromatic compounds which may be employed as the liquid modifier compound (Component C) in the present invention include, for example, 1,4-dihydronaphthalene, l,-

2,3.4-tetrachydronaphthalene, mixtures thereof and the like.

Suitable fatty acids and naturally occurring fatty oils which may be employed as the liquid modifier compounds (Component C) in the present invention includes, for example, oleic acid, linoleic acid, linolenic acid. and the like. The fatty acids resulting from the hydrolysis of naturally occurring oils of animal and vegetable origin including for example. linseed oil, castor m-. and p-chlorotoluene, tertiary butylstyrene.

wherein R R and R are independently selected from the group consisting of alkyl, alkoxyaryl, aryloxyaryl. alkaryl, aralkyl groups and halogen substituted derivatives thereof. Y is oxygen or sulfur, X is a halogen, i.e., chlorine. fluorine, bromine or iodine, n has a value of 1 or 2. Suitable such compounds include. for example. tri-n-butyl phosphate. triethylphosphate, tricresylphosphate, tris-(beta-chloroethyl)phosphate. His-(2.3- dibromopropyl)phosphate. butyl dischlorophosphate. Z-chloroethyl dichlorophosphate. ethyl dichlorophosphate, diethyl fluorophosphate, bis(2-chloroethyl) fluorophosphate, dibutyl chlorophosphate isoamyl dichlorothionophosphate. ethyl dibromothiophosphate. 2-chloropheny1 dichlorophosphate, Z-methoxyphenyl dichlorophosphate, Z-phenoxyphenyl dichlorophosphate, 2-chloroethyl dichlorophosphite, tris(2-chloroethyl)phosphite, tributyl phosphite, tricresyl phosphite, triethyl phosphite, diethyl isoamylphosphonate, diethyl ethylphosphonate, dimethyl methylphosphonate, diethyl methylphosphonate, diisobutyl isobutylphosphonate. bis(2-bromopropyl)-2-bromopropane phosphonate.

When haloor dihalo-phosphates or phosphites or their thiono derivatives are employed as the liquid modifier compound (component C), they are preferably added to the composition just prior to the nonamine-containing catalyst so as to minimize their reaction with the hydroxyl groups of the polyol. component A.

The organo phosphorus compounds may be prepared by procedures described in ORGANO-PHOSPHORUS COMPOUNDS, G. M. Kosolapoff, John Wiley & Sons, Inc., 1950.

Suitable liquid organic carbonates which may be employed as the liquid modifier, component C,.in the bonates represented by the formulae a- -C-O R and wherein each R and R are independently aryl, alkyl (having from about 1 to 6 carbon atoms) or alkenyl groups (having from about 1 to about 6 carbon atoms) and substituted derivatives thereof and each R and R, are selected from the same groups as R and R and hydrogen.

Suitable liquid acyclic organic carbonates which may be employed in the present invention include, for example, bis(2-chloroethyl carbonate). di-n-butyl carbonate, butyldiglycol carbonate, cresyldiglycol carbonate, dibutyl carbonate, di-2-ethylhexyl carbonate. dimethallyl carbonate, dinonyl carbonate and the like. The organic acyclic carbonate may be prepared by procedures given in U.S. Pat. No. 2,687,425.

Suitable liquid cyclic organic carbonates include, for example, propylene carbonate, butylene carbonate. styrene carbonate, mixtures thereof and the like. The cyclic organic carbonates may be prepared in the manner described in Canadian Pat. No. 556,006.

Suitable cyclic polyesthers which may be employed as the liquid modifier (component C) include. for example, the cyclic tetramer of ethylene oxide, cyclic pentamer of propylene oxide, cyclic tetramer of propylene oxide, mixtures of the above and mixtures of cyclic pentamers and above of ethylene oxide and or propylene oxide. Any liquid cyclic polyether having a boiling point above 150C may be employed as the liquid modifier in the present invention including cyclic polyethers prepared from butylene oxide, epichlorohydrin and the like.

The liquid cyclic polyether modifier compounds may be prepared by procedures mentioned in Cyclic Polycthers and Their Complexes with Metal Salts" by C. .l. Pedersen, J. Am. Chem. Soc, Vol. 89, p. 7017-7036, 1968, Twelve-Membered Polyether Rings. The Cyclic Tetramers of Some Olefin Oxides by R. S. Kern; J. Org. Chem, Vol. 33, p. 388-390, 1968; British Pat. No. 785,229 and 1,108,921.

Suitable halogenated aliphatic compounds having a boiling point above about 150C which may be employed as the modifier compound in the present invention include, for example, tetrabromoethane, bromoform, hcxachlorobutadiene, tetrachlorobutadiene, 1,2,3 ,3-tetrachlorobutane, 1,5-dibromo-pentane, l,l ,2-tribromopropane, 1,2,3-trichloropropene, polyepichlorohydrin diol having an equivalent weight above about 700 up to about 4,000, chlorinated paraffins, e.g, Chlorowax" No. 40, l-mercapto-3- chloroprophanol-Z, 3-chloropropane-l ,2-diol, 2-chloropropane-l ,3-dio1, 1,3-dichloro-2-propanol, mixtures thereof and the like.

The halogenated aliphatic compounds which do not contain hydroxyl groups may be employed in quantities of from about 0.2 to about 50 percent by weight of the sum of the weights of components A, B and C, and preferably from about 1 to about 10 percent by weight on the same basis i.e., the sum of the weights of components A, B and C. When the halogenated aliphatic compounds employed herein also contain hydroxyl groups and have a hydroxyl equivalent weight of less than 500,

the quantity which is to be employed is from about 0.2 to about 10 and preferably from about 0.4 to about 5 percent by weight based upon the combined weights of A, B and C.

Suitable cyclic sulfones which may be employed as the liquid modifier compound include the S-membered cyclic sulfones such as, for example, 3-methylsulfolane (3-methyltetrahydrothiophene-1,l-dioxide) and the like.

The term liquid modifier boiling above about Cincludes eutectic mixtures of the previously described classes of compound which are solids at atmospheric pressure but said eutectic mixtures are a liquid at room temperature and atmospheric pressure which have boiling points above about 150C. Also included in the definition are those solid compounds of the classes previously described which are dissolved in a liquid member of any of the described classes of compounds having boiling points above about 150C wherein the resultant solution is a liquid at standard conditions of temperature and pressure and have boiling points at atmospheric pressure above about 150C Suitable non-amine-containing catalysts for urethane formation include, for example, organo-metal compounds of tin, zinc, lead, mercury, cadmium, bismuth, cobalt, manganese, antimony, iron and the like such as, for example, metal salts of a carboxylic acid having from about 2 to about 20 carbon atoms including, for example, stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, ferric acetylacetonate, lead octoate, lead oleate. phenylmercuric propionate, cobalt naphthenate, lead naphthenate, mixture thereof and the like.

It is preferred that the catalysts be employed in liquid form. Those catalysts which are not ordinarily liquids may be added as a solution in a solvent which is compatible with the other components employed in the composition of the present invention. Suitable such solvents include, for example, dioctylphthalate, polyoxyalkylene glycols, mineral spirits, dipropylene glycol, mixtures thereof and the like.

It has previously been stated that the quantity of the non-amine-containing catalyst is in the range of from about 0.2 to about 10 percent. However, when the liquid modifier compound is a non-ester-containing aromatic compound or a halogenated aliphatic compound as described herein, the operable range for the quantity of the catalyst to be employed is from about 0.01 to about 10 percent and preferably from about 0.05 to about 2 percent and most preferably from about 0.1 to' about 0.5 percent by weight based upon the combined weights of Components A, B and C.

