Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3878609 A
Publication typeGrant
Publication dateApr 22, 1975
Filing dateJun 5, 1974
Priority dateOct 25, 1972
Publication numberUS 3878609 A, US 3878609A, US-A-3878609, US3878609 A, US3878609A
InventorsWallshein Melvin
Original AssigneeWallshein Melvin
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Orthodontic arch wire
US 3878609 A
Abstract
An orthodontic arch wire adapted to be received within the channel of an orthodontic bracket is disclosed which includes a coiled, single flexible metallic strand configurated into a tightly wound helix normally having an array of successively abutting and substantially parallel turns. The helix is made from a material sufficiently flexible to permit bending of the arch wire by selectively and at least partially separating adjacent turns of the helix. According to one presently preferred embodiment, the adjacent turns each lie in a respective plane extending substantially transversely to the longitudinal axis of the helix.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Wallshein [76] Inventor: Melvin Wallshein, 8645 Bay Pky.,

Brooklyn, NY. H214 [22] Filed: June 5, 1974 [21] Appl. No.: 476,479

Related US. Application Data [63] Continuation-in-part of Ser. No. 300,444, Oct. 25.

[52] US. Cl 32/14 A [5 1] Int. Cl. A6lc 7/00 [58] Field of Search 32/14 [56] References Cited UNlTED STATES PATENTS 3,444,621 5/1969 Pletcher 32/l4 A 3,593,421 7/197] Brader 32/14 A I 1 I I I a I l i l at: ,7 i I ORTHODONTIC ARCH WIRE Primary E.\'aminerRobert Peshock Attorney, Agent, or FirmFlynn & Frishauf 57 ABSTRACT An orthodontic arch wire adapted to be received within the channel of an orthodontic bracket is disclosed which includes a coiled, single flexible metallic strand configurated into a tightly wound helix normally having an array of successively abutting and substantially parallel turns. The helix is made from a material sufficiently flexible to permit bending of the arch wire by selectively and at least partially separating adjacent turns of the helix. According to one presently preferred embodiment, the adjacent turns each lie in a respective plane extending substantially transversely to the longitudinal axis of the helix.

16 Claims, 9 Drawing Figures ORTHODONTIC ARCH WIRE CROSS REFERENCE TO RELATED APPLICATIONS The present application is a continuation-in-part application of US. application Ser. No. 300.444. filed Oct. 25, 1972. for ORTHODONTIC ARCH WIRE AND METHOD OF FORMING SAME.

BACKGROUND OF THE INVENTION The present invention generally relates to orthodontic arch wires, and more particularly to an arch wire constituted of a single metallic strand in the form of a tightly would helix.

The following definitions apply to the specification and claims. Stiffness" is the resistance of a material to bending or deformation. Flexibility is the ability of a material to bend or deform. Plastic deformation" is a permanent change in the shape of a material. Once plastic deformation takes place. the removal of forces which caused the change in shape does not result in a return of the material to its original shape. The elastic limit of a material is the maximum load or deformation which can be applied to a material before plastic or permanent deformation takes place. Resiliency is the tendency of a flexed material to spring back to its original configuration on the removal of the flexing forces. Working Range" is the range of deformation of a material where it retains its resiliency, up to a maximum deformation which can be sustained by a material without exceeding the elastic limit and becoming permanently deformed with loss of resiliency.

Orthodontic procedures usually require the placement of a tooth band and bracket upon respective maloccluded teeth and the employment of an arch wire for interconnecting the bands or brackets relative to one another so that a force is transmitted from one band to the next and thereby to the teeth upon which the bands are mounted. Today, the orthodontist is offered a wide variety of arch wires. The known arch wires vary both in size and material. An ideal arch wire must be flexible, but must have sufficient stiffness or body over long lengths so that it can serve as a relatively fixed anchoring or reference point to which other orthodontic devices can be connected. The flexibility, of course, is required so that the arch wire can be bent into the shape of an arch in the mouth. It is also desirable that the arch wire have a resiliency and sufficient range over short and long lengths in order to permit the application of local biasing forces to the teeth. Most wires do have the quality of resiliency over limited ranges of bending or deformation these wires becoming permanently deformed and losing all resiliency once the wire is bent beyond its elastic limit. In other words. these wires have a limited working range, as defined above.

