Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3882716 A
Publication typeGrant
Publication dateMay 13, 1975
Filing dateJul 17, 1972
Priority dateJul 17, 1972
Publication numberUS 3882716 A, US 3882716A, US-A-3882716, US3882716 A, US3882716A
InventorsElliott Beiman
Original AssigneeElliott Beiman
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Centrifugal apparatus and cell
US 3882716 A
Abstract
Centrifuge cells, mounted at an acute angle to the drive shaft, orbit therearound, the resulting centrifugal force driving some of the contents of each cell through successive filters dividing the cell into separate chambers and into a cell cuvette. Each cell also rotates around its own axis when a gear arrangement is engaged, to grind tablets or mix the contents of the chambers. The cuvettes are sequentially examined by a read-out instrument such as a spectrophotometer, colorimeter, etc. A programmer controls successive operations. In one embodiment the chambers, which are separable, are selected for the test or other intended use according to their previously prepared contents, filter or other characteristic and then joined together to form the cell.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Beiman l l CENTRIFUGAL APPARATUS AND CELL Elliott Beiman, 305-A White Ave., Northvale, NJ. 07647 [22] Filed: July 17, 1972 [21] Appl, No.: 272,563

[76] Inventor:

[52] US. Cl. 73/614; 23/259; 210/206;

210/325; 233/25; 241/D1G. 27; 259/D1G. 46 [51] Int. Cl. GOln 31/02 [58] Field of Search 233/2, 23 R, 12, 25, 26,

233/3; 210/206, 380, 325; 23/230 R, 253 R, 259, 230 B; 73/614; 259/DIG. 46, 72, 57, 58;241/D1G. 27, 199.7, 199.8

[56] References Cited UNITED STATES PATENTS 3,199,775 8/1965 Drucker 233/25 3,235,173 2/1966 Unger 233/26 X 3,439,871 4/1969 Unger 233/3 3,583,627 6/1971 Wilson 233/2 3,591,098 7/1971 McShirley.. 241/199.7 X

3,635,678 l/1972 Seitz 23/259 3,645,506 2/1972 Selesnick 259/58 BRAKE];

L PROGRAM/1 T0 SOLENOID I5 SOURCE 3,684,450 8/1972 Adler et al 233/26 X Primary ExuminerGe0rge H, Krizmanich Attorney, Agent, or FirmPhilip Bolton; Edward Goldberg [57] ABSTRACT Centrifuge cells, mounted at an acute angle to the drive shaft, orbit therearound, the resulting centrifugal force driving some of the contents of each cell through successive filters dividing the cell into separate chambers and into a cell cuvette. Each cell also rotates around its own axis when a gear arrangement is engaged, to grind tablets or mix the contents of the chambers. The cuvettes are sequentially examined by a read-out instrument such as a spectrophotometer, colorimeter, etc. A programmer controls successive operations. In one embodiment the chambers, which are separable, are selected for the test or other intended use according to their previously prepared contents, filter or other characteristic and then joined together to form the cell.

11 Claims, 3 Drawing Figures T0 PROGRAMMER 34 s ec molF/ER RECORDER OR FRI/V 7'- O0 7' CENTRIFUGAL APPARATUS AND CELL This invention relates generally to centrifugal apparatus and to cells adapted for use therewith and particularly relates to automated centrifugal analytic apparatus and to multi-chambered cells which are adapted to be associated therewith.

In making tests for content uniformity" as is required of the pharmaceutical industry, multiple assays are made of samples (such as tablets or capsules) representative of a batch. If done individually such tests impose a heavy workload on the analytical laboratory. Likewise, where tests are made of a number of substances having similar chemistries or involving similar chemical procedures, as in conducting blood chemistries for medical diagnosis, doing such tests on an individual basis is highly inefficient.