Suitable polyisocyanates which may be employed as Component B in the composition of the present invention include, for example, any organic polyisocyanate having 2 or more NCO groups per molecule and no other substituents capable of reacting with the hydroxyl groups of the polyoxyalkylene compound. Suitable such polyisocyanates include, for example, 2,4- toluenediisocyanate, 2,6-toluenediisocyanate, hexamethylene diisocyanate, p,p diphenylmethanediisocyanate, p-

phenylenediisocyanate, hydrogenated methylene dipenyldiisocyanate (e.g. Hylene W) naphthalene diisocyanate, dianisidine diisocyanate, polymethylene polyphenyl-isocyanate, mixtures of one or more polyisocyanates and the like.

Other organic isocyanates which may suitably be employed and which are to be included in the term organic polyisocyanate include isocyanate terminated prepolymers prepared from the previously mentioned polyols and the above mentioned isocyanates.

The cured compositions of the present invention vary from transparent solids to white or off-white opaque solids, depending upon the particular liquid modifier compound (component C) and/or polyisocyanate (component B) employed to produce such compositions.

Suitable modifier compounds which may be employed to produce solid opaque products include. for example,

1 those compounds represented by formula 1 wherein at least percent by weight of the compound is derived from units wherein R, R R, are hydrogen.

2 those compounds represented by formula 11 wherein the molecular weight is at least about 1,500.

3 those compounds represented by formula 111 wherein the molecular weight is at least about 3,000; and

4 those compounds represented by formula [V wherein the molecular weight is at least about 7,000 and at least 20 percent of the molecular weight is derived from units wherein R, R R,, are hydrogen. l

Suitable modifier compounds which may be employed to produce transparent solid products include, for example,

1 those compounds represented by formula 1 wherein less than about 20 percent weight of the compound is derived from units wherein R, R R,, are hydrogen;

2 those compounds represented by formula 11 wherein the molecular weight is greater than about 700 but less than about 1,500 and wherein less than 207 of the molecular weight is derived from units wherein R, R R,, are hydrogen;

3 those compounds represented by formula 11] wherein the molecular weight is greater than about 700 and less than about 3,000 and wherein less than about 20 percent of the molecular weight is derived from units wherein R,, R R,, are hydrogen; and

4 those compounds represented by formula IV having a molecular weight from about 1,500 to less than about 7,000 and wherein less than about 20 percent of the molecular weight is derived from units wherein R, R R,, are hydrogen.

Rigid polyurethane products can be prepared by rapidly mixing the components of the composition of the present invention. It is preferred to thoroughly blend together the components represented by A, the polyol, B, the polyisocyanate and C. the liquid modifier compound and then mixing the resultant mixture with Component D, the catalyst. Mechanical dispensing or combination mixing-dispensing devices can be employed by utilizing 2 or more streams of the individual components or mixtures of the components which are introduced into said device.

Other components including inert fillers such as, for example, sand, microballoons, glass fibers. asbestos, aluminum granules, silicon carbide powder and the like, coloring agents, such as pigments and dyes including, for example, chromic oxide, ferric oxide, mixtures thereof and the like may be employed in the compositions of the present invention without detracting from the scope thereof.

The compositions of the present invention rapidly produced solid products which may be demolded, i.e., the articles produced therefrom may be removed from the mold, within about 5 minutes, usually within about 3 minutes and preferably within about 1 minute or less from the time the catalyst is blended into the mixture and do not require the application of external sources of heat to accomplish this, although in some circumstances it may be desirable to post cure, at elevated temperatures, the products in order to develop certain properties. The compositions of the present invention not only can be demolded within 5 minutes and often in less than 2 to 3 minutes, but the cast objects produced therefrom have developed sufficient strength properties to be employed immediately upon cooling to room temperature for their intended purpose. The cast objects are hot or warm to the touch immediately after removing from the mold due to the exotherm generated during the reaction. This is a valuable contribution to the urethane molding art, in that productivity can be increased employing a given quantity of molds.

The choice of the catalyst involves the desired time delay between the catalyst being mixed into the reagents and the liquid mix instantly solidifying. For example, if tolylene diisocyanate is used along with a polyol that is the reaction product of glycerine with propylene oxide and having a molecular weight of about 260 plus a polyoxypropylene glycol having a molecular weight of about 4,000 as the liquid modifier compound, then the addition of about 1 percent stannous octoate catalyst will yield a delay or induction time of about l0 seconds before the mixture suddenly *freezes" into a solid. Substitution of dibutyltin dilaurate at the same catalyst level stretches this delay time to about 20 seconds, and phenyl mercuric propionate exhibits a delay time of about seconds before extremely rapid solidification occurs.

The change of isocyanate to a less reactive one, i.e., the substitution of hexamethylene diisocyanate for tolylene diisocyanate, correspondingly increases the delay time before rapid solidification takes place.

Suitable materials from which adequate molds, for casting the compositions of the present invention, may be prepared include polymers such as, for example, polyethylene, polypropylene, their copolymers and the like, polyurethanes, polysiloxane elastomers, Mylar, cured polyepoxides, mixtures thereof and the like.

It is preferred to employ relatively thin wall molds or molds having a low heat capacity or thermal conductivity. Heavy molds made of relatively high thermal conductivity materials such as aluminum, copper. iron or steel and the like may present curing problems, i.e., the reactants may not be readily demolded unless the mold is preheated to about 5090C, especially when casting relatively thin sections. However, high thermal conductivity materials such as copper or aluminum can be employed as thin wall molds without preheating if the thermal capacity ofthe mold is relatively low compared to the amount of heat liberated in the casting.

The compositions of the present invention are useful as, but not restricted to such uses as, a casting material for preparing bearing, surfaces, annular spacers, decorative objects, furniture or furniture components, gears or other machine components, threaded protective plugs and caps, and the like.

The following examples are illustrative of the present invention but art not to be construed as to limiting the scope thereof in any manner.

The following examples 1-10 are illustrative of solid, rigid, opaque and translucent products.

EXAMPLE 1 A. An Example of the Present Invention In a suitable container were thoroughly blended 30 grams of Voranol CP-260 (the reaction product of glycerine with propylene oxide having a molecular weight of about 260) as the polyol, 30 grams of P4000, a polyoxypropylene glycol having a molecular weight of about 4000, as the liquid modifier compound and 30 grams of Hylene TM (an 80/20 mixture by weight of the 2,4-and 2,6-isomers of tolylene diisocyanate having an NCO equivalent weight of about 87).

After the above components were well mixed. 1 cc of a liquid dibutyltin dilaurate, commercially available as T-l2 catalyst from Metal and Thcrmit Corp.. was rapidly stirred in and the resultant mixture was poured into a polyethylene beaker. Thirty seconds after stirring in the catalyst, the mixture suddenly turned an opaque white color and underwent substantially instantaneous hardening. Sixty seconds after the catalyst was added.

a rigid, hard, white, opaque polymer casting was demolded. i.e., removed from the polyethylene beaker. and was found to have a density of 1.055 grams/cc.

B. Comparative DemonstrationEffect of One-Tenth the Amount of Catalyst The same procedure and composition as in A above was employed except that 0.1 cc of the dibutyltin dilauratecatalyst was employed with the following results.

60 seconds after the catalyst was added, the mixture was still a transparent liquid.

120 seconds after the catalyst was added, the mixture was an opaque liquid.

180 seconds after the catalyst was added, the mixture hardened but was too tacky to be demolded.

400 seconds after the catalyst was added, the casting was demolded.

The product was found to be a warped, rigid, white, opaque solid that was filled with gross bubbles or gas cells. This casting had a density of 0.864 grams/cc.

C. Comparative Demonstration of Effect of Omitting the Liquid Modifier Same procedure as in A above employing 33 grams of the indicated polyol and 33 grams of the polyisocyamate. The mixture suddenly gelled after the catalyst addition; however within the next 4 minuteinterval, the cast polymer grossly swelled and generated copious quantities of internal gas bubbles and open fissures across the top surface of the casting. The cured polymer mass had a density of 0.56 grams/cc.

