US3881356A - Time interval sampling mechanism - Google Patents

Time interval sampling mechanism Download PDF

Info

Publication number
US3881356A
US3881356A US469626A US46962674A US3881356A US 3881356 A US3881356 A US 3881356A US 469626 A US469626 A US 469626A US 46962674 A US46962674 A US 46962674A US 3881356 A US3881356 A US 3881356A
Authority
US
United States
Prior art keywords
arm
suction
pick
sampling mechanism
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US469626A
Inventor
Ronald K Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMPAK Inc A CORP OF DE
ENGINEERING DEV ASSOCIATES Inc
ENGINEERING DEVELOPMENT ASSOCIATES Inc
Original Assignee
ENGINEERING DEV ASSOCIATES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENGINEERING DEV ASSOCIATES Inc filed Critical ENGINEERING DEV ASSOCIATES Inc
Priority to US469626A priority Critical patent/US3881356A/en
Application granted granted Critical
Publication of US3881356A publication Critical patent/US3881356A/en
Assigned to NORDSON CORPORATION reassignment NORDSON CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DOMAIN INDUSTRIES, INC.
Assigned to AMPAK, INC., A CORP. OF DE. reassignment AMPAK, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE DATE: OCTOBER 27, 1988. SEE DOCUMENT FOR DETAILS Assignors: NORDSON CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • G01N2001/1418Depression, aspiration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0077Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on individual granules or tablets

