Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3882687 A
Publication typeGrant
Publication dateMay 13, 1975
Filing dateJan 23, 1974
Priority dateJan 25, 1973
Also published asDE2303663A1
Publication numberUS 3882687 A, US 3882687A, US-A-3882687, US3882687 A, US3882687A
InventorsStefan Asztalos, Rudolf Kneuer, Alfred Stephan, Reinhard Glatthaar
Original AssigneeLinde Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of and apparatus for the cooling of an object
US 3882687 A
Abstract
An object, such as a superconductive magnet or a super-conductor cable in a housing or cryostat, is cooled with a cryogenic fluid passed continuously from one vessel into the housing or cryostat and then conducted after expansion into a second vessel where part of the cryogenic liquid is converted to vapor by expansion. A vapor/liquid separation is carried out in the second vessel and the liquid phase is delivered to a third vessel serving as a storage reservoir and intermittently connected to the first vessel to return liquid coolant thereto. During the accumulation of liquid in the third vessel, both the second and third vessels are maintained at a pressure lower than that in the first vessel, the pressure difference driving the liquid coolant through the housing or cryostat.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

Unite States atet [191 Asztalos et al.

[4 1 May 13,1975

[73] Assignee: Linde Aktiengesellschaft,

Wiesbaden, Germany 22 Filed: Jan. 23, 1974 21 Appl. No.1 435,856

3,415,077 10/1968 Collins... 62/467 3,611,740 10/1971 Giger 62/514 X 3,710,584 1/1973 Leonard 62/55 X Primary Examiner-Meyer Perlin Assistant ExaminerRonald C. Capossela Attorney, Agent, or Firm-Karl F. Ross; Herbert Dubno [57] ABSTRACT An object, such as a superconductive magnet or a super-conductor cable in a housing or cryostat, is cooled with a cryogenic fluid passed continuously from one vessel into the housing or cryostat and then conducted after expansion into a second vessel where part of the cryogenic liquid is converted to vapor by expansion. A vapor/liquid separation is carried out in the second vessel and the liquid phase is delivered to a third vessel serving as a storage reservoir and intermittently connected to the first vessel to return liquid coolant thereto. During the accumulation of liquid in the third vessel, both the second and third vessels are maintained at a pressure lower than that in the first vessel, the pressure difference driving the liquid coolant through the housing or cryostat.

12 Claims, 1 Drawing Figure METHOD OF AND APPARATUS FOR THE COOLING OF AN OBJECT FIELD OF THE INVENTION Our present invention relates to a method of and an apparatus for the cooling of an object such as a superconductive magnet or a superconductive cable in a housing or cryostat with a liquid coolant, e.g. liquid helium.

BACKGROUND OF THE INVENTION The deep cooling of objects has been found to be especially advantageous in recent years for the cooling of conductors in electrical systems, the conductivity of a conductor increasing as its temperature is reduced in the great majority of cases. The development of superconductive materials has caused increasing interest in cooling systems adapted to reach superconductive temperatures, i.e. temperatures of 14k or below and in the handling of cryogenic liquids, i.e. liquefied gases capable of reaching these low temperatures.

Superconductors are used, for example, in magnets of particle accelerators and other systems in which high magnetic field strengths must be developed and an increasing cross-section of the conductor cannot be tolerated either because of high cost or other factors. Moreover, superconductors are used in cables for the transmission of large currents over both small and large distances.

A typical cryogenic-liquid-cooled cable may comprise a plurality of coaxial ducts in which the superconductor is received in the inner duct and an outer space is evacuated and/or provided with so-called superinsulation composed of alternating layers of fiberous material and reflective foil. The cryogenic liquid or cryogen is caused to flow through the innermost duct in direct contact or heat-exchanging relation with the superconductor.

Superconductor magnets are often enclosed in highly insulated housings or cryostats to which the superconductive liquid is admitted.

In a conventional process for the cooling of objects enclosed in a housing, e.g. a duct or cryostat, it has been the practice to supply liquid helium from a first storage vessel to the housing and to conduct the liquid after it has traversed the housing into a second storage vessel. A pressure differential, produced by some pres sure buildup means, is maintained across the vessels to obtain the driving pressure necessary to displace the liquid from the first vessel to the housing and thence to the second vessel. When the first vessel is emptied, the pressure differential is reversed and the liquid now collected in the second vessel is displaced by the opposite pressure differential through the housing and into the first vessel in the opposite direction.