The known arch wires do not provide the required combination of characteristics which an ideal arch wire should possess. Thus, while most known arch wires are flexible and provide the requisite stiffness over long lengths, these wires have a limited working range over short lengths. In order to apply local stresses to one or more teeth, it is frequently necessary to provide individual areas along the arch wire which have a high degree of resiliency. Since known arch wires with their limited ranges cannot provide this high degree of springiness or resiliency by mere bending the normal method of activating the restoring forces it has been the common practice to make large loops from the arch wire. By making large loops. the arch wire is not drastically bent in a short length. but rather is curved over a longer length of the large loop. In this manner, the clastic limit of the wire is not exceeded at any one point and the wire retains its resiliency.

The solid wire, which is the most common type used. exhibits the requisite flexibility and stiffness over long lengths. However, a generally long length of the solid wire is required to obtain any meaningful amount of flexing without permanently deforming the wire. In a small space of approximately three millimeters, solid wire is practically rigid, does not have the requisite working range, and if the wire is bent in such a small space. it is permanently deformed and does not tend to spring back to its initial configuration.

In order to increase the working range of a wire in a small space, solid wires have been replaced in some in stances by multiple-wire arrangements in which a plurality of thin wires are combined to provide an effective cross-sectional area which is substantially equal to the original cross-sectional area of the solid wire. The multiple arch wire is more flexible than the solid wire of comparable cross-section. The working range of the multiple-wire arrangement is greater than the solid wire counterpart. The multiple-wire still has sufficient stiffness or body, although this is less than the solid wire. Despite the desirable increase in working range. the multiple arch wire has other disadvantages which have limited its use. For example. the ends of the multiplewires have formed impaling or piercing devices upon the tissues in the mouth. The ends of the multiple arch wires spread out in time and impair the sensitive tissues in the mouth. Also. the thinner individual strands are relatively weak and subject to rupture. Generally, the strands do not rupture as a unit, but each strand ruptures under the pressure of the bite or something abrasive in the mouth. Thus. the multiple arch wire has a weakness which makes it unable to hold up to stresses in the mouth. To aggravate the problem. rupture of the individual strands causes the ruptured free ends to spread out in time and mutilate sensitive tissues of the mouth.

A further attempt in the evolution of arch wires to obtain the combined characteristics of flexibility, stiffness over long lengths, resiliency and an increased working range in short lengths has been the development of arch wires formed from multiple strands which are twisted together in the form of a rope. This twisted arch wire is more flexible than a corresponding solid arch wire of comparable cross-section since the flexibility of the twisted wire is related to the greater flexibility of the individual minor strands; Thus, although the overall cross-sectional areas of both the solid wire and the twisted wires may be approximately equal. the flexibility of the twisted arch wire is substantially greater than that of the solid wire. Over short lengths. however, the twisted wire has a greater working range than a solid wire and can be bent to a greater extent without being permanently deformed and losing its resiliency. The twisted wire, being made from a plurality of thinner and weaker wires. as in the multiple-wire arrangement. has the same disadvantages as the latter. However, tightly wound multiple wires have had a lesser tendency to open up and fray than the above described multiple-wire arrangement.

Also. there is known in the prior art. a solid arch wire which includes a plurality of spaced helical convolutions which can be either openly or closely wound. However. the convolutions form only a relatively small portion of the overall arch wire length and are provided as coils spaced on a solid arch wire instead of being a coil forming the entire length of the arch wire as the basic configuration of the arch wire. With this known arch wire, in the case of the open convolutions, the required stiffness over long lengths is lost. The provision of spaced closed convolutions only along sections of the arch wire decreases the versatility at which bends may be made in the arch wire. Thus, the last described arch wire basically consists of a solid arch wire with spaced coils thereon.