However, while it seems desirable to test a number of samples simultaneously and to automate these tests, suitable equipment for this purpose which is not too expensive, which is versatile and can be employed for different tests, which is adapted to utilize disposable cells, and which is convenient for use, is not readily available The use of a centrifuge in association with a number of cells each having a number of compartments or chambers has already been suggested for simplifying simultaneous analysis of a number of samples. as for example in separating particles as a step in blood chemistry. However, the range of uses of such centrifugal apparatus has been limited by the limitations of the equipment itself and the cells employed therewith and has not lent itself readily to simplified and automated procedures.

A general object of the present invention is the provision of an improved centrifuge and an improved cell for use therewith.

A further object of the present invention is the provision of improved equipment which enables chemical testing of a number of samples in a single operation, particularly such equipment which lends itself to, and is adapted for, automated operation.

A feature of the present invention is the provision of a centrifuge which not only applies centrifugal force to one or more cells but in addition rotates the cell(s) around one of the cells axes for other purposes such as, for example, mixing of the contents of the cell and/or grinding solid samples.

A further feature of the present invention is the provision of cells which may have separable chambers and are prepared in advance for specific tests, as for example by having different reagents in different chambers, and which cells or chambers are intended to be discarded after a single use.

Other and further objects of the present invention will become apparent and the foregoing will be better understood with reference to the following description of embodiments of the present invention taken in conjunction with the drawings in which:

FIG. 1 is a schematic drawing of an automated centrifugal analytic apparatus and its cells;

FIG. 2 is a detailed cross-sectional view of one of the cells; and

FIG. 3 is a similar view of a modified form of said cells.

Referring now to FIG. 1 there is provided within a cylindrical housing 1 a centrally mounted motor 2 having a drive shaft 3 on which is mounted for rotation with the shaft, a rotatable carrier 4. The carrier 4 is roughly shaped like a thick bowl with a flat bottom 5 and a thick inturned rim 6. At the center of the bottom 5 is an annular flange 7 which surrounds and is attached to the drive shaft 3. The carrier 4 is preferably hollow and made of a light weight non-magnetic material such as aluminum or a strong molded plastic. A plurality of spaced openings or collars 8 is provided in the rim within which collars the cells 9 are inserted, the cells 9 generally being tubular in form as shown in FIGS. 2 and 3. While only two collars 8 carrying cells 9 are illustrated in order to simplify the drawing, it is to be understood that the centrifuge may have many collars for carrying many cells and usually carries more than two, for example, a half dozen or a dozen collars and cells.

For supporting cells 9 within the collars 8 there is provided for each cell or tube a metal sleeve 10 into which the cell fits so that as the sleeve rotates the cell also rotates. One simple arrangement for accomplishing this consists of a pin or key 10a (FIG. 3) provided on opposite points of the cell slipping into a slot or keyway 10(b) provided in the sleeve. Mounted around each sleeve 10 and fastened thereto by any suitable means is a pinion gear 11 which is used in rotating each of the cells 9 about its own central longitudinal axis by the following mechanism which may be termed a planetary gear arrangement. A large annular toothed gear 12 at the edge of annular flange 13 extending from nonrotatable member 14 is moved into engagement with the pinion gear 11 by spring means (not shown) or raised out of engagement by a solenoid 15 mounted on top of the cover 16 of the housing, the shaft 17 of the solenoid extending through the cover and being nonrotatable. To facilitate the engagement of the gear 12 and the pinion gears 11, the teeth of the gears may be tapered towards the points at which they meet. Alternatively a planetary set of beveled gears may be used, tapered for easy engagement. The shaft 17 may be square and pass through a closely-fitting square opening in the cover. The cover 16 is pivoted at one point 18 on the casing l and locked at a diametrically opposite point by a spring release catch 19 so that the cover may be opened or locked in closed position.

Each of the cells 9 is provided at its lower end with a cuvette 20 through which radiation, such as light, is passed to a suitable read-out instrument for studying the contents thereof. Instruments for this purpose may include a colorimeter, spectrophotometer, polarimeter, fluorometer and others well known in the art. For this purpose there is shown in FIG. 1 a spectrophotometer and a recorder 21 having a light source 22, whose light is passed through the cuvette 20 via an adjustable light slit 24 which controls the amount of light passing therethrough. The light then passes through opening 23 and falls on a photocell 25 whose output is then amplified and recorded on a suitable printout or recording device 26 forming part of the spectrophotometer 21.