The disadvantage of this system is that the housing cannot be supplied for prolonged periods continuously with the cryogenic liquid from one vessel and hence there are periods in which the flow of the cryogen must be interrupted. This, of course, has the disadvantage that uniform flow and cooling cannot be guaranteed and that even brief interruptions in the continuity of coolant flow may cause detrimental results when the cooled object is a superconductive magnet or superconductive cable.

OBJECTS OF THE INVENTION It is, therefore, the principal object of the present invention to provide a process for the cooling of an object in a housing, e.g. a superconductive magnet in the cryostat or a superconductive cable, whereby the aforementioned disadvantages are obviated.

Another object of the invention is to provide an apparatus or system for the cooling of objects with a liquid cryogen whereby the continuity of flow to the cooled object from a supply vessel can be maintained for much longer periods than heretofore.

Yet another object of the invention is to provide a method of an apparatus for the continuous supply of a cryogen to and effective cooling of an object to be cooled, especially a superconductive system, for long periods and with a single supply vessel serving as the source of the liquid cryogen to the housing of the object to be cooled.

SUMMARY OF THE INVENTION These objects and others which will become apparent hereinafter are attained, in accordance with the present invention, in a method of cooling an object in a housing, especially a superconductive magnet or a superconductive cable, which comprises feeding a cryogenic liquid from a first or supply vessel to the housing, collecting cyrogenic liquid from said housing in a second vessel, expanding the liquid in said second vessel to cool the liquid and separating a vapor phase from the liquid phase of said second vessel, feeding the liquid phase to a third storage vessel and at least intermittently returning liquid from the storage vessel to the supply vessel.

In other words, the present invention provides for expansion of the liquid cryogen or coolant, after it has been used to cool the object, thereby lowering the temperature of the liquid phase and abstracting heat therefrom equivalent to the latent heat of vaporization of the cryogen. Thereafter a phase separation is carried out whereby the liquid component is collected in the third or storage vessel and is resupplied to the first.

The system of the present invention is thus able to achieve, in a simple manner, the aforestated object of permitting one-way, continuous and long duration cooling of an object, e.g. a superconductive system, with a liquid coolant or cryogen, e.g. liquid helium.

The liquid coolant is displaced through the system under appropriate driving pressures and thus, according to the present invention, the pressure differential between the first and second vessels is maintained at a level necessary to drive the liquid cryogen from the first vessel through the cryostat or housing of the object and into the second vessel.

During the accumulation of the liquid in the storage vessel, the latter is maintained at the same pressure as the second vessel, i.e. at a pressure lower than that in the first vessel. Even the expansion step within the second vessel takes place to a pressure below that in the first vessel.

As soon as the third or storage vessel is filled to a sufficient degree with the liquid cryogen recovered from the first separation in the second vessel, the connection between the second and third vessels is closed with a valve and a valve between the third vessel and the first or supply vessel is opened. The pressure is developed in the third or storage vessel which is somewhat higher valve is opened so that the pressure in the third vessel again assumes a level identical to that in the second vessel and the liquid coolant can flow from the second vessel to. the third. Consequently, the second vessel serves for temporary storage of the liquid phase only during the period in which the third vessel is being discharged into the first.

The pressure differential required to drive the liquid from the first vessel to the second and fromthe third vessel to the first as described above can be generated by a pressure buildup means of any conventional de* sign. 7

An important feature of the present invention resides in the fact that, during the two switch-over phases, i.e. the filling of the third or storage vessel and the discharge of the storage vessel into the supply vessel, the displacement of the liquid cryogen from the first or supply vessel to housing of the object to be cooled is neither influenced nor completely interrupted. The object to be cooled is thus subjected to a continuous flow of the liquid cryogen at a constant rate from a single supply vessel for long periods, i.e. until all of the liquid cryogen has been converted into vapor.

The method of the present invention has been found to be especially advantageous, for the cooling of superconductive systems such as conductive magnets, superconductive cables or the like.