Definitions

  • ABSTRACT A motor driven suction pick-up means lifts small objects such as pharmaceutical tablets from a production stream at regular time intervals and delivers them to a collection point where representative samples of the product are accumulated. One, and only one, object per cycle of operation is seized and transported by the pick-up means.
  • the objective of the invention is to satisfy the above need for a small object sampler which possesses the already-enumerated features and which may be readily adapted to a variety of product sizes and shapes.
  • Another objective is to provide a sampling mechanism of the mentioned character which may be modified slightly without great expense for slightly different applications or slightly different production machines and without changing the basic character of the invention.
  • Still another object is to provide a product sampling mechanism which possesses an efficient and unique vacuum pick-up means for pharmaceutical tablets and the like which will assure unfailingly picking up of one, and only one, specimen at a time and at regular time intervals to achieve representative sampling of the product.
  • FIG. 1 is a side elevation of the invention showing the same attached to a product output tray which per se is not a part of the invention mechanism.
  • FIG. 2 is a fragmentary perspective view of a product sample transport arm and suction pick-up means in relation to a discharge pin which effects the release of the sample over a collection funnel when the transport arm is elevated.
  • FIG. 3 is a cross sectional view of the mechanism taken on line 3-3 of FIG. 1.
  • FIG. 4 is an elevational view of a motor driven cam and associated parts of the transport arm taken on line 4-4 of FIG. 3, partly in section and parts omitted.
  • FIG. 5 is an enlarged perspective view of a suction pick-up unit carried by the transport arm.
  • FIG. 6 is a side elevational view of the suction pickup unit in an operative condition to pick-up and transport a product sample.
  • FIG. 7 is a similar view of the pick-up unit with the latter conditioned to release the sample for dropping into the collection funnel.
  • a synchronous electric motor-gearhead assembly 10 is suitably mounted on a mechanism body portion or housing 11, which is bolted to one side flange of a product output tray or slide 12 forming a part of a production machine for pharmaceutical tablets or similar small objects.
  • the shaft 13 of the motor-gearhead assembly 10 carries a cam 14 whose rotation generates the required oscillation of a product sample transport arm 15.
  • the arm 15 is disposed exteriorly of housing 11 for movement in an arc above the tray 12 as indicated in FIG. 1.
  • a right angular extension 16 of the arm 15 is suitably journaled in a bearing means 17 on the housing to provide a rotational support for the transport arm.
  • a crank extension 18 of the arm 15 carries a follower roller 19 which is held in active engagement with the profiled edge of the cam 14 by a suitable spring 20 having a connection with the crank extension 18.
  • the rate of oscillation of the arm 15 is fixed by the rotational velocity of the synchronous motor-gearhead assembly. Typical velocities are l to 10 RPM.
  • a suction pick-up unit 21 consisting of a sleeve 22 having a suction nozzle element 23, such as an elastic ring, at its lower end.
  • the other end of the sleeve 22 is connected by a flexible hose 24 to a remote suction source, not shown.
  • a sample release spring 25 has an upper extension 26 secured to a rigid lug 27 on sleeve 22.
  • the spring 25 has a right angular, flat extension 28 substantially in sliding contact with the nozzle element 23, and provided with an aperture 29 adapted to register with the bore of the nozzle element when the spring is in a relaxed state as illustrated by FIG. 6.
  • the suction pick-up unit is conditioned to pick up a single tablet 30 or like small object from the production tray 12, as will be further discussed.
  • a sample release pin or post 31 is axially adjustably secured by screw-threaded means to a rigid support bracket 32 near one upper corner of the housing 11, well above the tray 12 and spaced somewhat from one side thereof.
  • the pin 31 is adjusted axially and locked in the precise position to engage and deform the spring 25 in the manner illustrated in FIG. 7 when the transport arm 15 and pick-up unit 21 are at the upper limit of their travel shown in broken lines in FIG. 1.
  • the pin 31 deforms the spring 25 sufficiently to shift the aperture 29 out of registration with the suction port of nozzle element 23 so that the suction is interrupted and the particular object 30 which is held and transported by suction is instantly released.
  • the object 30 Upon such release, the object 30 will fall by gravity into a sample collection funnel 33 positioned below the pin 31 and secured by a bracket 34 to the body or housing 11.
  • the funnel is connected to a sample conveyor tube 35 which is flexible and which leads to some external collection container for samples, not shown.
  • the spring 25 When the spring 25 separates from the pin 31, it will return due to its tension to the normal position shown in FIG. 6 ready to seize the next sample object when the arm 15 returns the pick-up unit 21 over the product tray 12.
  • the small objects 30 With the mechanism installed on the tray 12, as described, the small objects 30 will continuously pass downwardly on the tray in a procession or stream.
  • the transport arm 15 is designed so that the pick-up unit the arm is in the maximum down position.
  • the cam 14 is designed to insure a dwell of the assembly or unit 21 at both extremes of movement of the arm 15 shown in FIG. 1, thus assuring adequate time for the picking up and releasing of each sample.