A single read-out instrument is provided for all the cuvettes and each cuvette is brought sequentially into registry with the instrument. Where the read-out instrument gives a continuous read-out and can provide an adequate reading as the cuvette passes slowly by, the motor 2 rotates the carrier 4 continuously at a very slow pace. To enable identification of each cells output reading, a blank cell or its equivalent, providing a reading outside of the range of that provided by the other cells, can be used as a marker and the other cell's reading can be then identified by a simple count of the number of intervening cells readings.

Where the read-out instrument requires that the euvette be stopped for a time in order to obtain a satisfactory read-out, a solenoid actuated quick. acting brake 27 is provided operating, for example, on the rim 6 of the carrier. To actuate the brake, timing pins 28 may be provided spaced around the rim, each of which sequentially trips a microswitch 29 which is inserted, by a solenoid 30, into the path of the pins during the readout period. The microswitch 29 upon being tripped, operates a timing circuit 31 (or relay or the like) to operate the brake solenoid 32 for the time necessary and the release. After release the carrier moves forward bringing the next cuvette into registry with the read-out instrument. The next actuating pin causes the brake to stop the carrier at this point. To provide for more precise registry, stops 33 may be provided around the rim of the carrier in the path of the brake so that the brake, adjusted for a slight slippage, strikes each stop 33 and halts the carrier at precise points. The motor may either apply a slight torque or be shut off during the time a cuvette dwells at the read-out instrument. The movement of the carrier to bring thecuvettes sequentially into read-out registry may, of course. be done manually or accomplished by other conventional means. For example, a spring-loaded roller may be inserted by a solenoid into a V-shaped indentation in the rim, a plurality of such indentations being spaced around the rim at suitable points. When the roller enters an indentation it forces the carrier to move slightly until the roller is centered in the bottom of the V. t

The operation of the equipment may be manually controlled by controlling the various motor switches or switches activating the solenoids, or any suitable programmer 34 may be employed. While this programmer could be a tape or punched card controlled computer,

a single programmer is illustrated in FIG. 1 and uses a tape player 35 which preferably may employ cassettes,

each having magnetically printed thereon at selected points, tone signals of selected frequencies which actuate tone selectors 36 (tuned frequency circuits) and amplifiers 37 which in turn are used to control switches 38 which actuate and select the motor controls 38A. The motor controls 38A start in either forward or reverse, stop the motor and control its speed. The output of amplifiers 37 through switches 38 also controls the solenoid to determine when the stationary gear 12 engages the pinion gear wheels 11 and causes them to rotate the cells the drive shaft 3 rotates. It also controls the solenoids controlling the brake. the microswitch insertion, etc.

Referring now to FIG. 2, each of the cells 9 is divided into a plurality of chambers or compartments 39, 40 and 41 with adjacent chambers separated by filters 42 and 43. The bottom of each cell comes together and is formed into a neck 44 to which the cuvette may be removably attached by a rubber ring 45 or the like. In certain types of chemical analysis it is desirable that the cuvette 20 be made of quartz or silica and since quartz and silica are relatively expensive while the rest of the cell is intended to be disposable, the quartz or silica cuvette is removed for subsequentreuse.

In the FIG. 2 embodiment, the three chambers 39, 40 and 41 are also separateunits held separably together by suitable means such as screw threads 46 or by any other suitable connection such as a bayonet and twistlock arrangement. A window 47 (or windows) made of rubber or the like, that permits injecting a fluidinto a I selected chamber may be provided in the envelope of the cell leading into one or more chambers Thefluid' may be injected by syringe and the window should be;

the wall of the cell envelope and a second coarse mesh stainless steel screen or porous stainless steel disk49 attached to bear down upon a tablet 50. The. upper: A

screen 49 is forced down against the tablet or'capsule by stiff spring arms 51 which in turn are held together i i by a ring 52, the ring 52 in turn ,being pushed down shown in FIG. 2 by a spring arm 53' held and supported in a nut 54 removably mounted on shaft 3 (see FIG. 11).