SUMMARY OF THE INVENTION To overcome the above disadvantages, it is an object of the present invention to provide an orthodontic arch wire which is not possessed of the prior art disadvantages.

It is another object of the present invention to provide an orthodontic arch wire of the type under discussion which is simple in construction and economical to manufacture.

It is still another object of the present invention to provide an orthodontic arch wire of the type under discussion which provides the requisite stiffness or body over relatively long lengths thereof.

It is a further object of the present invention to provide an orthodontic arch wire of the type under discussion which can obviate most loop and other orthodontic arch configurations while still providing localized areas of resiliency in small spaces.

It is yet a further object of the present invention to provide an arch wire as above described which exhibits the requisite flexibility over long lengths and has a considerable working range over short lengths.

To achieve the above objects, as well as others which will become apparent hereafter, the orthodontic arch wire in accordance with the present invention. which is adapted to be received within a guide channel of an orthodontic bracket mounted on a maloccluded tooth, comprises a single coiled strand in the form ofa tightly wound helix normally having an array of successively abutting and substantially parallel circular or rectangular turns. The circular turns together define a coil having a cylindrical lumen therethrough. The rectangular turns together define a rectangular coil having a rectangular lumen extending therethrough. The strand, when formed into said turns, has a predetermined radial thickness. Said turns have a common internal radial dimension no greater than twice said predetermined radial thickness of said strand. The cylindrical coil has a common outer diameter or dimension no greater than approximately 0.025 inch and the rectangular coil has common outer dimensions no greater than approximately 0.025 inch by 0.032 inch. These dimensions correspond to those of the guide channel of an orthodontic bracket into which the arch wire is to be received. In each case, the helix is made from a material sufficiently elastic to permit bending of the arch wire over a short length thereof by selectively and at least partially separating adjacent turns, and to provide sufficient stiffness over a long length thereof to provide suitable characteristics for orthodontic devices attached thereto.

According to another feature of the present invention, the helix has an elongated axial passage or lumen through the turns. A resilient mandrel extends through the passage. According to still a further feature, a resilient coating made from an elastomeric material is provided exteriorly and along said helix for enclosing the same. The single strand from which the coil or turns are formed may have a circular or rectangular crosssection.

Basically, the improvement in accordance with the present invention involves forming an arch wire which has greater range than a solid wire over short lengths. Thus. the subject wire can be bent over short lengths to provide localized areas of resiliency. This obviates, in many cases, the need for loops conventionally used with prior art solid wires. However, the new wire does not sacrifice to any great degree the stiffness required of arch wires over longer lengths. This is achieved by coiling a particular sized wire into a helix having an outer diameter substantially equal to that of commonly used arch wires. The wire is coiled so tight that it loses some of the characteristics inherent in extremely flexible pure coils which have little stiffness over long lengths. The present wire exhibits characteristics which are substantially intermediate to those of a solid wire and to those of a pure coil in that the wire has more flexibility than the solid wire but more stiffness than the pure coil over long lengths. By tightly winding the coils so that adjacent turns of the helix abut against one another, sufficient stiffness is given to the wire over long lengths while giving it the increased range over small lengths, such as three or four millimeters. Thus, contrary to solid wires, the present wire is sufficiently resilient so as to spring back subsequent to flexing over the short lengths. It has been found that requisite stiffness cannot be obtained with a pure or open coil but only with a very tightly wound coil as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS With the above and additional objects and advantages in view as will hereinafter appear, this invention comprises the devices, combinations and arrangements of parts hereinafter described and illustrated in the accompanying drawings of a preferred embodiment in which:

FIG. 1 is a front view of a cylindrical orthodontic arch wire pursuant to one embodiment of the present invention;