EXAMPLES EMPLOYING VARIOUS POLYISOCYANATES:

EXAMPLE 2 Same procedure as in Example 1A employing the following components:

33 grams of Voranol CP-26O as the polyol 33 grams of P4000 as the liquid. Pb.

50 grams of lsonate 143L (dimerized diphenylmethanediisocyanate having :an NCO equivalent weight of about 144 and a functionality of about 1 cc lead octoate containing 24 percent pb.

In less than 15 seconds after catalyst addition, the mixture suddenly solidified into a cream-colored, opaque, hard, rigid polymer which was demoldable within 40 seconds.

EXAMPLE 3 Same procedure as in Example 1A employing the following components:

30 grams of Voranol CP-260 30 grams of P3000 (a polyoxypropylene glycol having an average molecular weight of about 3,000) as the liquid modifier I 45 grams of Hylene W (hydrogenated methylene diphenyldiisocyanate having an NCO equivalent weight of about 132 and a functionality of about 2). 1 cc of lead octoate having 24 percent Pb. The mixture suddenly turned into an opaque, dense, hard solid within about 15 seconds and could be demolded within about 40 seconds. I

EXAMPLE 4 Same procedure as in Example 1A employing the following components.

30 grams of Voranol CP-260 30 grams of P3000 I 32 grams of Takenate 500 (Xylylene diisocyanate having and NCO equivalent weight of about 94 and an average functionality of about 2). 1 cc of lead octoate (24 percent Pb). The mixture suddenly turned into an opaque, white solid within about 30 seconds and could be demolded within about seconds.

EXAMPLES EMPLOYING VARIOUS POLYOLS EXAMPLE 5 Same procedure as-in Example 1A employing the following components.

26 grams of Voranol CP450 (reaction product of glycerine with propylene oxide having a molecular weight of about 450).

15 grams of P-4000 16 grams of Hylene TM 1 cc of lead octoate (24 percent Pb) The mixture rapidly set to produce a rigid, hard,

opaque, white, solid casting within about 25 seconds which could be demolded within about 40 seconds.

EXAMPLE 6 Same procedure as in Example IA employing the following components.

30 grams of the reaction product of glycerine with ethylene oxide in a molar ratio of 1:3 and having a hydroxyl equivalent weight of about 75.9.

30 grams P-400 30 grams Hylene TM 1 cc lead octoate (24 percent Pb) The mixture suddenly set into a hard, rigid, white,

opaque solid product within about 30 seconds which could be demolded within about 50 seconds.

COMPARATIVE EXAMPLE 6A To demonstrate that initiator compounds having a functionality of 3 but which have not been reacted with Same procedure as in Example 1A employing the following composition.

33 grams of Voranol CP-260 33 grams of the reaction product of allyl alcohol with a 5050 wt. percent mixture of propylene oxide and ethylene oxide having a molecular weight of about 1800 and finally end capped with a methyl group, as the liquid modifier.

33 grams of Hylene TM l cc of lead octoate (24 percent Pb).

The mixture set into a rigid, hard, white, opaque solid having a density of about 1.22 grams/cc within about 20 seconds which could be demolded within about 40 seconds.

EXAMPLE 8 Same procedure as in Example 1A employing the following composition.

33 grams of Voranol CP-260 33 grams of the adduct of propylene oxide onto butanol and having a molecular weight of about 2000.

33 grams of Hylene TM 1 cc of lead octoate (24 percent Pb).

The mixture set into a rigid, white, opaque, solid product within about 20 seconds which could be demolded within about 40 seconds.

EXAMPLE 9 Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-260 32 grams of the adduct of 80-20 mole percent mixture of propylene oxide and ethylene oxide onto a glycerine-propylene oxide adduct having a molecular weight of about 260, the molecular weight of the resultant product being about 10,000. 30 grams of Hylene TM 1 cc of lead octoate (24 percent Pb) The mixture rapidly set into an opaque, white, hard, solid product within about 20 seconds and could be demolded within about 40 seconds.

EXAMPLE Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-260 30 grams of propylene glycol initiated polyepichlorohydrin having an average molecular weight of about 2000. 30 grams Hylene TM 1 cc of lead octoate (24 percent Pb) The composition rapidly set into a hard, opaque, rigid, solid product within about seconds which was readily demoldable within about 40 seconds.

The following examples 11-19 are illustrative of solid, rigid, transparent products.

EXAMPLE 11 Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-260 30 grams of Voranol CP-4701 (the reaction product of glycerine with propylene oxide end-capped-with ethylene oxide and having an average molecular weight of about 4700) 30 grams of Hylene TM 1 cc lead octoate The mixture instantly set into a rigid. transparent, solid product within about 20 seconds and could be demolded within about 30 seconds. The casting had a density of 1.1 grams/cc.

EXAMPLES OF VARIOUS POLYISOCYANATES. POLYOLS AND MODlFlER COMPOUNDS EXAMPLE 12 Same procedure as in Example 1A employing the following composition.

33 grams of Voranol (P-260 33 grams of Voranol CP-3000 (glycerine initiated polyoxypropylene glycol having an average molecular weight of about 3000) grams Isonate 143L 1 cc T-9 catalyst (stannous octoate commercially available from Metal and Thermit Corp.). The mixture rapidly set into a rigid, transparent, solid within about 15 seconds and could be demolded within about 30 seconds.

EXAMPLE 13 Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-260 30 grams of Voranol CP-l500 (glycerine initiated polyoxypropylene glycol having an average molecular weight of about 1500) 30 grams of Hylene TM 1 cc of T-9 catalyst The mixture instantly set into a transparent, solid product within about 40 seconds and could be demolded within about seconds.

COMPARATIVE EXAMPLE 13-A Same procedure as in Example lA employing the following composition.

30 grams of Voranol CP-260 30 grams of Voranol CP-700 (glycerine initiated polyoxypropyleneglycol having an average molecular weight of about 700) 30 grams of Hylene TM 1 cc T-9 catalyst The mixture demonstrated instant set characteristics but the product swelled and cracked.

EXAMPLE 14 Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-260 31 grams of a triol prepared by reacting glycerine with a mixture of propylene oxide and ethylene oxide having an average molecular weight of about 4100 and about 16 weight percent ethylene oxide).

30 grams Hylene TM 1 cc lead octoate (24 percent lead) The mixture instantly set within about 30 seconds and the rigid, solid. clear casting was demolded within about 50 seconds.

EXAMPLE 15 Same procedure as in Example 1A employing the followig composition.

30 grams of the reaction product of glycerine with propylene oxide in a molar ratio of about 1:3 respectively.

30 grams Voranol (P-4701 (glycerine initiated polyoxypropylene glycol end-capped with ethylene oxide) 45 grams Hylene TM 1 cc lead octoate (24 percent Pb) At the end of 180 seconds the mixture was still liquid; at 195 seconds the mixture began to gel rapidly. and at 210 seconds the casting was a rigid transparent tackfree solid.

When the same formulation was catalyzed by 5 cc of 24 percent Pb octoate, the solidification was not greatly accelerated, e.g. the mix was still liquid at 120 seconds, gelling occurred rapidly at 135 seconds, and the product was a transparent rigid solid at 150 seconds after catalyst addition.

EXAMPLE 16 Same procedure as in Example 1A employing the following composition.

30 grams of the reaction product of glycerine with propylene oxide at a molar ratio of 1:3 respectively.

30 grams of Voranol CP-4701 30 grams of hexamethylene diisocyanate I cc of lead octoate (24 percent Pb) The mixture set into a transparent. rigid. solid within about 70 seconds and could be demolded within about 91) seconds.

EXAMPLE 17 Same procedure as in Example 1A employing the following composition.