According to another feature of the present invention the first valve between the third (storage) and first (supply) vessels and the second valve between the second (phase-separation and liquid-collection) and third vessels can be controlled by a liquid-level indicator, sensor or controller responsive to the liquid level in the third or storage vessel and having upper and lower threshold values.

As soon as the liquid level in the third or storage vessel reaches the upper threshold valve, the level indicator or sensor generates a first pulse to close the second valve and open the first valve while energizing or operating the pressure control device for the third vessel to bring the pressure entrainment to a level above that in the first vessel. The pressure differential between the third and first vessels can thus displace the accumulated liquid cryogene and coolant into the first vessel.

Conversely, when the liquid-level senses a liquid level in the third vessel which falls to the lower threshold value, a second pulse is generated which once again closes the first valve and the pressure-control device while opening the second valve. The liquid cryogen or coolant then flows from the second vessel to the third while the pressure in the latter vessel is reduced to that of the second vessel; especially when the object to be cooled is a super-conductive system it has been found to be advantageous to pass the liquid coolant supplied to the object to be cooled in indirect heat exchange with the oppositely flowing expanded coolant, thereby super-cooling the oncoming coolant and insuring that the liquid cryogen will maintain its liquid state as it traverses the system to be cooled Furthermore, the coolant withdrawn from the system to be cooled may advantageously be expanded and pass through separate cooling zones to shield the liquid of the first or supply vessel from the input of heat from the I exterior. These separate cool zones may be provided around the duct whereby the liquid cryogen is deliv- I ered to the cryostat around the chambers of the cryostat traversed by the liquid coolant and around the" body of liquid cryogen maintained in the supply vessel.

According to still another feature of the invention,

radiation shields preventing the loss of cold within the duct system and the cryonate are cooled with cold coolant vapor from'the second vessel.

or phase-separation vessel (the latter is disposed above the third or storage vessel) andsuitable conduits, ducts or the like are provided between the first or supply .ves-

sel and a cryostat containing one or more objects to be cooled and between the cryostat and the second vessel.

The duct means connecting the interior of the cryon-- ate with the second vessel is provided with an expa nsion valve.

Still another feature of the invention resides in the i provision of a level indicator in the third vessel having the upper and lower threshold valves as described above whereby the valves are automatically controlled in response to the level in the third or storage vessel.

In accordance with another feature of the apparatus" H aspect of this invention, all of the connecting ducts bei y I tween the vessel and the cryogen or the object to be l cooled are formed as coaxial conduits with a central; passage and the coaxial annular passages surroundingsame. The central passage serves for the feed of the liquid cryogen to the object to be cooled. The innermost or first annular passage serves to conduct expanded cryogen or coolant from the object to be cooled and the third annular passage forms a radiation shield and I a path for the vapor. of the liquid cryogen between'the y second storage vessel and a further radiation shield within the cryostat. The two other annular passages, i.e.

the second and fourth, are evacuated.

Within the cryostat there is formed,.a cooling zone immediately surrounding the object to be cooled which is cooled by the expanded coolant from this object for the supercooling of the incoming liquid, the outflowing coolant is passed through a heat exchange. with one sec- I tion traversed by the liquidcryogen from the supple vessel and another section traversing by expanded cryogen from the cooled object. Of course, while the system has been described for a single object tobe cooled, it may also be used to cool a number of objects, in parallel or in series with respect to the flow of the liquid cryogen.

BRIEF DESCRIPTION OF THE DRA ING g i cording to the present invention.

SPECIFIC DESCRIPTION The system illustrated in the drawing comprises a supply vessel ll (first vessel), connected by aduct to.

one section ofa heat exchanger 15 and then to the een= tral passage 3 of a coaxial conduit system having four annular passages 11, 37, 30 and 38 surrounding the central passage. The coaxial duct system may extend over long distances and is represented generally by the numeral 12. From the central passage the liquid cryogen is introduced at 4 into the object 5 to be cooled in a cryostat represented generally at 20. The object may be a superconductive magnet.

The supercooled liquid cryogen. somewhat heated to contact with the object 5, is conducted away at 7 and enters an expansion valve 8 in which the liquid cryogen is expanded to form a vapor-liquid mixture which traverses a helical duct system 9 in heat exchanging relation with a radiation shield directly surrounding the objeet 5 and forming a cold zone therearound. The cool ing avoided by the passage of the mixture through the y duets 9 has been found to stabilize the temperature of the space in which object 5 is disposed.

