Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3883074 A
Publication typeGrant
Publication dateMay 13, 1975
Filing dateJan 23, 1974
Priority dateFeb 18, 1972
Publication numberUS 3883074 A, US 3883074A, US-A-3883074, US3883074 A, US3883074A
InventorsJohn W Lambert
Original AssigneeJohn W Lambert
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Hydraulic oscillator and systems utilizing the same
US 3883074 A
Abstract
A hydraulic oscillator which produces a pulsed output from a steady flow input. The oscillator utilizes a rigid pressure chamber containing a charge of gas under pressure. A conduit passes through this chamber, and the conduit includes an inlet passage, an outlet passage, and, interconnecting and extending between these passages, a flexible, resilient, collapsible-walled tubular portion. The outside of this portion is fully peripherally exposed to gas pressure in the chamber. When the impedance and resistance to liquid flow through the inlet and outlet passages, the elasticity and dimensions of the tubular portion, and the gas pressure in the chamber, are appropriately selected, then a liquid stream entering the inlet passage at a suitable pressure relative to the chamber pressure, will emerge as a pulsating flow. This pulsating flow is particularly suited to many purposes, including the cleaning, irrigating and massaging of biological living tissue, the creation of cavitation in a flowing stream, and the momentary and cyclical reversal of the direction of flow in a generally forwardly flowing system. Systems for utilizing this oscillator for these purposes are disclosed.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Lambert May 13, 1975 HYDRAULIC OSCILLATOR AND SYSTEMS UTILIZING THE SAME [57] ABSTRACT [76] Inventor: g fi g gig Mmon A hydraulic oscillator which produces a pulsed output en a l from a steady flow input. The oscillator utilizes a rigid [22] Filed: Jan. 23, 1974 pressure chamber containing a charge of gas under pressure. A conduit passes through this chamber, and [2]] Appl 435635 the conduit includes an inlet passage, an outlet pas- Related US. Application Data sage, and, interconnecting and extending between 0 Division f Sen No. 227379, Feb 18' 1972 Pam these passages, a flexible, resilient, collapsible-walled 3,810,465, which is a continuation-in-part of Ser. No. tubular Portion The Outside of this Portion is fully P 110,094, Jan. 27, 1971, abandoned. ripherally exposed to gas pressure in the chamber. When the impedance and resistance to liquid flow [52] US. Cl. 239/101; 128/62 A; 128/66; through the inlet and outlet passages, the elasticity 239/102 and dimensions of the tubular'portion, and the gas [Sl] Int. Cl B05b l/08 pressure in the chamber, are appropriately selected, [58] Field of Search 128/62 A, 66, 224, 229; then a liquid stream entering the inlet passage at a 251/5; 239/99-102; 137/815, 624.14 suitable pressure relative to the chamber pressure, will emerge as a pulsating flow. This pulsating flow is par- [56] References Cited ticularly suited to many purposes, including the clean- UNITED STATES PATENTS ing, irrigating and massaging of biological living tissue, 1 995 424 3/1935 Guinness 28/660 X the creation of cavitation in a flowing stream, and the 3469582 9/l969 Jackson 251/5U X momentary and cyclical reversal of the direction of 3:576:294 4/197] Baldwin: 239/101 flow in a generally forwardly flowing system. Systems 3,759,289 9/1973 De Wall 251/5 x for utilizing this Oscillator for these P p are closed.

Primary ExaminerLawrence W. Trapp Attorney, Agent, or Firm-Donald D. Mon 11 Chums 7 Drawmg F'gures 20 get /2 l l l Z/ I I 2 2 L 2 /a J Z/a s.