26 grams of Voranol CP-45O (glycerine initiated polyoxypropylene glycol having an average molecular weight of about 450).

grams of Voranol (P-4701 16 grams of xylylene diisocyanate 0.7 cc of lead octoate (24 percent Pb) The mixture instantly set into a transparent, rigid,

solid product within about seconds which could be demolded within about 50 seconds.

EXAMPLE 18 Same procedure as in Example IA employing the following composition.

33 grams of Voranol CP-26O 33 grams ofa butanol initiated polyoxypropylene glycol having an average molecular weight of about 1000. 33 grams of Hylene TM 1 cc of lead octoate catalyst The mixture instantly set into a transparent, rigid. dense product within about 20 seconds and could be demolded within about seconds.

EXAMPLE 19 Same procedure as in- Example 1A employing the following composition.

16 35 grams of Voranol CP-26O 30 grams of polyoxypropylene glycol having an average molecular weight of about 1000.

35 grams of Hylene TM 1 cc of lead octoate (24 percent Pb) The mixture instantly set into a transparent, rigid, dense product within about 10 seconds and could be demolded within about 30 seconds.

EXAMPLE 20 EXAMPLE 21 33 grams of Voranol CP-260 30 grams of distilled Tall oil 45 grams of PAH (polymethylenepolyphenylisocyanate having an average functionality of about 2.6

and an NCO equivalent weight'of about 133) 1 cc T-9 catalyst About 35 seconds after catalyst addition, the mixture suddenly froze" into a rigid, solid material having a density of 1.04 grams/cc.

EXAMPLE 22 Same procedure as in Example 1A employing the following components:

30 grams of the reaction product of pentaerythritol with propylene oxide in a molar ratio of 1 to 5 respectively.

30 grams 'of linseed oil 30 grams of toluene diisocyanate 1 cc of T-9 catalyst The mixture suddenly set into a dense, solid product.

EXAMPLE 23 Same procedure as in Example 1A employing the following components:

33 grams of the reaction product of pentaerythritol with propylene oxide in a molar ratio of l to 5 respectively.

30 grams of distilled tall oil 33 grams of toluene diisocyanate 1 cc of T-9 catalyst The mixture solidified within about 30 seconds after catalyst addition and was demolded after about 45 seconds after catalyst addition. The rigid. solid casting had a density of 1.11 grams/cc.

EXAMPLE 24 Same procedure as in Example 1A employing the following components:

30 grams of Voranol CP-26O 20 grams of oleic acid 46 grams of PAP] (polymethylene polyphenylisocyanate) 1 cc of T-9 catalyst About 35 seconds after catalyst addition, the mixture suddenly set into a rigid, light brown casting which had a density of about 1.04 grams/cc.

EXAMPLE 25 Same procedure as in Example lA employing the following components:

30 grams of the reaction product of glycerine with propylene oxide to a molecular weight of about 260.

grams of linseed oil 46 grams of PAH 1 cc of T-9 catalyst The mixture suddenly set into a rigid. khaki-colored.

opaque. solid within about seconds after catalyst addition. The casting was demolded within about 1 minute after catalyst addition and had a density of l.l2 grams/cc.

EXAMPLE 26 Same procedure as in Example lA employing the following components:

grams of the reaction product of glycerine with EXAMPLE 27 Same procedure as in Example lA employing the following components:

30 grams of Voranol CP-260 30 grams of Hylene TM 30 grams of l,2,3.4-tetrahydronaphthalene 1 cc of lead octoate (24 percent Pb) About 15 seconds after catalyst addition, the mixture suddenly set into a rigid, clear. transparent. solid.

EXAMPLE 2:;

Same procedure as in Example lA employing the following components:

30 grams of the reaction product of glycerine with propylene oxide at a mole ratio of about I to 3 respectively and having a molecular weight of about 45 grams PAPl 20 grams acetophenone 1 cc T-9 catalyst The mixture was cast into a shallow Mylar tray and suddenly solidified within about 20 seconds after catalyst addition and the cast sheet was removed about seconds later. The product had the following properties:

Density Shore D Hardness l gram/cc about 92 EXAMPLE 29 Same procedure as in Example 1A employing the following components:

30 grams reaction productof glycerine with propylene oxide to a molecular weight of about 260. 30 grams of l.2.4-trichlorobenzene 30 grams toluenediisocyanate 1 cc lead octoate About 15 seconds after catalyst addition, the mixture suddenly set into a rigid, transparent solid.

EXAMPLE 30 Same procedure as in Example lA employing the following components:

35 grams of the reaction product of glycerine with propylene oxide to a molecular weight of about 260.

20 grams of l2.3.4-tetrahydronaphthalene 10 grams of 1.2.4-trichlorobenzene 35 grams of toluene diisocyanate 0.3 cc of lead octoate The mixture suddenly set into a rigid. transparent solid.

EXAMPLE 3l Same procedure as in Example lA employing the following components:

30 grams of the reaction product of glycerine with propylene oxide to a molecular weight of about 260.

30 grams of a-chloronaphthalene 30 grams of toluenediisocyanate 0.4 cc of lead octoate About 20 seconds after catalyst addition, the mixture suddenly set into a rigid, transparent solid.

EXAMPLE 32 Same procedure as in Example lA employing the following components:

30 grams of the reaction product of glycerine with propylene oxide to a molecular weight of about 260.

30 grams of 1.2.4-triethylbenzene (b.p. approx.

30 grams of toluenediisocyanate 0.4 cc. of lead octoate.

About 30 seconds after catalyst addition. the mixture suddenly set into a rigid, opaque solid. About 45 seconds after catalyst addition. the casting was demolded and had a density of 1.12 grams/cc.

(B) COMPARATIVE EXAMPLE Use of Modifier Compound With a Boiling Point Below About C Same procedure as in Example 1A employing the following components:

30 grams of the reaction product of glycerine with propylene oxide to a molecular weight of about 260.

30 grams of ethylbenzene (b.p. approx. l36C) 30 grams of toluene diisocyanate .4 cc of lead octoate.

About 20 seconds after catalyst addition, the mixture suddenly swelled with gross bubble formation to yield an expanded rigid casting having an apparent density of 0.67 grams/cc.

EXAMPLE 33 Same procedure as in Example l-A employing the following composition:

30 grams of the reaction product of glycerine with about 3 moles of ethylene oxide per mole of glycer- 32 grams xylylene diisocyanate 30 grams tris( 2-chlor oethyl )phosphate 0.5 cc lead octoate j The mixture instantaneously set within about 15 seconds after catalyst addition and was demolded within about 30 seconds after catalyst addition thereby producing a clear, transparent, rigid, non brittle solid casting having a density of about 1.25 grams/cc.

EXAMPLE 34 Same procedure as in Example l-A employing the following composition:

30 grams of the reaction product of glycerine with 3 moles of propylene oxide per mole of glycerine having a hydroxyl equivalent weight of about 87. 46 grams PAPl (polymethylene polyphenylisocyanate) 20 grams tri-n-butylphosphate 1 cc stannous octoate catalyst The mixture suddenly solidified within about 20 seconds after catalyst addition and the resultant casting was demolded within about 30 seconds after catalyst addition. The product was a tough, dark colored (transparent in very thin sections) solid, rigid product having a density of 1.15 grams/cc.

EXAMPLE 35 Same procedure as in Example 1A employing the following composition.

30 grams Voranol CP-260 30 grams of toluenediisocyanate 30 grams tricresyl phosphate 0.5 cc lead octoate (24 percent lead) The mixture was cast as a sheet and within about 10 seconds after catalyst addition, suddenly solidified into a tough, colorless, transparent rigid solid.

EXAMPLE 36 Same procedure as in Example 1A employing the following composition:

30 grams of the reaction product of glycerine with propylene oxide in a molar ratio of about 1:3 having a hydroxyl equivalent weight of 87. 30 grams of toluene diisocyanate 30 grams of triethylphosphate 0.5 cc. of lead octoate The mixture was cast as a sheet which instantly set into a transparent. relatively soft sheet having an elongation less than about l percent. The relative softness of this product is believed to have been derived from a side effect of the triethylphosphate also functioning as a plasticizer at this concentration.