FIG. 2 is a cross-sectional view taken along the line 2-2 in FIG. 1;

FIG. 3 is an enlarged fragmented perspective view of an orthodontic arch wire pursuant to the embodiment illustrated in FIG. 1;

FIG. 4 is a view similar to that of FIG. 2, showing an elastomeric coating on the exterior of the wire;

FIG. 5 is an enlarged front elevational view of adjacent orthodontic brackets as mounted on respective teeth (not shown) and, as associated with a common orthodontic arch wire pursuant to the embodiment illustrated in FIG. 1;

FIG. 6 is a view, similar to that of FIG. 1, of an alternate embodiment of the present invention which uses a strand having a rectangular cross-section;

FIG. 7 is a cross-sectional view taken along line 5-5 in FIG. 6;

FIG. 8 is a view similar to that of FIG. 6, showing an orthodontic construction of the second embodiment wherein the turns are inclined at a steeper angle with respect to the axis of the wire; and

FIG. 9 is a cross-sectional view. similar to FIG. 7, of a further embodiment of the present invention. wherein the arch wire is rectangular as is the lumen extending therethrough.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings. and more particularly to FIGS. I and 2, a first embodiment of the present invention is for a round or cylindrical orthodontic arch wire which is generally designated by the reference numeral 10. The arch wire 10 is elongate and defines an axis of symmetry which passes through the central region of the wire. The advantages of the present arch wire, which will be more fully described hereafter, are made possible by the specific construction thereof. The arch wire may be made from a single strand having a circular cross-section having a diameter 1, as shown in FIG. 2. The strand is configurated into a tightly wound helix having successively abutting looped turns 12 and having a generally circular cross-section. Each turn 12 of the helix defines a plane which is normally substantially parallel to the other respective planes defined by the other turns when the arch wire 10 extends along a straight line. According to one presently preferred embodiment. the parallel planes defined by the turns are substantially perpendicular to the axis of the arch wire this being shown in FIG. I.

The arch wire. shown in FIGS. I and 2, is configurated into a helix and has looped turns 12 each with a common internal diameter d which is equal to or less than twice the diameter or radial thickness t of the individual strand from which the orthodontic arch wire 10 is made. The outer dimension D of the arch wire 10, to be more fully described hereafter, is in the range of dimensions commonly used for arch wires solid or otherwise. Typically, the outer dimension D is approximately slightly larger than three times the radial thickness t of the strand from which the helical wire is made. The orthodontic arch wire 10 is constituted of a single metallic strand, preferably stainless steel, which is relatively flexible in nature.

The internal dimension d is advantageously made as small as practical in order to provide the required stiffness of the wire over long lengths. The central openings defined by the turns each have an internal dimension d and together form a passage or lumen 18 through the arch wire 10. The passage is normally created during the formation of the helix. One way of manufacturing the arch wire in accordance with the present invention comprises the step of winding a wire into atightly wound helix about a mandrel 60 (shown in FIG. 3), which may or may not be left in the arch wire subsequent to the manufacture thereof. Slightly modified characteristics of the arch wire 10, which may be desirable in certain instances. may be obtained by leaving the mandrel 60 in the lumen of the arch wire.

Because of the tight abutting relationship of each of the looped turns 12 to each other, the resultant arch wire 10 is provided with an enhanced degree of stiffness a degree of stiffness which is greater than that of an openly wound helix made from a similar strand. Thus. whereas an open helix or coil would have substantial flexibility over longer lengths of the arch wire. the subject arch wire 10 has a stiffness which almost equals that of a solid wire of equivalent cross-sectional area. This arises partly from the support which adjacent turns provide to one another. Of course. because of the looped configuration. the arch wire 10 is somewhat more flexible and less stiff than its solid wire counterpart over long lengths. The stiffness is also greatly enhanced by minimizing the diameter of the inner passage or lumen 18 of the wire 10. Selecting the lumen or passage diameter to be a dimension not greater than twice the radial dimension of the strand has been found to provide satisfactory results. Also. arch wire 10, pursuant to the subject embodiment, may sustain great compressive forces in directions longitudinal of the axis of the arch wire without deformation of the arch wire or looped turn configuration.