HYDRAULIC OSCILLATOR ANI) SYSTEMS UTILIZING THE SAME CROSS-REFERENCE TO OTHER PATENT APPLICATIONS This application is a division of applicants copending United States patent application, Serial No. 227,379, filed February 18, 1972, originally entitled Hydraulic Oscillator and Systems Utilizing the Same, now entitled Pulsating Syringe", now United States patent No. 3,810,465, issued May 14, 1974, which in turn is a continuation-in-part of applicants now-abandoned United States patent application, Serial No. 110,094, filed January 27, 1971 entitled Oral Hygiene Device.

This invention relates to a hydraulic oscillator which converts a steady-flow stream of water into a pulsating stream, without the use of moving parts as that term is commonly used. It also relates to a system for providing a pulsating liquid flow of unique properties for various purposes, including the irrigation, cleansing or massaging of biological tissue.

It is known that, under certain circumstances, a steadily-flowing stream of liquid can be converted to a pulsating flow by passing it through a flexible tube, which tube is disposed inside a chamber maintained under gas pressure. However, until the instant invention, this phenomenon has been no more than a curiosity, and the subject of numerous incorrect speculations and abandoned experiments. By means of the instant invention, this phenomenon can now be employed for many purposes in which hydraulic oscillation is of utility, and in particular, can provide new systems with unexpected properties which are especially useful for the treatment of living biological tissue.

It is known that pulsating flows can provide improved cleaning of tissues. For example, J. W. Mattingly US. Pat. Nos. 3,227,158 and 3,393,673, issued Jan. 4, 1966 and July 23, 1968, respectively, relate to an oral hygiene device, and to a method for accomplishing objectives of oral hygiene utilizing the pulses of a pulsating liquid stream for cleaning around the teeth and gums. One disadvantage of existing devices for this function resides in their usage of various classes of motors, pumps, and precision parts in order to create the pulsating flow, and in the resulting high cost and shortterm functional life of the device.

Still another disadvantage of prior art devices for producing pulsed streams for cleansing biological tissues resides in what occurs if the outlet nozzle is fully or partially occluded. If the device is a constantdisplacement type, as many are, then the pressure of the stream will rise as high as necessary in order to overcome the obstacle and eject the liquid (subject, of course, to stalling out or breaking first). Partial occlusion of the exhaust orifice decreases its cross-section, and causes the pressure to rise and the stream to accelerate. This would occur in the case of the partial occlusion which would result when the high pressure partially unblocked the orifice, or in which the orifice was brought close to a blocking surface. In both events, an

the pressure itself will build no higher than that of the source, the velocity of the effluent stream will increase, and may do damage to the tissue.

In contrast, the partial occlusion of the outlet stream of this invention actually causes the system to throttle down to a mere dribble. There is no risk of damage to the tissues, because there is no jetting stream. Accordingly, a pulsating jet stream can be directed at the most sensitive of tissues, without caution for the placement of the nozzle, in the sure and certain knowledge that no jet stream will issue except at safe velocities and pressures. Thus, the oscillator according to this invention enables to be made a new pulsating-jet system with completely different output characteristics from those which have heretofore been known.

Another disadvantage of prior art pulsating jet systems resides in the fact that they cannot tailor" the shape and volume of the globules of the jet stream. In accordance with this invention, while still maintaining the same frequency (which itself is selectible), one can vary the liquid content (volume) and shape (length and cross-section) of the globules so as to impinge upon a surface a stream of globules of a shape and size which can optimally treat the surface.

Another object of this invention is to produce, when desired a momentary and cyclical reversal of the direction of flow in generally forwardly-flowing stream. This enables elements such as filters to be continuously backwashed. This is only one of many potential uses of this feature.

Still another object of this invention is to produce, if desired, cavitation in the outlet stream. There are many potential uses, besides that of study of the phenomenon, of considerable value.