EXAMPLE 37 Same procedure as in Example 1A employing the following composition:

30 grams of Voranol CP-26O 30 grams of toluene diisocyanate 30 grams of tributylphosphite 0.5 cc of lead octoate The mixture suddenly solidified into an opaque, white. rigid casting 'within about seconds after catalyst addition.

EXAMPLE 38 Same procedure as in Example 1A employing the following composition:

30 grams of Voranol CP-260 30 grams of toluene diisocyanate 30 grams of bis(2-br omo propyl)2-brornopropane phosphonate 1 cc of stannous octoate.'(T 9 The mixture suddenly solidified intoa transparent,

solid, rigid casting within about seconds after catalyst addition and was demolded within about 40 seconds after catalyst addition.

EXAMPLE 39 Same procedure as in Example 1A employing the following composition.

45 grams of Voranol CP-26O 30 grams of tris(2-chloroethyl)phosphate grams of ISONATE 143L (a diphenylmethane diisocyanate which has been dimerized with phospheric acid and having an NCO equivalent weight of about 144 and an average functionality of about 2.25) 1 cc of dibutyl tin dilaurate The above mixture was cast onto a Mylar sheet and suddenly solidified within about 20 seconds after catalyst addition and within about 40 seconds after catalyst addition a rigid, yellow-brown, transparent sheet was removed from the casting surface.

Test specimens cut from the above prepared sheet had the following properties.

tensile strength (ultimate) 7500 psi /1 elongation 10 Hardness, Shore D EXAMPLE 40 EXAMPLE 41 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol CP-26O 20 grams of bis(2-ch1oroethy1)carbonate 20 grams of toluene diisocyanate 0.5 cc of stannous octoate The mixture suddenly solidified within about 10 seconds after catalyst addition which was demolded within about 20 seconds after catalyst addition thereby producing a transparent, rigid dense casting.

EXAMPLE 42 Same procedure as in Example l-A employing the following composition:

45 grams of Voranol CP-26O 30 grams of propylene carbonate 69 grams of polymethylene polyphenylisocyanate 1 cc of stannous octoate The above mixture was cast onto a Mylar sheet which instantly set withinabout 20 seconds after catalyst addition. I

The dark brown, rigid, transparent product was removed from the Mylar casting surface within about 45 seconds after catalyst addition. The product was found to possess the following properties.

tensile strength 4940 psi elongation l 2');

Hardness. Shore D 87 EXAMPLE 43 Same procedure as in Example l-A employing the following composition:

30 grams of the reaction product of glycerine with ethylene oxide in a molar ratio of 1:3 respectively having a hydroxyl equivalent weight of about 75.9.

32 grams of xylylene diisocyanate 30 grams of the cyclic tetramer of ethylene oxide 0.5 cc of lead octoate (24 percent Pb) The mixture suddenly solidified within about seconds after catalyst addition and the casting was de molded within about 25 seconds after catalyst addition. The casting was a transparent rigid solid which had a density of 1.2 grams/cc.

EXAMPLE 44 Same procedure as in Example l-A employing the following composition grams of Voranol CP-260 30 grams of toluene diisocyanate 30 grams of a mixture of cyclic polyethers of propylene oxide containing pentamer and higher homologs.

1 cc of lead octoate.

The mixture suddenly solidified within about 12 seconds after catalyst addition and the solid product was demolded within about 30 seconds after catalyst addition yielding a translucent, rigid off-white casting having a density of 1.15 grams/cc.

EXAMPLE 45 EXAMPLE 46 Same procedure in Example l-A employing the following composition:

32 grams of Voranol CP-260 32 grams of toluene diisocyanate (80/20 mixture of 2,4- and 2.6-isomers) 3 grams ofChlorowax No. (a liquid chlorinated paraffin having a specific gravity of 1.15, a viscosity of 26 poises at 25C, manufactured and sold by Diamond-Shamrock Chemicals) 0.5 cc of lead octoate The mass suddenly set, within about 10 seconds after catalyst addition. into a rigid casting having a density of 1.2 grams/cc and had no visual indications of cracks, distortions or bubble formation.

EXAMPLE 47 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol CP-260 25 grams of 1,2,3-trichloropropane 45 grams of PAH (a polymethylene polyphenyl isocyanate having an average functionality of about 2.6-2.8 and an NCO equivalent weight of about 134).

1 cc of stannous octoate (T-9 commercially available from M & T Chemicals).

The mixture suddenly solidified within about 30 seconds after catalyst addition and 15 seconds later was demolded. The dark. dense, rigid casting had a density of 1.2 g/cc.

EXAMPLE 48 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol CP-260 30 grams of toluene diisocyanate (/20 mixture of 2,4- and 2,6-isomers) 0.5 cc of lead octoate (24 percent lead) 20 grams tetrabromoethane The blend suddenly solidifieid within about 15 seconds after catalyst addition and was demolded within about 30 seconds after catalyst. addition thereby producing a dense, rigid, bubble-free casting having a density of 1.58 grams/cc.

EXAMPLE 49 Same procedure as in Example l-A employing the following composition.

37 grams of Voranol CP-260 37 grams of toluene diisocyanate (80/20 blend of 2,4- and 2.6isomers) 3 grams of tetrabromoethane 0.5 cc of lead octoate (24% lead) The mixture suddenly set within about 15 seconds after catalyst addition to yield a dense rigid, bubblefree casting.

EXAMPLE 50 Same procedure as in Example l-A employing the following composition.

30 grams of Voranol CP-260 30 grams of TDI (80/20 mixture of 2,4- and 2,6-

isomers) 25 grams of 1,10-dibromodecane 0.5 cc of lead octoate The mixture suddenly solidified within about 15 seconds after catalyst addition and was demolded within about 30 seconds after catalyst addition to provide a dense, rigid, bubbleand crack-free casting having a density of 1.35 grams/cc.

EXAMPLE 51 Same procedure as in Example l-A employing the following composition.

30 grams of Voranol CP-260 30 grams of toluene diisocyanate (80/20 mixture of 2.4- and 2.6-isomers) 30 grams of bromoform 0.5 cc of lead octoate The mixture solidified within about seconds providing a dense. rigid, bubble-free casting.

EXAMPLE 52 Same procedure as in Example l-A employing the following composition.

grams of Voranol CP-260 30 grams of hexachlorobutadiene 30 grams of toluene diisocyanate (80/20 mixture of 2.4- and 2,6-isomers) 1 cc of lead octoate The mixture solidified to within 15 seconds after catalyst addition to provide a dense. rigid, bubble-free casting.

EXAMPLE 53 Same procedure as in Example l-A employing the following composition.

32 grams of Voranol CP-260 32 grams of toluenediisocyanate (80/20 mixture of 2.4- and 2.6-isomers) 4 grams of polyepichlorohydrin diol* having a molecular weight of about 2000 0.5 cc of lead octoate The polyepichlorohydrin diol was prepared by slowly adding over a period ol'ahout 1 hour 17 pounds of epichlorohydrin to a mixture containing 15 pounds of benzene. 400 grams of 48 percent aqueous fluoroboric acid and 503 grams of water. The epichlorohydrin addition was conducted at 47C and digested for about 30 minutes at 47C: 40 pounds of benzene was added and 155 pounds of epichlorohydrin was added over at 5% hour period and digested at 47C for about 30 minutes. The water was removed via a water-benzene azeotrope at 90C for 2 hours after neutralizing the catalyst with 5% pounds of-l percent aqueous NaOH. The henzene-polyepichlorohydrin mixture was filtered and the benzene removed at 90C at reduced pressure in about 2 hours. The product contained 1.72 percent OH by analysis.