  • the captured object 30 continues to be held by vacuum at the port 29 while the transport arm 15 removes it from the tray 12 and carries it toward the release position above funnel 33.
  • the pin 31 will be engaged by spring and the arm 15 continues to move upwardly slightly to produce deformation of the spring sufficient to interrupt suction and release the object v into the funnel 33, as previously described.
  • the motor 10 continues turning, causing the transport arm .15 to resume its downward motion, and as soon as spring 25 disengages pin 31, it will return to the normal object pick-up position of FIG. 6 so that another sample object may be seized when the arm reaches its lowermost position above the tray 12.
  • the rate of sample collection is governed by the speed of the motor gear head assembly, and is always fixed for a particular motor.
  • the motor may be changed in order to change the sampling intervals. It is assumed that the rate of object passage on the tray 12 Y is'much greater than the rate of sampling, so that no synchronization is required.
  • the unit 12 dwells over the product stream for ample time to allow at least one object 30 to pass near the nozzle aperture and be captured.
  • a sampling mechanism for small objects moving in a production stream comprising a body portion adapted for attachment to a discharge tray on which said production stream of small objects are moving, a transport arm for individual samples of small objects taken from said production stream mounted for oscillatory movement on said body portion and adapted to move between a down position close to and above said stream to an elevated sample object release position, power means to produce continuous oscillation of said transport arm between said positions at a substantially constant speed including means to cause the arm to dwell at both the down and elevated positions, a suction pickup unit carried by the transport arm including a resilient valve means which is normally positioned on the pick-up unit to activate suction for seizing one and only one small object from said production stream when said arm is in said down position, and means engageable with said resilient valve means when said arm is in the elevated object release position and moving the valve means sufficiently to disable the suction and thereby release the transported small object from the suction pick-up unit at a sample collection point.
  • a sampling mechanism as defined by claim 1, and said power means comprising a rotational motor means coupled with said transport arm, and said means to cause the arm to dwell comprising a cam driven by the motor means and operatively connected to said transport arm.
  • a sampling mechanism as defined by claim 2 and said transport arm having a crank extension carrying a cam follower element, and a spring connected with said arm and urging said follower element into engagement with a profile face of said cam.
  • said suction pick-up unit includes a sleeve attached to the transport arm and connected with a flexible conduit leading to a source of suction, said sleeve carrying a suction nozzle element at its lower end, said resilient valve means comprising an apertured spring element attached to said suction pick-up unit and the aperture of the spring element adapted to register with the bore of said sleeve and nozzle element when the spring element is relaxed.
  • a sampling mechanism as defined by claim 4, and said means engageable with said resilient valve means comprising a rigid element secured to said body portion substantially above said production stream to cause yielding of said valve means when said arm is in the elevated object release position.
  • a sampling mechanism as defined by claim 5, and said rigid element comprising a pin element adapted to contact the spring element and to deform the same for shifting the aperture of the spring element out of registration with the bore of said sleeve and nozzle element, and means to support the pin element and adjust the same axially forwardly or rearwardly and to lock the pin element in a selected adjusted position.
  • a sampling mechanism as defined by claim 4, and said spring element being a generally L-shaped element having an arm spaced from and generally parallel to said sleeve and a transverse extension extending across the lower face of said suction nozzle element, the aperture of the spring element being formed through said transverse extension.
  • a sampling mechanism as defined by claim 8 and conveyor means for sample objects connected with said funnel means and leading to a collection receptacle for sample objects.
  • a time interval small object sampling mechanism comprising an oscillatory transport arm for movement between a down sample pick-up position and an elevated sample release position relative to a moving stream of small objects to be sampled at regular intervals, means to drive the oscillatory arm at a substantially constant velocity and to cause the arm to dwell at said down and elevated positions, a suction pick-up device carried by said arm and movable therewith and adapted to capture a single sample object from the production stream when the arm is in said down position, and means engaging a movable component of the pickup device when the arm is in said elevated position and causing the pick-up device to release the captured object.
  • suction pick-up includes a suction nozzle having a port
  • said movable component of the pick-up device comprising a resilient valve element having a port adapted to register with the port of the suction nozzle when said arm is in said down position and said resilient valve element is relaxed.