A hydraulic oscillator according to this invention includes a rigid pressure chamber containing a charge of gas under pressure. A-conduit passing through and extending beyond the chamber has an inlet passage, an outlet passage, and between and interconnecting these two passages, and physically attached thereto, a deflectible resilient-walled-tubular portion whose outside wall is fully peripherally exposed to the said gas pressure in the pressure chamber. The pressure of the gas charge is related to the pressure of the liquid in the inlet passage, such that the liquid is driven out of the device at a velocity faster than it enters, and as a result, the fluid stream is broken up corpuscularly, resulting in a pulsating flow of timed, spaced-apart drops of water. The impedance and resistance to liquid flow through the inlet and outlet passages, the elasticity and dimensions of the tubular portion, and the gas pressure in the chamber, are selected such that a pulsating flow is created at the exit from the outlet passage.

A tissue-treating system according to this invention utilizes the foregoing oscillator in combination with a source of liquid under pressure connected to the inlet passage by a supply tube.

According to a preferred but optional feature of this invention, the properties of the source other than its pressure output, are substantially dynamically isolated from the tubular portion, whereby waves set up by the tubular portions contortions do not deleteriously interact with the properties of the pressure source.

The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings, in which:

FIG. 1 is an axial cross-section, partly in schematic notation, showing the presently preferred embodiment of the invention;

FIG. 2 is a cross-section taken at line 22 of FIG. 1;

FIG. 3 is a fragmentary axial cross-section schematically showing some facets of the operation of the device in FIG. 1;

FIG. 4 is a graph illustrating some features of the operation of the system;

FIG. 5 is a schematic elevation of another embodiment of the invention;

FIG. 6 is an enlarged portion of FIG. 5, partly in axial cross-section; and

FIG. 7 is a fragmentary schematic view of an accessory which may optionally be used with this invention.

In FIG. 1 there is shown an oral hygiene device, which cleanses, massages and irrigates the tissues around the teeth. It includes a grip 11 for the user to hold. The grip has acentral opening 12 therein to receive a pressure chamber 13. The pressure chamber is rigid-walled. It includes an upstream end plate 14 and a downstream end plate 15. Inlet and outlet 16, 17 respectively, pass through plates 14 and 15. The end plates are joined by means such as brazing, soldering or welding to peripheral wall member 18 to form the rigid pressure chamber.

End plates 14 and include shoulders 19, 20 respectively, inside the pressure chamber. A tubular portion 21 is attached to these two shoulders inside the pressure chamber. It is spaced from the wall of the chamber, and is fully peripherally exposed to its pressure.

A band 21a binds the tubular portion to the shoulder on the upstream end plate. The downstream end of the tubular portion is stretched over the shoulder of the downstream end plate, but not bound thereto. The tubular portion is deflectible and resilient, and its relaxed inner diameter is smaller than the outer diameter of both of the shoulders. The springback force of the tunormal operating conditions, but it is preferable for the upstream end to be bound, such as by band 21a, because the pulsating forces at the upstream end may deflect the tube enough to cause leakage under certain conditions at that end.

At the time of manufacture, gas can be forced into the tubular portion under sufficient pressure to overcome the unbound seal, thereby to stretch that end of the tubular portion and leak past it into the pressure chamber so as to charge the chamber to its desired pressure level. When this elevated pressure is relieved in the tubular portion, the seal is restored by the forces derived from the gas pressure chamber and from the elastic springback of the material so as to keep the gas contained in the pressure chamber. Thus the downstream end of the tubular portion acts as a valve to admit and to retain chamber pressure. The approximate pressure can be determined by measuring the water pressure required to open the tubular portion to flow after it has been collapsed by the gas pressure.

The tubular portion, being flexible, and resilient, is deflectible in the sense of being collapsible. The term collapsible" does not necessarily mean collapsed flat so as completely to close the tubular portion, although it includes this condition. It means that the tubular portion has relatively little resistance to bending, being relatively thin or relatively soft, so it can buckle, bend,

bular portion will be sufficient to maintain a seal under pinch, and undergo like contortions. Without fluid pressure inside the tubular portion ofa value somewhat above that of the chamber pressure, the gas pressure in the chamber will tend to close it. Sufficient pressure inside the tubular portion tends to open the tube, thereby to permit liquid to flow through it. The dimensional and pressure relationships discussed below will result in a cyclical pulsating or periodic increase and decrease in lateral cross-section area along the length of the tubular portion. A fluctuation in liquid flow will be generated as a consequence of the contortions of the tubular portion when liquid at a correct pressure relative to the gas pressure flows through the tubular portion, when the remainder of the system is also properly proportioned.