Orthodontic procedures usually incorporate the utilization of an orthodontic bracket. shown in FIG. 3, generally denoted by the reference character 22. The bracket 22 is mounted on a band 24. only a fragment of the band being illustrated in FIG. 3. The band is generally annular-like and is configurated to be tightly fitted and mounted upon a respective tooth (not shown). Brackets are sometimes directly mounted on a tooth by bonding the bracket to the tooth with cement. The bracket 22 has a base portion 28 and a flanged portion 30. The flanged portion 30 is provided with a pair of oppositely directed lips or wings 32 which overlie. in spaced relationship, the base portion 28 of the bracket 22. Moreover, the bracket is provided with. between the opposite lips 32, a centrally disposed generally U- shaped wire guide-channel 34. An orthodontic arch wire, such as wire 10, is receivable in the guide-channel 34. A conventional ligatureor fastener 36 is forced over the oppositely directed lips 32 in a conventional manner as to be detachably associated with the flanged portion 30 to thereby tightly secure the orthodontic arch wire 10 within the guide channel 34.

The guide-channel 34 assumes slightly different dimensions depending on the manufacturer and the manufacturing tolerances involved. Typically. with edgewise-type brackets of the type shown and commonly utilized. the U-shaped guide-channel 34 may assume cross-sectional dimensions as large as 0.022 inch by 0.028 inch. Accordingly, the above referred to outer dimension D for a cylindrical or round arch wire may be as large as approximately 0.025 inch while still being receivable within the channel 34 of the edgewise bracket. This is particularly true with oversized channels which are sometimes provided in such brackets. While the present invention contemplates round arch wires having an outer dimension D no greater than approximately 0.025 inch. it should be clear that manufacturing tolerances in such arch wires and the mechanical procedures utilized in the manufacture of these wires may result in variances from the abovementioned anticipated maximum dimension by as much as several thousandths of an inch. In each case. clearly, the outer dimension D of the arch wire is advantageously selected to correspond to the dimensions of the arch wire receiving channel 34 and can, accordingly. have a smaller dimension than the above maximum. The precise outer dimension D of the wire is not in itself critical as long as it is dimensioned to be receivcd within a guide-channel of a bracket as described.

The wire of the present invention is also intended to be utilized with other types of orthodontic arch brackets. other than the edgewise bracket shown in FIG. 3. For example, the wire 10 may be utilized in conjunction with a Begg-type bracket. The latter brackets typically have wire receiving channels having crosssectional dimensions of up to 0.022 inch by 0.040 inch. Accordingly. insofar as the round or cylindrical arch wire 10 is concerned. the maximum outer dimension D of 0.025 inch still applies to oversized channels provided in such brackets.

Normally. a plurality of orthodontic brackets are mounted on respective teeth and. thereafter. are interconnected to one another through the intermediary of an orthodontic arch wire 10 in a manner generally exemplified in FIG. 5. In FIG. 5. however. there is omitted from the illustration the fastener 36 illustrated in FIG. 3. The reason for omitting the fastener from FIG. is to permit illustration of the manner by which the orthodontic arch wire I0 pursuant to the first described embodiment illustrated in FIGS. 1 and 2 permits calized" control over the directional movement of a maloccluded tooth. When the arch wire 10 is appropriately mounted and constrained within the guide channel 34 of each of the orthodontic brackets 22, the arch wire may be longitudinally tightened so as to cause movement of the malocculded teeth in directions generally longitudinally of the wire 10. The arch wire 10 pursuant to the present invention. when mounted within the appropriate guide channels 34 of each of the orthodontic brackets 22 respectively. may be flexed or bent slightly or significantly. At such time, the loop turns 12 originally abutting against one another prior to being mounted within the orthodontic brackets 22 will resiliently flex at localized positions on either side of the guide channel 34 of each of the brackets 22. Although slight bending is shown in FIG. 5, the wire 10 can be bent significantly without permanently being deformed and loss of resiliency. Thus, the wire I0 provides an improved working range over that provided by solid wires. During this process. adjacent turns slightly or at least partially separate from one another in a manner illustrated in FIG. 5. Those turns which experience this partial separation are generally designated by the reference characters 12' in FIG. 5.