Abstract

A motor driven suction pick-up means lifts small objects such as pharmaceutical tablets from a production stream at regular time intervals and delivers them to a collection point where representative samples of the product are accumulated. One, and only one, object per cycle of operation is seized and transported by the pick-up means.

Description

United States Patent [1 1 Palm [ May 6,1975
[ TIME INTERVAL SAMPLING MECHANISM [75] lnventor: Ronald K. Palm, Greenville, S.C.
[73] Assignee: Engineering Development Associates Incorporated, Taylors, SC.
[22] Filed: May 13, 1974 [21] Appl. No.: 469,626
[52] U.S. C1 73/423 R [51] Int. Cl. G0ln 1/04 [58] Field of Search 73/421 R, 423 R, 424, 425,
[56] References Cited UNITED STATES PATENTS Best 73/423 R 3,000,331 9/1961 Frank 73/421 R 3,315,530 4/1967 Woodley 73/423 R 3,789,671 2/1974 Larson 73/423 R Primary ExaminerS. Clement Swisher Attorney, Agent, or FirmB. P. Fishburne, Jr.
57 ABSTRACT A motor driven suction pick-up means lifts small objects such as pharmaceutical tablets from a production stream at regular time intervals and delivers them to a collection point where representative samples of the product are accumulated. One, and only one, object per cycle of operation is seized and transported by the pick-up means.
12 Claims, 7 Drawing Figures PATENTEUHAY 61975 SHEET 1D? 2 FIGI PNENTEB HAY 61975 SHEET 2 OF 2 TIME INTERVAL SAMPLING MECHANISM BACKGROUND OF THE INVENTION A need exists in the pharmaceutical industry and elsewhere for a simplified, economical and reliable product sampler which may be attached easily to production machinery and which requires little or no maintenance after proper installation. At the present time, only haphazard arrangements are utilized for gathering representative samples of pharmaceutical tablets or similar small objects from production streams and hand sampling is probably the most widely used technique. This is neither economical or reliable and no satisfactory automatic devices for this purpose appear to be available.
Consequently, the objective of the invention is to satisfy the above need for a small object sampler which possesses the already-enumerated features and which may be readily adapted to a variety of product sizes and shapes.
Another objective is to provide a sampling mechanism of the mentioned character which may be modified slightly without great expense for slightly different applications or slightly different production machines and without changing the basic character of the invention.
Still another object is to provide a product sampling mechanism which possesses an efficient and unique vacuum pick-up means for pharmaceutical tablets and the like which will assure unfailingly picking up of one, and only one, specimen at a time and at regular time intervals to achieve representative sampling of the product.
Other features and advantages of the invention will become apparent during the course of the following description.
BRIEF DESCRIPTION OF DRAWING FIGURES FIG. 1 is a side elevation of the invention showing the same attached to a product output tray which per se is not a part of the invention mechanism.
FIG. 2 is a fragmentary perspective view of a product sample transport arm and suction pick-up means in relation to a discharge pin which effects the release of the sample over a collection funnel when the transport arm is elevated.
FIG. 3 is a cross sectional view of the mechanism taken on line 3-3 of FIG. 1.
FIG. 4 is an elevational view of a motor driven cam and associated parts of the transport arm taken on line 4-4 of FIG. 3, partly in section and parts omitted.
FIG. 5 is an enlarged perspective view of a suction pick-up unit carried by the transport arm.
FIG. 6 is a side elevational view of the suction pickup unit in an operative condition to pick-up and transport a product sample.
FIG. 7 is a similar view of the pick-up unit with the latter conditioned to release the sample for dropping into the collection funnel.
DETAILED DESCRIPTION Referring to the drawings in detail, wherein like numerals designate like parts, a synchronous electric motor-gearhead assembly 10 is suitably mounted on a mechanism body portion or housing 11, which is bolted to one side flange of a product output tray or slide 12 forming a part of a production machine for pharmaceutical tablets or similar small objects. The shaft 13 of the motor-gearhead assembly 10 carries a cam 14 whose rotation generates the required oscillation of a product sample transport arm 15.