The nut is attached to rotate with the shaft 3 so that as the shaft turns the whole assembly including the carrier 4 and the cells 9 mountedin its collars together .with

the nut 54 and spring armsSl and 53, all rotateyaroundf I the central shaft 3 simultaneously. However, when large gear wheel 12 engages the small gear wheels. 11,

ball preferably having an outer layer of material which is inert to the substances in the chamber and may be for i i example made of teflon. These balls 55 are held sta-: tionary under the influence of elongated straight magnets 56 (see FIG. 1) which extend from the carrier 4" adjacent each cell 9. When a cell rotates around its own axis, it moves with respect to the stationary balls and thus agitates and mixes the contents of the chamber *in which the balls are placed.

Another way of mixing the contents of each-compart-,

ment is shown in FIG. 3 which consists of a spiral 57 formed from and extending from the envelope of the cell so that when the cell rotates the spiral agitates the contents of the compartment and. mixes it. This is in ad-' dition to any turbulence due tothe normal orbiting of, I

the centrifuge cells around shaft 3.

The following is a general description of .how the aforedescribed apparatus may be used. To perform any tests, suitably prepared cells'musltbe obtained having the proper reagents, filters, etc. As.

contemplated by the present invention suchcells may be prepared by the user or purchased in readyform I from a manufacturer. To increase the versatilityof the cells, differently prepared individual chambers may be I made by a manufacturer and selected and assembled into cells by the user or provide the characteristics required. Of course, such previously prepared chambers should be protected during transport from loss of mate-' rial or from contamination, forexample, by end caps at either end or a suitable cover. t

The prepared cells are inserted into the centrifuge collars. A tablet or oslid dosage form is placed between the two porous stainless steel disks of each cell. The programmed sequence is started with the centrifuge running at slow speed and large gear 12 meshed with small gears 11. Each cell together with its lower stainless steel disk 48 is rotated around its own axis while the upper disk 49 is held stationary. The downward pressure of the upper disk 49 applies pressure to the tablet 50 and grinds the tablet into a powder. placing the active ingredients into solution in the first or upper chamber 39. Suitable solvents used in the first chamber include such reagents as chloroform water or alcohol and the selection of a particular solvent depends upon the sample to be analyzed.

In order to aid the dissolution of the active ingredient into the first solution, the programmer continues with the rotation of the cell which may be simultaneous with the grinding action. The rotation of the cell will cause a vortex in the upper solution aiding in solubility of the active ingredient. At a predetermined time the tablet or its active ingredient will be completely dissolved and the rotation of the cells is terminated by halting rotation of shaft 3 and then disengaging gear 12. The composition of the membrane or filter in the top chamber is of such nature that none of the solution in the top chamber will pass through during the rotational movement. Following termination of the cell rotation the centrifuge is now started by the programmer causing shaft 3 to rotate and orbit the radially spaced cells and causing centrifugal force to be applied to the first solution in the top chamber 39. The solution is forced through the first filter or membrane 42. Part of the solution that does not pass through the filter 42 is the insoluble residue of the tablet and this remains in the chamber 39 on the filter. The solution which passes into the second chamber 40 is mixed with a second solution which may already be in the compartment, or it may be injected via window 47 just prior to the start of the test. The first and second solutions are now together in chamber 40. The purpose of the second solution is to add a reagent for separating or further purifying the active ingredients originally present in the tablet. The nature of the second solution is determined by the sample being analyzed. An example of the second solution is chloroform. The addition by mixture of the solution increases purification and extraction of the ingredients to be assayed. Once the two solutions are together in the second chamber 40, rotation of the cell is then begun causing the blending or mixing of the first and second solutions in chamber 40. The rotation of the cell is terminated after a predetermined time sufficient to ensure that there is proper mixing, for example, of aqueous and non-aqueous solutions. The sample has now been blended or dissolved in the reagent in the second chamber, with the rotating motion of the cell terminated. The centrifuge unit is again started up by the programmer so that the combined solutions in the second compartment are subject to centrifugal force. Filter 43 is of a nature that it would allow only a desired phase, such as the chloroform phase to go through the filter. An example of such a filter would be one that is treated with silicone. This treatment of silicone would allow the solvent to pass through the paper and the aqueous phase would remain on top. It is to be understood that extreme centrifugal forces would not be applied. The analyzer would be traveling at a slow to moderate speed. An example of this might be 50 to I00 RPM. Speeds higher than that are not necessary to conduct most assays for which this apparatus is intended. The solution which is driven by centrifugal force out of the second chamber 40 into the third chamber 41 is either processed further or goes directly into the cuvette 20. In the latter case, each cell is then sequentially brought into registry with the read-out instrument as heretofore described. The read-out instrument records the results of each test and possibly provides a printout, depending on the particular instrument employed.