The tubular portion separates the gas in the chamber from the liquid in the tubular portion, thereby allowing the gas pressure to be exerted on the liquid, but without mixing them.

An upstream pressure compensating orifice 22 is formed in an orifice plate to be adjacent to the water supply 24, which supply might be such as a faucet, a tank or a pump. This orifice enables a given system at a given pressure to used with a wide range of water system pressures, still producing the desired pulsating output.

The water supply is sometimes referred to as a pressure source. The term inlet passage means the passageway extending from the source of pressure to the end of port 16 facing into the tubular portion. In FIG. 1 this includes the bore 16 in the metal end plate closest to the supply plus the lumen of the hose to its junction with orifice plate 23. The term outlet passage means the passageway including bore 17, plus the lumen of a discharge tip 27. Thus these terms comprehend the passageways which feed to and discharge from the tubular portion. The inlet and outlet passages plus the tubular portion are sometimes referred to as a conduit.

A discharge tip 27 bounds the downstream end of the outlet passage. In order that it may readily be removed and attached, this tip has a taper 28 on one end adapted to enter a matching taper 29 in end plate 15. Two O-rings 30, 31 are seated in respective grooves 32, 33 in the wall of the passage, and a shoulder 34 on the tip is adapted to pass beyond 0- ring 30 to aid in retention. The force generated by pressing taper 28 against the O-rings also retains the tip. The tip has a delivery tube 35 which terminates at a discharge nozzle 36.

The fluttering tube effect utilized herein is relatively unknown at the present time. However, reference may be made to the following sources for some details concerning it, even though many of these details are incorrect, misleading, and insufficient to guide one to the means for securing the objectives of this invention.

Rodbard, S. and Saiki, I-I.: Flow-through Collapsible Tubes, American Heart Journal 46: 715, 1953 and Lambert, J. W.: Flutter from Steady Driving Pressures: Elementary Theory, Proceedings of the American Society of Civil Engineers, Engineering Mechanics Division Meeting, Washington, DC, Oct. 13, 1966.

IBM Technical Disclosure Bulletin, Vol. 13 No. 5, October 1970, entitled Sonar Sound Generator by L. J. Andrews and J. W. Lambert.

Briefly stated, with the pressure relationships stated above, namely with chamber pressure below that of the pressure at the inlet passage, the fluttering tube accelerates the water such that its linear exit velocity is greater than its linear inlet velocity. The tendency is to empty the device faster than it can be filled, and as a result the flow becomes corpuscular, the tubular portion changing its lateral cross-section area in the process. In fact, it may even close between drops, and open to permit the flow of a drop. With some relationships of pressures and dimensions, the stream may not become a succession of separate drops, but instead one of a continuous stream with an undulating cross-section. With some other relationships the flow in the outlet passage reverses, and in others, some part of it cavitates.

FIG. 3 schematically shows the general mode of operation of the flexible tubular portion. Without liquid pressure in the tubular portion, it collapses and constricts, sometimes closing nearly completely. When sufficient liquid pressure is exerted to open the tubular portion against the gas pressure, a peculiar wave motion begins to occur in the wall of the tube. Essentially, it involves a progression of waves, which can be the alternating filling and emptying of the tubular portion, with waves traveling back and forth along the tubular portion. The tubular portion is shown at one of its instantaneous positions in FIG. 3, the portion tapering inwardly from the inlet end to a point 50 where it is almost closed. Then it tapers outwardly again to the discharge end. In segment 51, there is a breathing motion shown by the two sets of dashed lines, and in segment 52, another similarly shown breathing motion.