A duct 10 carries the two-phase mixture from the cold zone through the first annular space 11 of the coaxial-duct system 12, through another section of the heat exchanger and, via line 13, to the second or separation vessel 14.

The mixture of vapor and liquid phases is separated in vessel 14 and the liquid phase can be transferred via duct 15 and an automatically controlled valve 16 to the third or storage vessel 17. The latter is connected by a duct 25 and a valve 24 to the first vessel 1.

To create the displacement pressure driving the liqaid from the vessel 1 through the object 5 to be cooled and into the vessel 14, we provide a pressure generating device which comprises a duct 18 connected to a controlled-pressure valve 19 and a pressurized gas source 6 which is also connected via line 22 and the pressure-controlled valve 23 to the gas space of vessel 17.

A level sensor 21 responds to the liquid level in the storage vessel 17 and has upper and lower thresholds represented by the inlets 21a and 21b of the controller 21 whose outputs are applied to the valves 16 and 24 and to the pressure-regulating valve 23 respectively.

The gas derived from the liquid/vapor separator 14 is fed by line 29 to the third annular passage 30 of the coaxial duct system 12 and then passes through tubes of a heat shield 32 surrounding the heat shield 9 and enclosing the space in which the expansion valve 8 is provided. The latter heat shield 32 is endlosed in the insulated walls of the cryogen and delivers its vapor via line 34 to a condensing station or the like not shown.

The operation of the system will be more readily apparent with reference to a specific example as given below.

Liquid helium at a pressure of about 1 8 atmospheres absolute and a temperature of 4.9"K passes from the first vessel 1 via the line 2 through the heat exchanger 15, the central passage 3 of the coaxial duct system 12 and by line 4 is admitted to the object 5 to be cooled. especially a conductive magnet.

1n the heat exchanger 15 the liquid helium is supercooled to a temperature of about 4.5K and the supercooled liquid helium is expanded at valve 8 to a pressure of 1.2 atmospheres absolute before entering the cooling zone 9.

Within the cooling zone, the helium vapor liquid mix ture passes in counterflow to the liquid super-cooled 6 heliumat a temperature of 4.5314 and thereby stabilizes the temperature within the object 5.

The object is thus cooled with super-critical helium "at a pressure of about 1.8 atmospheres absolute and a temperature of about 4.5l

From this second vessel 14, liquid helium is transferred to the open valve (second valve) 16 into the third or storage vessel 17 which is at the same pressure as that of the phase-separation vessel 14. A gravity transfer of the liquid takes place during this period.

The latter pressures are about 1.2 atmospheres absolute and hence a pressure differential of 0.6 atmospheres absolute is applied between the first vessel 1 and the second vessel 14 to displace the liquid helium.

As soon as the liquid level in the third vessel 17 reaches its upper limits as'defined by the inlet 21a, the level sensor 21 applies a signal which closes the second valve 16, opens the first valve 24, and overlies upon the pressure controller 23 to raise the pressure in the third vessel 17 above 1.8 atmospheres absolute. e.g. to 2.0 atmospheres absolute. The liquid is driven out of the storage vessel 17 into the supply vessel 1 and the flow of liquid helium through the object 5 is not interrupted. Of course, vessel 14 remains under its original pressure 1.2 atmospheres absolute or. slowly increases in pressure, but well below 1.8 atmospheres absolute.

As soon as the liquid level in the third vessel 17 falls to its lower threshold value as sensed by the inlet 2112, the sensor 21 closes valve 24, opens valve 16 and restores the pressure control 23 to its original level while venting excess pressure and permits the pressure to be repeated. The vapor of course is used to cool the radiation shield 32. The passages 37 and 38 of the coaxial duct system 12 are evacuated and the compartment e.g. 28, within the cryogen 20 and the housing 36 surrounding the vessels 14, 1'7 and 1 can also be evacuated.