Having described hereinabove a general procedure for using the analytic centrifuge apparatus, a more specific one is next described for salicylates. such a methyl salicylate or Aspirin which is acetylsalicylic acid containing salicylic acid. A colorimetric procedure is here employed. The sample or the tablet is ground down as aforedescribed between the upper and lower stainless steel disks. An example of the first solution which would be in the top chamber 39 would be 0.02 normal Nitric Acid in an equal volume of alcohol (SDA 3A). In the next chamber 40, prior to starting the test would be placed a predetermined amount of ferric nitrate crystals. These crystals could be added into the second chamber either during manufacture, or assembly of the cell. After the tablet is ground up. it is dissolved in the 0.02 normal nitric acid and alcohol. Next centrifugal force (with gear 12 disengaged) is used to drive the solution of the salicylate through the filter membrane into the second chamber 40. The filter membrane could be a tight porosity filter paper that would not allow the solution to go through without centrifugal forces that would develop at about roughly 50 or 60 RPM within the centrifuge. After the solution is transferredinto the second chamber, the programmer next shifts the centrifuge into its mixing mode and a magnetic ball in the second chamber now creates a sufficient degree of turbulence so that the salicylate in 0.02 normal nitric acid and alcohol now reacts with ferric nitrate producing a stable blue colored complex. the color development that is generated in this test for salicylates. The centrifuge is then momentarily stopped while it is changing over to go into its centrifugal mode. The solution is driven by centrifugal force through the filter 43 on the bottom portion of the second chamber. the colored blue solution now going into the cuvette. The cuvette fills up with the solution and at this point the cell is ready for the actual read-out by the colorimeter and is brought into registry therewith. The colorimeter is preset at the start of the assay at a wavelength which would be the peak absorption wavelength for this material. At this point, the programmer turns on the colorimeter and the signal is picked up by the photo cell, transferred either onto a recorder or a direct print-out type apparatus.

Another example of an analysis would be that using a spectrophotometer rather than a colorimeter readout as in the assay of chlorpheniramine maleate. This test would be generally applicable to an organic nitrogenous base compounds of which chlorpheniramine maleate is one. The tablet would be dissolved in the first chamber between the fixed and movable stainless steel disks as it was in the colorimetric assay. An example of the solution in the first compartment would be diluted sulfuric acid. The ground-up tablet is placed into solution in the top chamber 39 and the centrifuge then starts its centrifugal mode passing the dissolved amine salt into the second chamber 40. In chamber 40 there is chloroform. Laying on top of the filter 4.3 in the second chamber is some sodium hydroxide pellets. The quantity of the pellets should be enough so that they would not only neutralize the diluted sulfuric acid but would make the solution slightly alkaline. This is necessary for the organic nitrogenous base to be released from its salt. The free base is now insoluble in the aqueous phase and soluble in the chloroform which was already in the second chamber. The filter 43 may be silicone treated paper overlayed with a chloroforminsoluble but aqueous-soluble material. An example of this coating is gelatin. The reason for this is that with the chloroform in the second chamber 40 prior to the start of the test, there are centrifugal forces built up within the cell, and to maintain the chloroform in the second chamber the paper would have to be treated with a chloroform-insoluble material. When the aqueous portion is brought down in the second chamber and mixed with the chloroform the aqueous soluble coating that is on the filter paper is now dissolved and this leaves the filter paper in a condition such that under centrifugal force, the chloroform phase, containing the free base (chlorpheniramine), will be allowed to pass through into the third chamber and cuvette. The cuvette in this case is not permanently fixed to the tube because the tube itself is disposable while the cuvette would be made of quartz glass or silica glass and have t a rubber or plastic ring collar to attach itself to the neck below the third compartment.