This mixture rapidly set into a dense. rigid casting having a density of 1.2 grams/cc.

EXAMPLE 54 Same procedure as in Example l-A employing the following composition:

40 grams of Voranol CP-260 40 grams of toluene diisocyanate (80/20 mixture of 2,4- and 2,6-isomrs) 40 grams of Chlorowax No. 40

0.5 cc of lead octoate The mixture rapidly solidified thereby forming a dense rigid casting having a density greater than 1 gram/cc.

EXAMPLE 55 (COMPARATIVE) EXAMPLE 56 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol CP-260 30 grams of toluene diisocyanate.(80/2O mixture of 2,4- and 2.6-isomers) 40 grams of a-chloronaphthalene 0.05 cc of lead octoate (24 percent lead) The mixture suddenly solidified about seconds after catalyst addition to yield a transparent rigid polymer which was demolded about 90 seconds after catalyst addition. The density of this casting was found to be 1.17 grams/cc.

EXAMPLE 57 Same procedure as in Example 1-A employing the following composition:

30 grams of Voranol CP-260 30 grams of toluene diisocyanate (80/20 mixture) 15 grams of Voranol CP-1500 15 grams of triethylbenzene 0.05 cc of lead octoate (24 percent lead) This blend was cast into a polyethylene mold and the blend suddenly solidified about 50 seconds after catalyst addition and was removed from the mold seconds after catalyst addition. This transparent rigid casting was found to have a density of 1.16 grams/cc.

EXAMPLE 58 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol RS-350, a commercially available 8-functional polyether polyol having an OH equivalent weight of about 174 15 grams of Voranol CP-260 30 grams of toluene diisocyanate (/20 mixture of 2,4- and 2,6-isomer) 30 grams of triethylbenzene 0.1 cc of lead octoate This blend solidified into a dense opaque. rigid casting about 35 seconds after catalyst addition; the casting was removed from the mold 20 seconds later to yield an opaque polymer having a density of 1.082/cc.

EXAMPLE 59 Same procedure as in Example l-A employing the following composition:

60 grams of Voranol RS-35O 30 grams of toluene diisocyanate (80/20 mixture) 30 grams of trichlorobenzene 1 cc of lead octoate (24 percent lead) This blend was cast into a polyethylene mold and was found to solidify about 15 seconds after catalyst addition; the casting was removed from the mold 25 seconds after catalyst addition.

EXAMPLE 60 Same procedure as in Example l-A employing the following composition:

grams of Voranol CP-260 130 grams of toluenediisocyanate (80/20 mixture) 20 grams of Chlorowax No. 40

0.5 cc of lead octoate (24 percent lead) This blend was cast into a Mylar tray and was found to solidify and be removed from the Mylar tray as a dense rigid sheet in less than 60 seconds after catalyst addition. Appropriate tensile bars were cut from this cast resin and were found to exhibit an ultimate tensile of 15,600 psi at 10 percent elongation.

EXAMPLE 61 Same procedure as in Example l-A employing the following composition:

30 grams of Voranol CP-260 l grams of toluenediisocyanate (80/20 mixture) 25 grams of hydrogenated methylene diphenyl isocyanate (Hylene W) grams of Chlorowax No. 40"

1 cc of lead octoate (24 percent lead) This blend was cast and was found to suddenly solidify seconds after catalyst addition. The rigid casting was demolded 40 seconds after catalyst addition and was found to have a density of 1.10 grams/cc.

EXAMPLE 62 Same procedure as in Example l-A employing the following composition:

300 grams of the reaction product of glycerine with 3 moles of propylene oxide per mole of glycerine. 400 grams of a perpolymer prepared from the reaction product of 3 moles of propylene oxide per mole of glycerine and toluene diisocyanate. said perpolymer containing 31 percent NCO.

300 grams of trichlorobenzene l cc of lead octoate (24 percent Pb) This liquid blend was cast between 2 parallel sheets of polyethylene; the liquid mix was found to solidify in less than 1 minute after catalyst addition and the cast product was removed from the mold in less than 2 minutes after catalyst addition. This casting was found to be transparent and bubble-free.

EXAMPLE 63 Same procedure as in Example l-A employing the following composition:

60 grams of Voranol RS-350 grams of toluene diisocyanate (80/20 mixture) 20 grams of 3-methylsulfolane 1 cc of lead octoate (24 percent Pb) This liquid blend solidified in less than 30 seconds and was demolded about 30 seconds later to yield a hard, transparent. rigid casting.

EXAMPLE 64 A. Example of the present invention.

Same procedure as in Example l-A employing the following composition:

45 grams of Voranol CP-260 (OH equivalent wt.

approx. 87)

45 grams of Hylene TM 30 grams of Voranol CP-470l 0.4 cc of lead octoate (24 percent Pb) This blend was cast into a Mylar tray and was found to solidify into a transparent sheet in less than a minute after catalyst addition. This sheet was removed from the mold in less than 2 minutes after catalyst addition and had physical properties as indicated in the table below.

B. Comparative Same procedure as in Example l-A employing the following composition:

105 grams of Voranol CP-700 (OH equivalent wt.

approxj 232) 30 grams of Hylene TM 40 grams of Voranol CP-470l 1 cc of lead octoate (24 percent Pb) Polymer L'ltimate Tensile Elongation Hardness A (present invention) 6540 psi 20%; X5 Shore D B (comparative) l0-1 psi 92? -15 Shore A The following examples demonstrates the use of byproduct streams containing mixtures of aromaticcontaining compounds.

EXAMPLE Same procedure as in Example l-A employing the following composition:

30 grams of the reaction product of glycerine with propylene oxide in a molar ratio of 1:3 respectively, said product having a molecular weight of about 260.

30 grams of a mixed stream of aromatic-containing compounds as the residue stream obtained from the manufacture of ethyl benzene and having a typical composition by weight as follows:

3 percent triethylbenzene l 1 percent tetraethylbenzene 1 percent pentaethylbenzene 3 percent bis-ethylphenylethane 8 percent ethylphenyl-phenylethane 13 percent LI-diphenylethane 61 percent higher boiling components 30 grams of toluenediisocyanate (/20 mixture of 2,4- and 2,6-isomers) 1 cc of stannous octoate T-9 (M & T Chemicals) The blend was cast into a polyethylene mold and suddenly solidified within 20 seconds after catalyst addition. The rigid. dense casting was demolded within 60 seconds after catalyst addition.

EXAMPLE 66 A. Present Invention Same procedure as in Example l-A employing the following composition:

60 grams of Voranol RS-350 30 grams of toluene diisocyanate 60 grams of Voranol CP-3000 0.5 cc of lead octoate (24 percent Pb) The mixture was cast as a sheet in a Mylar tray and allowed to cure overnight at room temperature. B. Prior Art Comparison Same procedure as in Example l-A employing the following composition:

60 grams of Voranol RS-350 30 grams of toluenediisocyanate 60 grams of dioctylphthalate 0.5 cc of lead octoate (24 percent Pb) The mixture was cast as a sheet in a Mylar tray and allowed to cure overnight at room temperature.

C. After curing overnight, each of the panels from A and B above were sprayed with Krylon black enamel in 2 inch wide stripes. After 2 hours of drying at room temperature, the paint coating was found to be poorly attached to panel B. an example of the prior art. but was well attached to panel A, an example of the present invention.

D. Another portion of each of panels A and B were sprayed with 2 inch wide stripes of Illinois Bronze- Powder and Paint Co.s Flat Black No. 607. The paint dried within an hour on Panel A. the present invention, whereas on Panel B, the prior art, the panel was still tacky after 6 hours.

After 72 hours of drying at room temperature, a fingernail scratch removed paint from panel B, the prior art panel; whereas panel A, the present invention, resisted removal of paint by fingernail scratching. A fingcr pressure dry rag wipe also removed paint from panel B, the prior art; whereas no paint was removed by this test from panel A, the present invention.