We claim:

1. A method of cooling an object to be maintained at a cryogenic temperature comprising the steps of: continuously feeding a liquid cryogen from a supply vessel to said object; maintaining a pressure in said vessel sufficient to displace said liquid cryogen to said object; expanding liquid cryogen upon its passage to said object to form a vapor/liquid phase mixture of the liquid cryogen; separating said phase mixture into a liquid phase and a vapor phase in a second vessel; transferring the liquid phase from said second vessel directly to a third storage vessel; and at least intermittently feeding said liquid cryogen from said storage vessel to said supply vessel upon the liquid level in said storage vessel attaining a predetermined height and at substantially the pressure in said supply vessel.

2. The method defined in claim 1 wherein a first valve is provided between said storage vessel and said supply vessel and a second valve is provided between said second vessel and said storage vessel. said method further comprising the step of controlling said valves in response to the liquid level in said storage vessel.

3. The method defined in claim 1, further comprising the step of super-cooling the liquid cryogen from said supply vessel prior to its use to cool said object in heat exchange with the expanded cryogen.

4. The method defined in claim 1, further comprising the step of shielding the liquid cryogen in contact with said object with the expanded cryogen.

5. The method defined in claim 1,,further comprising the step of shielding the liquid cryogen between said supply vessel and said object with the expanded cryogen.

6. The method defined in claim 1 wherein a radiation shield is provided around said object, said method further comprising the step of cooling said radiation shield with the vapor phase separated from said liquid phase.

7. An apparatus for cooling an object, comprising a supply vessel for a liquid cryogen; conduit means connecting said supply vessel with said object; an expansion valve receiving liquid cryogen from said object; a second vessel communicating with said expansion valve and receiving a vapor-liquid phase mixture of said cryogen therefrom; a storage vessel connected to said supply vessel for delivering liquid cryogen thereto; and

means connecting said second vessel to said storage vessel for delivering said liquid cryogen to said storage vessel upon its separation from the vapor phase of said mixture in response to the liquid level in said storage vessel.

8. The apparatus defined in claim 7 further comprising a heat exchanger having a first section traversed by the'liquid cryogen between said supply vessel and said object and a second section traversed by a vapor-liquid phase mixture from said expansion valve for supercooling the liquid cryogen prior to the use thereof to cool said object.

The apparatus defined in claim 7, further comprising a radiation shield surrounding said object and means for passing the vapor-liquid phase mixture formed upon expansion of said liquid cryogen in said expansion valve into heat exchanging relation with said I I radiation shield.

10. An apparatus for cooling an'object, comprising a supply vessel for a liquid cryogen; conduit means connecting saidsupply vessel with saidobject; an expaii sion valve receiving liquid cryogen from said object; a second vessel communicating with said expansion valve and receiving a vapor-liquid phase mixture of said cryogen therefrom; a storage vessel connected to said stip-; ply vessel for delivering liquid cryogen thereto; and

vessel for controlling said valves.

11. The apparatus defined in claim 10 wherein a* v pressure control device is provided for regulating the relative pressures in said vessels above that in said sup Y,

ply vessel to displace liquid cryogen from said storage vessel to said supply vessel. 5