The cells are now brought sequentially into registry with the spectrophotometer. The absorption readings are taken at a lower wavelength, as opposed to the visible region or the blue color development for the salicylates. The method of print-out could vary from a meter reading, a print-out on a recorder or a direct print-out that would be part of the spectrophotometer.

It is to be understood that the foregoing description of specific examples of this invention is made by way of example only and is not to be considered as a limitation on its scope.

Whatis claimed is:

l. A centrifuge comprising:

a housing,

drive means mounted in said housing and including a rotatable longitudinal shaft having a central axis, a rotatablesupport member mounted on said shaft, a plurality of cells mounted on said support member at an acute angle to said shaft for centrifugal rotation with said support member about said central axis, peripheral means secured around each said cell for rotating each of said cells about its own respective axis on said support member, each said cell having a portion adapted for detecting the contents thereof,

an annular axially movable non-rotatable member selectively engageable with said peripheral means around said cells to rotate said plurality of cells si- I multaneously about their respective axes,

read out means disposed within said housing adjacent the path of said cells for detecting the contents of said cells, and v control means for sequentially positioning said cells adjacent said read out means.

2. The centrifuge ofclaim 1 wherein said control I means includes brake means for selectively stopping said cells.

3. The centrifuge of claim 2 wherein said control means includes means to selectively move said annular axially movable member into engagement with saidw.

cells.

4. The centrifuge of claim 3 wherein said peripheral means and said annular member are gears, and said housing includes a pivotable cover plate, said annular gear member being mounted on the inside of said coverplate, and said control means includes a solenoid mounted on said coverplate to axially move said annu lar gear member. I i I 5. The centrifuge of claim 3 wherein said read out means includes a light source on one side of said cell I,

and a photocell on the other side within said housing to detect light passing through said cell. 6. Thecentrifuge ofclaim 3 whereinsaid cell portio adapted for detecting said contents is removable. i

7. The centrifuge according to claim 3 wherein said cell includes I an envelope;

a filter in said envelope barring the passage of given 9. The centrifuge according to claim 8'in which said mixing means includes a magnetic element in each said cell movable about the axis of said cell upon rotation of said cell about its own axis, and a magnetmounted adjacent each said cell.

10. The centrifuge according to claim 8 further including spring biased grinding means responsive to @rotation of the cell about its own axis for grindingsolid substances. v I

11. The centrifuge of claim 8 wherein one of said chambers includes a window for insertion of substances there through.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION May 13, 1975 Elliott Beiman It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

PATENT NO.

DATED 9 INVENTOR(S) 0n the cover sheet, Item L77,"305-A White Ave. Northvale, NJ. 07646" should read l2 Dorotockeys Lane, 01d Tappan, New Jersey 07675 Signed and Scaled this Twenty-fifth Day Of September I 979 [SEAL] A nest:

% LUTRELLE F. PARKER Arresting Officer Acting Commissioner of Patents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3199775 *Nov 26, 1963Aug 10, 1965Drucker Kenneth GSedimentation rate centrifuge and method determining sedimentation rate
US3235173 *Jul 24, 1961Feb 15, 1966Olof Unger Hans PeterAgitating and/or fractioning centrifuge
US3439871 *Aug 16, 1967Apr 22, 1969Unger Hans Peter OlofCentrifuge for treating liquid and/or solid materials
US3583627 *Sep 4, 1969Jun 8, 1971Onslow H WilsonApparatus for the concentration of macromolecules and subcellular particles from dilute solutions
US3591098 *Feb 11, 1969Jul 6, 1971Robert C McshirleyDental amalgam preparing apparatus
US3635678 *Jun 13, 1969Jan 18, 1972Baxter Laboratories IncClot-timing system and method
US3645506 *Jul 30, 1969Feb 29, 1972Micro Metric Instr CoSampling supply device having magnetic mixing
US3684450 *Sep 14, 1970Aug 15, 1972Klemm KaiAutomatic apparatus and method for determining the packed cell volume of whole blood
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3966333 *Feb 3, 1975Jun 29, 1976Baxter Laboratories, Inc.Magnetic stirrer noise cancellation system
US4131369 *Jul 27, 1977Dec 26, 1978Manfred GordonCentrifugal homogenizer
US4162761 *Nov 30, 1977Jul 31, 1979The United States Of America As Represented By The Department Of Health, Education And WelfareFlow-through coil planet centrifuges with adjustable rotation/revolution of column
US4234317 *May 24, 1979Nov 18, 1980Analytical Products, Inc.Apparatus and method for fractionation of lipoproteins
US4244916 *Feb 5, 1979Jan 13, 1981Jean GuiganDevice for conditioning a sample of liquid for analyzing with internal filter
US4479720 *Sep 28, 1982Oct 30, 1984Mochida Pharmaceutical Co., Ltd.Apparatus for rotating reaction vessels in inclined posture
US4547340 *Jul 19, 1983Oct 15, 1985Kabushiki Kaisha Daini SeikoshaTreating vessel supported on rotatable turntable
US4812294 *Mar 2, 1987Mar 14, 1989Automated Diagnostic Systems, Inc.Specimen processing system
US4865810 *Sep 21, 1987Sep 12, 1989Kis Photo IndustrieSpectrophotometric analysis
US4883644 *Dec 9, 1987Nov 28, 1989Brandeis UniversityMicrotube vortexer adapter and method of its use
US4894345 *Oct 14, 1987Jan 16, 1990Ciba-Geigy CorporationHomogenizing, pumping, computers
US4927545 *Oct 6, 1988May 22, 1990Medical Automation Specialties, Inc.Method and apparatus for automatic processing and analyzing of blood serum
US4933291 *Sep 14, 1987Jun 12, 1990Eastman Kodak CompanyCentrifugable pipette tip and pipette therefor
US5104807 *Feb 16, 1989Apr 14, 1992Hitachi, Ltd.Intermittent rotating turntable; friction flange
US5133208 *Mar 29, 1990Jul 28, 1992Diesse Diagnostica Senese S.R.L.Apparatus for the preparation and execution of tests on the sedimentation rate of organic liquids and other
US5154896 *Sep 5, 1990Oct 13, 1992Mochida Pharmaceutical Co., Ltd.Useful for immunoassay, enzymetic reactions and reactions using DNA probe
US5167448 *Jun 15, 1990Dec 1, 1992Thera Patent Gmbh & Co.Mixing apparatus for pastes
US5171539 *Aug 2, 1990Dec 15, 1992Coombs David HApparatus for forming a continuous solution gradient
US5266273 *Jun 26, 1992Nov 30, 1993Coombs David HFor continuous processing
US5578201 *May 26, 1995Nov 26, 1996E. I. Du Pont De Nemours And CompanyApparatus for mixing liquids used in countercurrent multiphase liquid separation