The slight separation of the originally abutting looped turns 12' of the arch wire 10 permitslocalized control over the vertical alignment of a particular tooth since the turns 12', when slightly separated from one another. tend to elastically return to an abutting orientation thereby causing a maloccluded tooth to properly align itself vertically. The increased working range of the arch wire 10 insures that the arch wire retains its resiliency despite substantial flexing thereof.

Accordingly, the single metallic strand from which the orthodontic arch wire 10 is formed overcomes the disadvantages typically associated with single strands of solid wire which are not helically coiled in a manner pursuant to the present invention. With the conventional wire. as described in the BACKGROUND OF THE INVENTION, these do not provide the requisite working range over small lengths in the range of 2 to 4 millimeters. However, by imparting a tightly-wound helix configuration as above described, bending of the arch wire 10 is possible to a gerater extent without permanently deforming the wire. It has been found that a wire having the above described helical construction provides increased flexibility as well as increased working range in small spaces this being particularly suitable for orthodontic work.

The single strand coil pursuant to the present invention overcomes the deficiencies of multi-strand arch wires in several respects. Firstly, the subject arch wire 10 is usually more flexible than the multi-strand arch wire since the flexibility of the present arch wire is limited only by a single strand while in the multiple arch wire configurations the overall flexibility is a function of the combined flexibility of all of the individual strands. Additionally. the subject arch wire can be made to resist abrasive objects in the mouth better than the multi-strand arch wire by making the single strand in the present invention have a dimension greater than that of the individual strands in the multi-strand arch wire configuration without compromising working range over short lengths. Also, by making the single strand of the subject wire somewhat greater in crosssectional area than the cross-sectional areas of the individual strands of the multi-strand arch wire, the danger of breakage and subsequent piercing and mutilation of the sensitive tissues in the mouth are similarly decreased or eliminated.

Optionally, a soft coating 50 may be placed about the exterior of the arch wire 10 this being illustrated in FIG. 4. Advantageously, the coating can be made from a flexible and elastic elastomeric material which can simultaneously serve to protect the tissues in the mouth from the wire as well as to prevent food particles from entering into the spaces in the wire where they may decay and present problems to the wearer of the arch. The coating 50, made from an elastic material, does not substantially effect the flexibility or working range of the arch wire 10.

Although the above embodiment was described in terms of an arch wire or helix of circular cross-section. any other suitable cross-section of the arch wire or configuration of the looped turns 12 may be utilized. Thus, the looped turns 12 have been shown to be circular. although rectangular turns, as to be more fully described with reference to FIG. 9, and oval turns may also be utilized. In FIGS. 6 and 7, turns 16 are shown which similarly successively abut against each other the turns being made from a strand of square or rectangular cross-section. As with the first configuration illustrated in FIGS. 1 and 2, the common internal dimension d of the lumen 20 is made equal to or less than twice the radial thickness t of the strand from which the orthodontic arch wire 14 is made. As before. the orthodontic arch wire 14 is constituted of a single preferably metallic strand such as stainless steel which is flexible in nature and coiled into a square coil such that each of the looped turns 16 of the wire 14 abuts against adjacent turns and are positioned in respective planes which are substantially parallel to one another. Also. each of the turns 16 defines a plane which is substantially normal to the axis of the elongated arch wire 14. The wire 14 functions in the same manner as does the arch wire 10 and exhibits similar properties over the long and short lengths as described above. However, by utilizing a rectangular strand. the turns define smooth external surfaces which do not engage the'ligatures 36 and permit the arch wire to axially slide through the channel while captured or maintained therein by the ligatures.