As shown in the drawings, the arm 15 is disposed exteriorly of housing 11 for movement in an arc above the tray 12 as indicated in FIG. 1. A right angular extension 16 of the arm 15 is suitably journaled in a bearing means 17 on the housing to provide a rotational support for the transport arm. Within the housing 11, a crank extension 18 of the arm 15 carries a follower roller 19 which is held in active engagement with the profiled edge of the cam 14 by a suitable spring 20 having a connection with the crank extension 18. The rate of oscillation of the arm 15 is fixed by the rotational velocity of the synchronous motor-gearhead assembly. Typical velocities are l to 10 RPM.
Attached to the free end of transport arm 15 is a suction pick-up unit 21 consisting of a sleeve 22 having a suction nozzle element 23, such as an elastic ring, at its lower end. The other end of the sleeve 22 is connected by a flexible hose 24 to a remote suction source, not shown. A sample release spring 25 has an upper extension 26 secured to a rigid lug 27 on sleeve 22. At its lower end, the spring 25 has a right angular, flat extension 28 substantially in sliding contact with the nozzle element 23, and provided with an aperture 29 adapted to register with the bore of the nozzle element when the spring is in a relaxed state as illustrated by FIG. 6. At this time, the suction pick-up unit is conditioned to pick up a single tablet 30 or like small object from the production tray 12, as will be further discussed.
A sample release pin or post 31 is axially adjustably secured by screw-threaded means to a rigid support bracket 32 near one upper corner of the housing 11, well above the tray 12 and spaced somewhat from one side thereof. The pin 31 is adjusted axially and locked in the precise position to engage and deform the spring 25 in the manner illustrated in FIG. 7 when the transport arm 15 and pick-up unit 21 are at the upper limit of their travel shown in broken lines in FIG. 1. As shown in FIG. 7, the pin 31 deforms the spring 25 sufficiently to shift the aperture 29 out of registration with the suction port of nozzle element 23 so that the suction is interrupted and the particular object 30 which is held and transported by suction is instantly released.
Upon such release, the object 30 will fall by gravity into a sample collection funnel 33 positioned below the pin 31 and secured by a bracket 34 to the body or housing 11. The funnel is connected to a sample conveyor tube 35 which is flexible and which leads to some external collection container for samples, not shown. When the spring 25 separates from the pin 31, it will return due to its tension to the normal position shown in FIG. 6 ready to seize the next sample object when the arm 15 returns the pick-up unit 21 over the product tray 12.
With the mechanism installed on the tray 12, as described, the small objects 30 will continuously pass downwardly on the tray in a procession or stream. The
' transport arm 15 is designed so that the pick-up unit the arm is in the maximum down position. The cam 14 is designed to insure a dwell of the assembly or unit 21 at both extremes of movement of the arm 15 shown in FIG. 1, thus assuring adequate time for the picking up and releasing of each sample.
The captured object 30 continues to be held by vacuum at the port 29 while the transport arm 15 removes it from the tray 12 and carries it toward the release position above funnel 33. At this position, the pin 31 will be engaged by spring and the arm 15 continues to move upwardly slightly to produce deformation of the spring sufficient to interrupt suction and release the object v into the funnel 33, as previously described.
The motor 10 continues turning, causing the transport arm .15 to resume its downward motion, and as soon as spring 25 disengages pin 31, it will return to the normal object pick-up position of FIG. 6 so that another sample object may be seized when the arm reaches its lowermost position above the tray 12.
The rate of sample collection is governed by the speed of the motor gear head assembly, and is always fixed for a particular motor. The motor may be changed in order to change the sampling intervals. It is assumed that the rate of object passage on the tray 12 Y is'much greater than the rate of sampling, so that no synchronization is required. The unit 12 dwells over the product stream for ample time to allow at least one object 30 to pass near the nozzle aperture and be captured.
It is to be understood that the form of the invention herewith shown and described is to be taken as a preferred example of the same, and that various changes in the shape, size and arrangement of parts may be re- .sorted to, without departing from the spirit of the invention or scope of the subjoined claims.
I claim:
1. A sampling mechanism for small objects moving in a production stream comprising a body portion adapted for attachment to a discharge tray on which said production stream of small objects are moving, a transport arm for individual samples of small objects taken from said production stream mounted for oscillatory movement on said body portion and adapted to move between a down position close to and above said stream to an elevated sample object release position, power means to produce continuous oscillation of said transport arm between said positions at a substantially constant speed including means to cause the arm to dwell at both the down and elevated positions, a suction pickup unit carried by the transport arm including a resilient valve means which is normally positioned on the pick-up unit to activate suction for seizing one and only one small object from said production stream when said arm is in said down position, and means engageable with said resilient valve means when said arm is in the elevated object release position and moving the valve means sufficiently to disable the suction and thereby release the transported small object from the suction pick-up unit at a sample collection point.
2. A sampling mechanism as defined by claim 1, and said power means comprising a rotational motor means coupled with said transport arm, and said means to cause the arm to dwell comprising a cam driven by the motor means and operatively connected to said transport arm.
3. A sampling mechanism as defined by claim 2, and said transport arm having a crank extension carrying a cam follower element, and a spring connected with said arm and urging said follower element into engagement with a profile face of said cam.
4. A sampling mechanism as defined by claim 1, wherein said suction pick-up unit includes a sleeve attached to the transport arm and connected with a flexible conduit leading to a source of suction, said sleeve carrying a suction nozzle element at its lower end, said resilient valve means comprising an apertured spring element attached to said suction pick-up unit and the aperture of the spring element adapted to register with the bore of said sleeve and nozzle element when the spring element is relaxed.
5. A sampling mechanism as defined by claim 4, and said means engageable with said resilient valve means comprising a rigid element secured to said body portion substantially above said production stream to cause yielding of said valve means when said arm is in the elevated object release position.
6. A sampling mechanism as defined by claim 5, and said rigid element comprising a pin element adapted to contact the spring element and to deform the same for shifting the aperture of the spring element out of registration with the bore of said sleeve and nozzle element, and means to support the pin element and adjust the same axially forwardly or rearwardly and to lock the pin element in a selected adjusted position.
7. A sampling mechanism as defined by claim 4, and said spring element being a generally L-shaped element having an arm spaced from and generally parallel to said sleeve and a transverse extension extending across the lower face of said suction nozzle element, the aperture of the spring element being formed through said transverse extension.
8. A sampling mechanism as defined by claim 1, and a sample object collection funnel means positioned near and below said last-named means to receive the sample objects released by the suction pick-up unit.
9. A sampling mechanism as defined by claim 8, and conveyor means for sample objects connected with said funnel means and leading to a collection receptacle for sample objects.
10. A time interval small object sampling mechanism comprising an oscillatory transport arm for movement between a down sample pick-up position and an elevated sample release position relative to a moving stream of small objects to be sampled at regular intervals, means to drive the oscillatory arm at a substantially constant velocity and to cause the arm to dwell at said down and elevated positions, a suction pick-up device carried by said arm and movable therewith and adapted to capture a single sample object from the production stream when the arm is in said down position, and means engaging a movable component of the pickup device when the arm is in said elevated position and causing the pick-up device to release the captured object.
11. A structure as defined by claim 10, wherein the suction pick-up includes a suction nozzle having a port, and said movable component of the pick-up device comprising a resilient valve element having a port adapted to register with the port of the suction nozzle when said arm is in said down position and said resilient valve element is relaxed.
12. The structure as defined by claim 11, and said means engaging a movable component comprising a fixed rigid element in the path of movement of the resilient valve element.