US6074883 *Mar 2, 1998Jun 13, 2000Becton, Dickinson And CompanyUtilizing a system for fluid analysis; inserting blood into a carrier container, coupling a cap to the interior container to isolate it, coupling a removable float to cap and inserting into interior container, centrifuge
US6120429 *Mar 2, 1998Sep 19, 2000Becton, Dickinson And CompanyMethod of using inertial tube indexer
US6135940 *Dec 11, 1998Oct 24, 2000Becton, Dickinson And CompanyCentrifugally activated tube rotator mechanism and method for using the same
US6152868 *Mar 2, 1998Nov 28, 2000Becton, Dickinson And CompanyInertial tube indexer
US6302836 *Sep 22, 1999Oct 16, 2001Howard L. North, Jr.Method for partitioning blood and delivering clean serum
US6391264 *Feb 11, 1999May 21, 2002Careside, Inc.Cartridge-based analytical instrument with rotor balance and cartridge lock/eject system
US6436349Sep 5, 2000Aug 20, 2002Bayer CorporationFluid handling apparatus for an automated analyzer
US6531095 *Feb 11, 1999Mar 11, 2003Careside, Inc.Cartridge-based analytical instrument with optical detector
US6854348 *Aug 8, 2002Feb 15, 2005Shin-Etsu Chemical Co., Ltd.Method for counting foreign matter particles in vinyl chloride-based resin powder and apparatus system therefor
US7182912May 29, 2002Feb 27, 2007Bayer CorporationFluid handling apparatus for an automated analyzer
US7494814 *Jul 13, 2004Feb 24, 2009Separation Technology, Inc.Centrifuge with built-in sample tube reader
US7776263Oct 26, 2005Aug 17, 2010Abbott Laboratories Inc.Apparatus for providing homogeneous dispersions
US8182409Sep 9, 2008May 22, 2012The Western States Machine CompanyCentrifuge comprising magnetically coupled rotating basket
US8540078Apr 12, 2010Sep 24, 2013Biomet Biologics, LlcLiquid separation from adipose tissue
US20100314334 *Jun 16, 2009Dec 16, 2010Blomet Biologics, LLCLiquid Separation From Adipose Tissue
US20130042704 *Aug 17, 2011Feb 21, 2013Donald Van DuyneSample Processing Apparatus
DE2734488A1 *Jul 30, 1977Feb 9, 1978Manfred GordonZentrifugalhomogenisiervorrichtung
DE4230861A1 *Sep 15, 1992Mar 17, 1994Desaga Gmbh CVerfahren zum Mischen von Medien mit unterschiedlichem spezifischen Gewicht
DE8907335U1 *Jun 15, 1989Oct 18, 1990Espe Stiftung & Co Produktions- Und Vertriebs Kg, 8031 Seefeld, DeTitle not available
EP0106398A2 *Sep 29, 1983Apr 25, 1984Shell Internationale Research Maatschappij B.V.Centrifugal analyzer
EP0226518A2 *Oct 14, 1986Jun 24, 1987KIS PHOTO INDUSTRIE (société anonyme)Centrifugal device for analysing boxes
EP0940182A1 *Feb 19, 1999Sep 8, 1999Becton Dickinson and CompanyDisposable blood tube holder
EP0940186A2 *Feb 19, 1999Sep 8, 1999Becton Dickinson and CompanyInertial tube indexer
EP0940187A1 *Feb 19, 1999Sep 8, 1999Becton Dickinson and CompanyMethod for using disposable blood tube holder
EP0940188A2 *Feb 19, 1999Sep 8, 1999Becton Dickinson and CompanyMethod of using inertial tube indexer
EP1480751A2 *Feb 25, 2003Dec 1, 2004Cognis CorporationMethod and sampling device for detection of low levels of a property/quality trait present in an inhomogeneously distributed sample substrate
WO1990003834A1 *Oct 3, 1989Apr 19, 1990Medical Automation Special IncMethod and apparatus for automatic processing and analyzing of blood serum
Classifications
U.S. Classification73/61.66, 494/19, 494/11, 210/206, 366/273, 366/601, 210/325, 494/10, 494/81, 422/72, 422/561
International ClassificationB04B5/02, B04B5/04
Cooperative ClassificationY10S366/601, B04B5/02, B04B5/0414
European ClassificationB04B5/02, B04B5/04B2