In connection with both the arch wires 10 and 14, the turns have up to now been described as defining planes which are substantially normal to the axis of the respective arch wires. A slight modification of both of these embodiments is shown in FIG. 8 wherein each of the turns defines a plane which is oblique to the axis of the respective arch wires. This modification prevents the fastening wires 36 from entering between and separating the adjacent turns since these fastening wires are also generally in planes which are substantially normal to the axis of the arch wires.

As suggested above. the arch wire may have a square or rectangular configuration or cross section instead of the cylindrical cross section shown, for example, in FIG. 1. The cross section of such a rectangular wire is shown in FIG. 9. The wire is designated by the reference numeral 62 and is formed from a strand having a thickness t. The wire 62 has common external dimensions designated by S1 and S2. A square lumen 64 extends through the arch wire 62 having internal common dimensions s1 and s2. It is pointed out that the wire 62 may be formed from .a strand having either a circular or rectangular cross section. When a wire having a rectangular cross section is utilized, the wire is generally wound about one of its longer sides. This is true for both arch wires having rectangular as well as round turns and made from rectangular strands.

As described above, the largest wire receiving channels commonly found in edgewise-type brackets are dimensioned approximately 0.022 inch by 0.028 inch. When a rectangular arch wire 62 is formed, clearly, the outside dimensions thereof S1 and S2 can be made approximately equal to the maximum anticipated dimensions of the arch wire receiving channel. It is anticipated that rectangular arch wires having common outer dimensions no greater than approximately 0.025 inch by 0.032 inch are suitable for most commonly used brackets. This includes the Begg-type brackets whose wire receiving channels may be as large as 0.22 inch by 0.040 inch. Manufacturing techniques and tolerances may result in arch wires having slightly smaller or larger dimensions.

The improved characteristics of the wire can be achieved with the rectangular wire 62 by insuring that the largest common internal dimension s1 is no greater than twice the thickness t of the strand out of which the arch wire is made.

As described above, the use of square or rectangular strands and the formation of either cylindrical or rectangular arch wires is advantageous since it eliminates the notches or curved indentations between adjacent turns. as best shown in FIGS. 1 and 5. This permits free slidable movement of the arch wire through the channel without locking engagement with the ligatures 36.

One method of manufacturing cylindrical arch wires in accordance with the present invention comprises the step of winding the individual strand about a mandrel 60, shown in FIG. 3. As suggested above, the mandrel may either be left inside the arch wire or removed therefrom piror to use the characteristics being slightly affected when it is left inside the arch wire and may prove desirable under certain circumstances. However. where most of the work involves longer lengths of arch wire, the mandrel is useful for providing added stiffness and permits the formation of arches as well as loops and U-shapes by deforming the arch wire and the mandrel 60 simultaneously. On the other hand. where most of the work involves bends in small spaces, the mandrel 60 is advantageously removed so as to increase the working range of the arch wire. It should also be noted that loops and U-shapes can similarly be made with this subject arch wire as were made up to now with conventional wires. The rectangular wire can be formed, for example, by compressing a cylindrical wire from opposing sides. A rectangular mandrel may be inserted through the turns prior to compression to assure the formation of a square lumen 64 as shown in FIG. 9.

Numerous alterations of the structure herein disclosed will suggest themselves to those skilled in the art. However, it is to be understood that the present disclosure relates to a preferred embodiment of the invention which is for purposes of illustration only and is not to be construed as a limitation of the invention.