Some amine type catalysts will catalyze the urethane reaction to produce instant set products. but the resultant products are of low density, i.e. less than about 1 gram/cc and contain many bubbles which adversely af feet the physical properties. This inoperability of the amine type catalysts insofar as the present invention is concerned is demonstrated by the following comparative Example 67.

EXAMPLE 67 (COMPARATIVE) A. Same procedure as in Example IA employing the following composition.

30 grams of Voranol CP-260 30 grams of Voranol CP-3000 30 grams of Hylene TM 1 cc of a 33 percent solution of diethylenetriamine in dipropyleneglycol.

The mixture slowly set within about 90 seconds to produce an opaque, tacky, rubbery polymer containing many bubblesand having a density of 0.6 grams/cc. The castingcould be demolded with difficulty within about 120 seconds.

8. Same procedure as in Example 1A employing the following composition:

30 grams of Voranol CP-26O 30 grams of Voranol CP-3000 30 grams of Hylene TM 2 cc of triethylamine The mixture slowly set within about 60 secondswhich could be demolded with difficulty within about 90 seconds. The product was an opaque, rigid solid which had many bubbles and a density of about 0.63 grams/cc. C. Same procedure as in Example 1A employing the following composition.

30 grams of Voranol CP-26O 30 grams of Voranol CP-3000 30 grams of Hylene TM 2 cc of N,N,N,N-tetramethyl-1,3-butane diamine.

The mixture slowly set within about 120 seconds to produce an opaque, tacky, foam-like product which had a density of 0.51 gram/cc.

The following example demonstrates the superior solvent resistance of the present invention as compared to the products of US. Pat. No. 3,378,511.

EXAMPLE 68 (COMPARATIVE) Three rigid castings were prepared by the procedure of Example l-A employing the following formulations.

Formulation A (Present Invention) 30 grams of the reaction product of glycerine with propylene oxide in a molar ratio of about 1:3 respectively 30 grams of toluene diisocyanate 30 grams of Voranol P-4000 1 cc of lead octoate (24 percent Pb) Formulation B (Present Invention) 30 grams of the reaction product of glycerine and propylene oxide at a molar ratio of about 1:3 respectively 30 grams of toluene diisocyanate 20 grams of trichlorobenzene 0.2 cc of lead octoate Formulation C (Prior Art Teachings US. Pat. No.

30 grams of the reaction product of glycerine and propylene oxide in a molar ratio of about 1:3 respectively 30 grams of toluene diisocyanate 30 grams of diisodecyl phthalate 1 cc of lead octoate (24 percent Pb) Each of the above formulations A, B and C suddenly solidified into a dense, rigid casting within about 30 seconds after catalyst addition and were demolded within about seconds.

Several A inch X inch X 1% inch specimens were cut from the castings of Formulations A, B, and C and immersed in various solvents at room temperature. Periodic observations were taken to ascertain the condition of each specimen after exposure to the solvents. The solvents and observations are given in the following Table.

OBSERVATION SOLVENT Formulation A Formulation B Formulation C Acetone 'Tetrahydrofuran Methylene chloride Continued OBSERVATION SOLVENT Formulation A Formulation B Formulation C developed severe cracks after hrs. of exp., total disintegration into discrete particles after 36 hrs. exp. slight decrepitation into discrete particles after 7 hrs. and total disintegration after 36 hrs. exposure. slight swelling after 36 hrs. of exposure.

The preceding example clearly demonstrates the superior solvent resistance of the composition of the present invention. formulation A and B. as compared to the prior art. U.S. Pat. No. 3.378.511, formulation C.

EXAMPLE 69 An elastomeric silicone composition was poured around a nominal 2 /2 inch threaded malleable iron pipe plug and cured thereby producing an elastomeric mold of the pipe fitting.

Employing the procedure of Example l-A. the following composition was poured into the above prepared mold.

45 grams of Voranol (P-260 68 grams of PAP] 50 grams of Propylene carbonate 1 cc of stannous octoate The composition suddenly solidified within about 30 seconds after catalyst addition and after about another 60 seconds. a polyurethane threaded pipe plug was removed from the mold. The cast object. pipe plug, had a density greater than 1 gram/cc.

EXAMPLE 7() A 3 /2 inch diameter spur gear was removed from a gear box having a gear and pinion arrangement and an clastomerie silicone mold of said spur gear was prepared.

Employing the procedure of Example l-A. the following composition was poured into the mold.

60 grams of Voranol CP-260 60 grams of toluene diisocyanate 30 grams of tetrahydronaphthalene 0.2 cc of lead naphthenate (24% Pb) Within about 25 seconds after catalyst addition, the

composition suddenly solidified and a rigid polyurethane spur gear was removed from the mold after the lapse of an additional 45 seconds. The gear had a density of greater than 1 gram/cc.

EXAMPLE 7l Preparation of Decorative Article A sheet of polyethylene was vacuum formed over a half relief sculptured horses head to yield a thin walled polyethylene mold of said horse's head.

The following non-flexible urethane composition prepared by the procedure of Example l-A was poured into the mold:

45 grams of Voranol CP-26O 72 grams of an isocyanate terminated prepolymer prepared from toluene diisocyanate and tetrabromobisphenol A, said prepolymer having an NCO content of 29.4 percent.

30 grams of triethylbenzene 1 cc of lead octoate catalyst.

The composition suddenly solidified in about 20 seconds after catalyst addition and within about seconds after catalyst addition on a rigid polyurethane replica of the horse head having a density greater than 1 gram/cc was removed from the mold.

EXAMPLE 72 In each of the following experiments, all of the components except the catalyst were blended together and then the catalyst was added and blended. The resultant mixture was then poured into a 250 cc polyethylene beaker.

The compositions and results are given in the following table. The times were measured from the instant the catalyst was added.

- Continued EXPERIMENT EXPERIMENT EXPERIMENT A B C ND. not determined. "Composition was still liquid after 300 seconds. "'Composition was still liquid after 720 seconds.

The polyol employed was the reaction product of glycerinc with propylene oxide to an equivalent weight of about 87.

TDI an 80/20 mixture of 2.4-/2 6-toluene diisocyanate having an NCO equivalent weight of about 87.

A'I'I! acetylene letrabromide.

NMM N-mcthylmorpholine.

TEDA a 33% solution of triethylenediamine in dipropylcncglycol. P80 lead octoate containing 247: Pb.

EXAMPLE 73 In each of the following experiments, all of the components except the catalyst were blended together and then the catalyst was added and blended. The resultant mixture was then poured into a 250 cc polyethylene beaker.

In each of the following experiments, the polyol employed was the reaction product of glycerine with propylene oxide to an equivalent weight of about 87.

In each of the following experiments, the polyisocyanate employed was an 80/20 mixture of 2.442.6- toluene diisocyanate (TDI) having an NCO equivalent weight of about 87.

In each of the following experiments acetylene tetrabromide (ATB) was employed as the modifier.

In each of the following experiments, the catalysts employed and their designations are as follows: DBTDL dibutyl tin dilaurate CdOc cadmium octoate CoOc 1 part cobalt octoate dissolved in 2 parts triethyl benzene ZN zinc naphthenate SbOc antimony octoate PMP 1 part phenyl mercuric propionate in 1 part of propylene carbonate.

The compositions and results of the experiments are given in the following table.

droxyl groups and a hydroxyl equivalent weight between about 75 and about 230.