12. The apparatus defined in claim 10 wherein said conduit means comprises a central passage traversed by the liquid cryogen and a plurality of annular pas-' sages surrounding said central passage, at least one of said annular passages being connected to one. of said vessels for passage of cryogenic fluid therethrough.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3159008 *Apr 8, 1963Dec 1, 1964Chemical Construction CorpCooling system
US3364687 *May 3, 1965Jan 23, 1968Massachusetts Inst TechnologyHelium heat transfer system
US3415077 *Jan 31, 1967Dec 10, 1968500 IncMethod and apparatus for continuously supplying refrigeration below 4.2deg k.
US3611740 *Dec 11, 1969Oct 12, 1971Sulzer AgProcess for cooling a consumer consisting of a partly stabilized superconductive magnet
US3710584 *Oct 23, 1970Jan 16, 1973Cryogenic Eng CoLow-loss closed-loop supply system for transferring liquified gas from a large container to a small container
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4077231 *Aug 9, 1976Mar 7, 1978NasaMultistation refrigeration system
US4116017 *Dec 3, 1976Sep 26, 1978Linde Ag.Method of and apparatus for the cooling of articles with a circulated cooling gas
US4340405 *Oct 29, 1980Jul 20, 1982The United States Of America As Represented By The United States Department Of EnergyApparatus and method for maintaining low temperatures about an object at a remote location
US4432216 *Nov 2, 1982Feb 21, 1984Hitachi, Ltd.Cryogenic cooling apparatus
US4589203 *Aug 7, 1984May 20, 1986L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges ClaudeMethod and apparatus for the cryogenic stripping of electric cables
US4756310 *Nov 19, 1984Jul 12, 1988Hemodynamics Technology, Inc.System for cooling an area of the surface of an object
US4884409 *Jan 25, 1989Dec 5, 1989Sulzer Brothers LimitedMethod and apparatus of cooling a toroidal ring magnet
US5193348 *Jun 24, 1991Mar 16, 1993Siemens AktiengesellschaftSuperconducting quantum interferometer device
US5419140 *Mar 16, 1994May 30, 1995L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges ClaudeDevice for recycling a cryogenic liquid and its use in an apparatus for freezing products
US5444985 *May 13, 1994Aug 29, 1995Liquid Carbonic CorporationCryogenic tunnel freezer
US5460015 *Apr 28, 1994Oct 24, 1995Liquid Carbonic CorporationFreezer with imperforate conveyor belt
US5467612 *Apr 29, 1994Nov 21, 1995Liquid Carbonic CorporationFreezing system for fragible food products
US5513498 *Apr 6, 1995May 7, 1996General Electric CompanyCryogenic cooling system
US5577392 *May 5, 1995Nov 26, 1996Liquid Carbonic CorporationCryogenic chiller with vortical flow
US5848532 *Apr 23, 1997Dec 15, 1998American Superconductor CorporationFor circulating a refrigerant flowing through a heat exchanger
US6376943Aug 26, 1998Apr 23, 2002American Superconductor CorporationSuperconductor rotor cooling system
US6489701Oct 12, 1999Dec 3, 2002American Superconductor CorporationSuperconducting rotating machines
US6732536 *Mar 26, 2003May 11, 2004Praxair Technology, Inc.Method for providing cooling to superconducting cable
US6812601Apr 23, 2002Nov 2, 2004American Superconductor CorporationSuperconductor rotor cooling system
US6864417 *Jan 28, 2002Mar 8, 2005Pirelli Cavi E Sistemi S.P.A.System for transmitting electric energy in superconductivity conditions and method for refrigerating in a continuous superconducting cable
US6895765Feb 2, 2004May 24, 2005Praxair Technology, Inc.Method for providing cooling to superconducting cable
US7263841 *Mar 19, 2004Sep 4, 2007Praxair Technology, Inc.Superconducting magnet system with supplementary heat pipe refrigeration
US8511100Jun 30, 2005Aug 20, 2013General Electric CompanyCooling of superconducting devices by liquid storage and refrigeration unit
EP0617247A1 *Mar 3, 1994Sep 28, 1994L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges ClaudeCryogenic liquid recycling device and its application in a product freezing apparatus
EP1477755A1 *Nov 30, 1999Nov 17, 2004Japan Science and Technology CorporationLiquid helium recondensation device and transfer line used therefor
EP2608223A1 *Dec 19, 2011Jun 26, 2013NexansMethod for cooling an assembly for superconductive cables
WO1986003118A1 *Nov 18, 1985Jun 5, 1986Hemodynamics Techn IncBlood flow monitoring device
WO1995010743A2 *Oct 12, 1994Apr 20, 1995Fridev Refrigeration SystCryogenic temperature control system
WO1998048224A2 *Feb 12, 1998Oct 29, 1998American Superconductor CorpCooling system for superconducting magnet
WO2007005091A1 *Apr 25, 2006Jan 11, 2007Gen ElectricSystem and method for cooling superconducting devices
WO2013043223A1 *Jan 19, 2012Mar 28, 2013Quantum Design, Inc.Gas-flow cryostat for dynamic temperature regulation using a fluid level sensor
Classifications
U.S. Classification62/50.5, 62/512, 505/897, 62/50.7, 62/64, 62/51.1, 505/899, 62/376
International ClassificationF25J1/00, F25D3/10, G12B15/02, F25D11/00
Cooperative ClassificationY10S505/897, F25D3/10, Y10S505/899
European ClassificationF25D3/10