What is claimed is:

1. An orthodontic arch wire adapted to be received within a guide channel of an orthodontic bracket mounted on a maloccluded tooth. the arch wire comprising a single coiled strand in the form of a tightly wound helix normally having an array of successively abutting and substantially parallel circular turns, and having a cylindrical lumen extending therethrough, said strand when formed into said turns having a predetermined radial thickness. said turns having a common internal dimension of said lumen no greater than twice said predetermined radial thickness of said strand and having a common outer dimension no-greater than approximately 0.025 inch to correspond to the guide channel of an orthodontic bracket into which the arch wire is to be received, said helix being made from a material sufficiently elastic to permit bending of the arch wire over a short length thereof by selectively and at least partially separating adjacent turns. and to provide sufficient stiffness over a long length to provide adequate anchoring characteristics for orthodontic devices attached thereto.

2. An orthodontic arch wire as defined in claim 1, wherein the arch wire defines an axis and wherein each of the turns lies in a respective plane substantially normally to the axis.

3. An orthodontic arch wire as defined in claim wherein said strand has a rectangular cross-section.

4. An orthodontic arch wire as defined in claim wherein said strand has a circular cross section.

5. An orthodontic arch wire as defined in claim wherein said helix defines an elongate axial passage through said turns, and further comprising a resilient mandrel extending through said passage.

6. An orthodontic arch wire as defined in claim 1, further comprising an external flexible coating extending along and covering said helix.

7. An orthodontic arch wire as defined in claim 6, wherein said coating is made of an elastomeric material.

8. An orthodontic arch wire as defined in claim 1, in combination with an orthodontic bracket. further including securing means detachably associated with said bracket for confining said coiled strand in said guide channel.

9. An orthodontic arch wire adapted to be received within a guide channel of an orthodontic bracket mounted on a maloccluded tooth, the arch wire comprising a single coiled strand in the form of a tightly wound helix normally having an array of successively abutting and substantially parallel rectangular turns and having a rectangular lumen extending therethrough. said strand when formed into said turns having a predetermined thickness. said turns having a common internal dimension of said lumen no greater than twice said predetermined thickness of said strand and having a common outer dimensions no greater than approximately 0.025 inch by 0.032 inch to correspond to the guide channel of an orthodontic bracket into which the arch wire is to be received. said helix being made from a material sufficiently elastic to permit bending of the arch wire over a short length thereoi by selectively and at least partially separating adjacent turns. and to provide sufficient stiffness over a long length to provide adequate anchoring characteristics for orthodontic devices attached thereto.

10. An orthodontic arch wire as defined in claim 9, wherein the arch wire defines an axis and wherein each of the turns lies in a respective plane substantially normal to the axis.

11. An orthodontic arch wire as defined in claim 9, wherein said strand has a rectangular cross section.

12. An orthodontic arch wire as defined in claim 9, wherein said strand has a circular cross section.

13. An orthodontic arch wire as defined in claim 9,

wherein said helix defines an elongate axial passage LII channel.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3444621 *May 19, 1967May 20, 1969Unitek CorpOrthodontic appliance
US3593421 *Nov 15, 1967Jul 20, 1971Brader Allen CMultihelical omniarch
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3997970 *Oct 6, 1975Dec 21, 1976Hodgson Edward WOrthodontic occlusion-improving appliance
US4182106 *Jul 5, 1978Jan 8, 1980CablestrandElastically deformable wire
US5885074 *Oct 27, 1997Mar 23, 1999Hanson; Eric H.Ligatures for orthodontic appliances and orthodontic brackets incorporating such ligatures
US6042374 *Jan 14, 1998Mar 28, 2000Ormco CorporationSelf ligating orthodontic bracket
US6358045Mar 23, 2000Mar 19, 2002Ormco CorporationSelf ligating orthodontic bracket
US6818076Mar 23, 2000Nov 16, 2004Ormco CorporationMulti-strand coil spring
US7354267Dec 8, 2004Apr 8, 2008William VogtTubular orthodontic arch wire
Classifications
U.S. Classification433/21, 433/15, 433/2
International ClassificationA61C7/20, A61C7/00
Cooperative ClassificationA61C7/20
European ClassificationA61C7/20