B. an organic polyisocyanate.

C. a liquid modifier compound having a boiling point above about 150C selected from the group consisting of halogenated aliphatic compounds and mixtures thereof, and

D. a non-amine-containing catalyst for urethane for- -mation, which is an organo metal compound; wherein components (A) and (B) are present in amounts so as to provide an NCOzOH ratio of from about 0.8:1 to about 2:1, component (C) is present in quantities of from about 0.2 to about percent by weight of the sum of components (A), (B) and (C); and component (D) is present in quantities of from about 0.01 to about 10 percent by weight of the sum of the weights of components (A), (B) and (C); with the proviso that when the halogenated aliphatic compound also contains hydroxyl groups and has an OH equivalent weight of less than about 500 it is employed in quantities of from about 0.2 to about 5 percent by weight based upon the sum of the weights of A. B and C; and wherein said polymer can be demolded within less than about 5 minutes. without the application of an external source of heat, after admixture of said composition.

2. The composition of claim 1 wherein components EXPERIMENT NO.

Polyol, grams 33 33 33 33 33 33 TDI. grams 33 33 33 33 33 33 ATE. grams 20 20 20 2O 20 20 DBTDL, cc 0.5 CdOc, cc 0.5 CoOc, cc 0.5 ZN, cc 0.5 SbOc, cc 0.5 PMP, cc 0.5 Time for solidification, sec. 20 30 2O 45 40 30 Time solid casting was removed from the mold. sec. 40 60 I20 90 60 Density, g/cc 1.3 L3 1.3 L3 L3 L3 We claim:

(A) and (B) are present in quantities such that the NCOzOH ratio of the (A) and (B) components is from about 0.95:] to about l.l:l, component (C) is present in quantities of from about 30 to about 50 percent by weight of the sum of components (A), (B) and (C) and wherein component (D) is present in quantities of from about 0.5 to about 3 percent by weight of the sum of the weights of components (A), (B) and (C).

3. The composition of claim 2 wherein component (D) is an organo-mctal compound of a metal selected from tin. zinc. lead. mercury. cadmium. bismuth and antimony.

4. The composition of claim 3 wherein component (C) is a halogenated aliphatic compound and is employed in quantities of from about 0.2 to about 20 percent.

5. The composition of claim 4 wherein component (C) is employed in quantities of from about I to about l percent. 7

6. The composition of claim 5 wherein component (D) is an organo-tin compound or an organo-lead compound.

7. The composition of claim 6 wherein component (C) is selected from the group consisting of 1.2.3-

trichloropropane. tetrabromomethane, l. l 0- dibromodecane. bromoform and a polyepichlorohydrin diol.

8. The composition of claim 1 wherein component (D) is employed in quantities of from about 0.05 to about 2 percent.

9. The composition of claim I wherein component (D) is employed in quantities of from about ().l 0L to about 05 percent.

l0. The articles resulting from casting the compositions of claim 1.

11. The articles of claim 10 wherein said articles are furniture components.

12. The articles of claim 10 wherein said articles are decorative objects.

13. The articles of claim 10 wherein said articles are machine components.

UNITED s'm'iics PAIENT OFF CE (ZEEK'EEEEQATE OF CORRECTEO-N PM PM NO. 3 87 8 157 DATED April 15, 1975 INVENTOMS) F. Olstowski, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Col. 2, line 38, after "aromatic", insert --compound or a halogenated aliphatic compound, the non-amine.

Col. 5, line 59, change "tetrachydronaphthalene" to -tetrahydronaphthalene-.

Col. 6, line 36, change "dischlorophosphate" to -dichlorophosphate- Col. 7, line 29, change "polyesthers" to -polyethers.

Col. 11, line 65, delete "Pb" and insert -modifier--.

Col. 12, line 59, change "P-400" to --P-4000--.

Col. 15, lines 6-7, change "fol-owig" to --fol-lowing-. Col. 21, line 66, change "26 to --25--.

Col. 31 and 32, line 61 after the table, insert -*The times were measured from the instant the catalyst was added.-.

Col. 34, line 8, delete "0 L".

Signed and Scaled this twenty-first D ay Of October 1975 [SEAL] I A ttes t:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ufPatenIs and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3146220 *Nov 18, 1959Aug 25, 1964Hooker Chemical CorpHalogen containing polyurethane resins
US3164558 *Mar 10, 1960Jan 5, 1965Dow Chemical CoSelf-extinguishing urethane polymer compositions
US3165483 *Feb 23, 1961Jan 12, 1965Mobay Chemical CorpSkeletal polyurethane foam and method of making same
US3326855 *Mar 4, 1964Jun 20, 1967Union Carbide CorpCondensation polymers from tetrahalobutane-1, 4-diols
US3372083 *Mar 11, 1964Mar 5, 1968Master Mechanics CompanyCompositions and articles from the reaction of an isocyanate terminated polyurethaneand the isocyanate adduct of bitumen
US3378511 *Jan 15, 1965Apr 16, 1968Dow Chemical CoPolymeric urethane compositions
US3449320 *Apr 21, 1966Jun 10, 1969Union Carbide CorpHexachlorobutadiene polyol compounds
US3489723 *Dec 6, 1966Jan 13, 1970Nopco Chem CoTwo-component castable polyurethane elastomer composition and use
US3542740 *Jul 1, 1968Nov 24, 1970Dow Chemical CoFire-retardant polyurethanes
US3617330 *Sep 3, 1969Nov 2, 1971Bayer AgMouldings of polycarbonates with improved surfaces and process for their production
US3660502 *May 13, 1968May 2, 1972Case Leslie CHalogen-containing polyols and polyurethanes prepared therefrom
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3983063 *May 2, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid-setting, rigid polyurethanes
US3983064 *May 5, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid-setting, rigid polyurethanes
US3983065 *May 1, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid-setting, rigid polyurethanes
US3983066 *May 2, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid setting, rigid polyurethanes
US3983068 *May 2, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid-setting, rigid polyurethanes
US3983069 *May 1, 1975Sep 28, 1976The Dow Chemical CompanySolid, rapid-setting, rigid polyurethanes
US3989663 *May 5, 1975Nov 2, 1976The Dow Chemical CompanyNoncatalytic
US4063002 *Apr 8, 1976Dec 13, 1977Wilson Jr FloydInsulated glass and sealant therefor
US4076679 *Jan 21, 1977Feb 28, 1978The Dow Chemical CompanyRapid setting polyurethane elastomers and process of preparation
US4122058 *Nov 14, 1977Oct 24, 1978The Dow Chemical CompanyRapid-setting polyurethanes prepared in the presence of a cyclic unsaturated aliphatic hydrocarbon
US4153594 *Dec 12, 1977May 8, 1979Wilson Jr FloydInsulated glass and sealant therefore
US4169175 *Oct 11, 1977Sep 25, 1979W. R. Grace & Co.Removal of unreacted tolylene diisocyanate from urethane prepolymers
US4306053 *Mar 18, 1980Dec 15, 1981Minnesota Mining And Manufacturing CompanyPoly(haloalkylene ether)-polyetherurethane copolymer for molding materials and floor coverings
US4455404 *May 16, 1983Jun 19, 1984Allied CorporationRigid, non-elastomeric, non-cellular, amorphous metal reinforced polyether-urethane compositions
US20100331472 *Nov 26, 2007Dec 30, 2010Dow Global Technologies Inc.Metal filled polyurethane composition and moulds prepared therefrom
WO1981002738A1 *Feb 17, 1981Oct 1, 1981Minnesota Mining & MfgOil and water resistant polyurethane resin and polyol composition useful to make the same
Classifications
U.S. Classification524/752, 524/872, 528/56, 528/55, 524/766, 524/792, 524/793, 528/51, 528/48, 524/795, 524/875, 528/58
International ClassificationC08K5/02, C08G18/48, C08K5/101, C08K5/109, C08K5/09, C08G18/08, C08K5/00, C08L75/08
Cooperative ClassificationC08K5/109, C08G18/0842, C08K5/02, C08L75/08, C08K5/101, C08K5/0008, C08G18/4804, C08K5/09
European ClassificationC08K5/09, C08K5/109, C08L75/08, C08K5/00P, C08K5/101, C08K5/02, C08G18/48A, C08G18/08D2