Claims (12)

1. A sampling mechanism for small objects moving in a production stream comprising a body portion adapted for attachment to a discharge tray on which said production stream of small objects are moving, a transport arm for individual samples of small objects taken from said production stream mounted for oscillatory movement on said body portion and adapted to move between a down position close to and above said stream to an elevated sample object release position, power means to produce continuous oscillation of said transport arm between said positions at a substantially constant speed including means to cause the arm to dwell at both the down and elevated positions, a suction pickup unit carried by the transport arm including a resilient valve means which is normally positioned on the pick-up unit to activate suction for seizing one and only one small object from said production stream when said arm is in said down position, and means engageable with said resilient valve means when said arm is in the elevated object release position and moving the valve means sufficiently to disable the suction and thereby release the transported small object from the suction pick-up unit at a sample collection point.
2. A sampling mechanism as defined by claim 1, and said power means comprising a rotational motor means coupled with said transport arm, and said means to cause the arm to dwell comprising a cam driven by the motor means and operatively connected to said transport arm.
3. A sampling mechanism as defined by claim 2, and said transport arm having a crank extension carrying a cam follower element, and a spring connected with said arm and urging said follower element into engagement with a profile face of said cam.
4. A sampling mechanism as defined by claim 1, wherein said suction pick-up unit includes a sleeve attached to the transport arm and connected with a flexible conduit leading to a source of suction, said sleeve carrying a suction nozzle element at its lower end, said resilient valve means comprising an apertured spring element attached to said suction pick-up unit and the aperture of the spring element adapted to register with the bore of said sleeve and nozzle element when the spring element is relaxed.
5. A sampling mechanism as defined by claim 4, and said means engageable with said resilient valve means comprising a rigid element secured to said body portion substantially above said production stream to cause yielding of said valve means when said arm is in the elevated object release position.
6. A sampling mechanism as defined by claim 5, and said rigid element comprising a pin element adapted to contact the spring element and to deform the same for shifting the aperture of the sPring element out of registration with the bore of said sleeve and nozzle element, and means to support the pin element and adjust the same axially forwardly or rearwardly and to lock the pin element in a selected adjusted position.
7. A sampling mechanism as defined by claim 4, and said spring element being a generally L-shaped element having an arm spaced from and generally parallel to said sleeve and a transverse extension extending across the lower face of said suction nozzle element, the aperture of the spring element being formed through said transverse extension.
8. A sampling mechanism as defined by claim 1, and a sample object collection funnel means positioned near and below said last-named means to receive the sample objects released by the suction pick-up unit.
9. A sampling mechanism as defined by claim 8, and conveyor means for sample objects connected with said funnel means and leading to a collection receptacle for sample objects.
10. A time interval small object sampling mechanism comprising an oscillatory transport arm for movement between a down sample pick-up position and an elevated sample release position relative to a moving stream of small objects to be sampled at regular intervals, means to drive the oscillatory arm at a substantially constant velocity and to cause the arm to dwell at said down and elevated positions, a suction pick-up device carried by said arm and movable therewith and adapted to capture a single sample object from the production stream when the arm is in said down position, and means engaging a movable component of the pick-up device when the arm is in said elevated position and causing the pick-up device to release the captured object.
11. A structure as defined by claim 10, wherein the suction pick-up includes a suction nozzle having a port, and said movable component of the pick-up device comprising a resilient valve element having a port adapted to register with the port of the suction nozzle when said arm is in said down position and said resilient valve element is relaxed.
12. The structure as defined by claim 11, and said means engaging a movable component comprising a fixed rigid element in the path of movement of the resilient valve element.
US469626A 1974-05-13 1974-05-13 Time interval sampling mechanism Expired - Lifetime US3881356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US469626A US3881356A (en) 1974-05-13 1974-05-13 Time interval sampling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US469626A US3881356A (en) 1974-05-13 1974-05-13 Time interval sampling mechanism

Publications (1)

Publication Number Publication Date
US3881356A true US3881356A (en) 1975-05-06

Family

ID=23864474

Family Applications (1)

Application Number Title Priority Date Filing Date
US469626A Expired - Lifetime US3881356A (en) 1974-05-13 1974-05-13 Time interval sampling mechanism

Country Status (1)

Country Link
US (1) US3881356A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117665A1 (en) * 1983-02-11 1984-09-05 Baker Perkins Plc Apparatus for sampling similar laminar articles
US4619149A (en) * 1985-01-02 1986-10-28 Long John B Belt conveyor cross-stream sampling system
US4640376A (en) * 1984-11-10 1987-02-03 Wilhelm Fette Gmbh Device for testing, in particular of tablets by weighing
US4796476A (en) * 1985-01-02 1989-01-10 Long John B Conveyor belt cross-stream sampling system and method
US4884462A (en) * 1985-01-02 1989-12-05 Long John B Conveyor belt cross-stream sampling system and method
US5150621A (en) * 1990-11-01 1992-09-29 Eastman Kodak Company Apparatus for collecting samples of articles conveyed at high speed in consecutive order
US5515740A (en) * 1992-07-31 1996-05-14 Mg2 S.P.A. Apparatus for dosing a pharmaceutical product into capsules
US20160252433A1 (en) * 2013-11-01 2016-09-01 Bosch Packaging Technology Limited Tablet sampler assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601786A (en) * 1947-09-02 1952-07-01 Molins Machine Co Ltd Sampling device for use in the weighing of cigarettes
US3000331A (en) * 1957-01-28 1961-09-19 Stokes F J Corp Coated tablet press
US3315530A (en) * 1965-04-12 1967-04-25 Du Pont Fiber sampling apparatus
US3789671A (en) * 1971-10-29 1974-02-05 H Larson Particulate material sampling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601786A (en) * 1947-09-02 1952-07-01 Molins Machine Co Ltd Sampling device for use in the weighing of cigarettes
US3000331A (en) * 1957-01-28 1961-09-19 Stokes F J Corp Coated tablet press
US3315530A (en) * 1965-04-12 1967-04-25 Du Pont Fiber sampling apparatus
US3789671A (en) * 1971-10-29 1974-02-05 H Larson Particulate material sampling device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117665A1 (en) * 1983-02-11 1984-09-05 Baker Perkins Plc Apparatus for sampling similar laminar articles
US4607536A (en) * 1983-02-11 1986-08-26 Baker Perkins Holdings Plc Apparatus for sampling similar laminar articles
US4640376A (en) * 1984-11-10 1987-02-03 Wilhelm Fette Gmbh Device for testing, in particular of tablets by weighing
US4619149A (en) * 1985-01-02 1986-10-28 Long John B Belt conveyor cross-stream sampling system
US4796476A (en) * 1985-01-02 1989-01-10 Long John B Conveyor belt cross-stream sampling system and method
US4884462A (en) * 1985-01-02 1989-12-05 Long John B Conveyor belt cross-stream sampling system and method
US5150621A (en) * 1990-11-01 1992-09-29 Eastman Kodak Company Apparatus for collecting samples of articles conveyed at high speed in consecutive order
US5515740A (en) * 1992-07-31 1996-05-14 Mg2 S.P.A. Apparatus for dosing a pharmaceutical product into capsules
US20160252433A1 (en) * 2013-11-01 2016-09-01 Bosch Packaging Technology Limited Tablet sampler assembly
US10139315B2 (en) * 2013-11-01 2018-11-27 Bosch Packaging Technology Limited Tablet sampler assembly

Similar Documents

Publication Publication Date Title
US3881356A (en) Time interval sampling mechanism
US3797822A (en) Coupon inserter
US3276566A (en) Apparatus for uniform orientation of spinning cops and the like
US4491311A (en) Apparatus for opening folded sheets using accelerating and deaccelerating spreader elements
CA1078320A (en) Mail extracting and sorting desk
JPH0777771B2 (en) Magazine for cardboard feeder
US3378256A (en) Sheet delivery slowdown
US5028044A (en) Rotary feeder for blanks
US3921821A (en) Count interval sampling mechanism
CN205572429U (en) Fecund article carry device with time shift
JPH11268839A (en) Device for extracting flexible tape-like article from below magazine and delivering it to transfer means connected to it
US2227370A (en) Chain gripper feeder
US4588179A (en) Card collator with bottom hole pneumatic puller extractor
US4877229A (en) Method of extracting and accelerating flat objects
US2991074A (en) Card feeding machine
US4318265A (en) Envelope flap opener
US3684845A (en) Article counting sensor apparatus
US3315530A (en) Fiber sampling apparatus
USRE32328E (en) Mail extracting and sorting desk
CN113843173A (en) Intelligent sorting system for international letters in grades
US3962564A (en) Apparatus for counting a stack of sheets
EP0127621A1 (en) Apparatus for pasting inserts into publications
US3184230A (en) Document feeding
FR2381696A1 (en) Mechanism for feeding articles to printing machine - has conveyor for moving into preferred orientation using air pressure articles
CN209110684U (en) A kind of workpiece feeding mechanism

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORDSON CORPORATION, AN OH CORP.

Free format text: MERGER;ASSIGNOR:DOMAIN INDUSTRIES, INC.;REEL/FRAME:004071/0608

Effective date: 19821112

AS Assignment

Owner name: AMPAK, INC., A CORP. OF DE.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE DATE;ASSIGNOR:NORDSON CORPORATION;REEL/FRAME:004994/0177

Effective date: 19881027