It appears that there is a pulsating flow in segment 51 which forces liquid past point 50 at its peak, and is retarded at point 50 by closure or near closure of the tube at that point at lower pulse pressures. However, segment 52 accelerates the corpuscle of liquid which passed point 50 before it closed down, and the discrete drop appears to form in this region. The inertia of the drops, and the continuing pressure pulses cause the stream to discharge corpuscularly.

It is a feature of this oscillator system, that if the discharge orifice is partially occluded, the velocity of the output pulses of liquid is diminished. With sufficient occlusion, oscillation stops and the system reverts to a steady, very low velocity flow. This low velocity is much less than would be the velocity created by the same pressure source and conduitry without the choking effect of the tubular portion.

The basis for this safety factor will be understood from a study of FIG. 4, which is a graph which plots as the abscissa the location along the system of the elements, and as an ordinate, the static pressure measured at points along the system while the system is flowing. If the system is plugged and flow stops, then of course all points rise to the source pressure.

There is a source pressure 65 feeding through the inlet passage to the chamber, shown as element 66 in FIG. 4. There is a critical chamber pressure 67, (Per). This critical pressure is ideally the fluid static pressure within the portion at steady flow. This would be measured by starting flow of liquid through the system without any pressure in the chamber, and gradually building up the chamber pressure until oscillation started. That pressure when it started is P Oscillation will occur at all chamber pressures higher than P and lower than P The range R above this level represents chamber pressures, P at which oscillation will occur. Point 68 represents an outlet pressure such as atmosphere. It will be raised by occlusion, and point 69 shows one such level, which occurs as a consequence of partial occlusion. Now notice that the differential pressure driving liquid into the oscillator is only P P (supply pressure minus chamber pressure), and this is very small. Further the pressure difference P P which is much diminished from P,- P due to the occlusion is the only pressure available for acceleration (if any) and hence with occlusion, high, jetting, exit velocities cannot occur. With complete occlusion the entire system of course reverts to a steady source pressure with the occluding force limited to source pressure times the small area of the discharge orifice, but the static pressure at the opening will not abrade, because there is no flow. This is demonstrated in FIG. 4.

For biological cleansing purposes the chamber pressure will be set relatively close to inlet pressure, thereby:

l. Causing a relatively low rate of inlet flow to the oscillator;

2. Causing a relatively large pressure drop for acceleration of cleansing drops; and

3. Limiting the flow in case of partial occlusion of the discharge.

One of the problems inherent in previous attempts to make hydraulic oscillators of this type has been that oscillation has either been impeded, totally frustrated, or the output rendered unstable and impure in wave'form by inter-reaction between the pressure source and the tubular portion. Some efforts have been made to overcome this problem, but without significant success, and definitely without a solution to the problem which would enable an oscillator to be made which does have a pure output of desired wave-form characteristics and which will continue to oscillate steadily. Similarly, other design characteristics were unknown which could have assisted in the design.

Primarily, a pure output in the sense of a steady-state ocillation of pulses of uniform shape, is derived from a substantially steady flow rate to the tubular portion. This requires much more than just a non-pulsating source, because the pressure pulsations of the tubular portion can, unless isolation is provided for the supply from the tubular portion, so effect the input stream that it has fluctuations in its flow rate, and these interfere with the frequency of the tubular portion, and the behavior of the system becomes variable from cycle to cycle, a situation which is both unmanageable and unpredictable.

It has been found that the problems derived from the source are solved by providing a sufficiently high impedance to flow upstream of the tubular portion. The dimensions of impedance are:

length L cross-section area A importance, but other features are, the ratio might even be less than one. There are pressure variations in the tubular portion at its end adjacent to the inlet passage. If the impedance of the inlet passage is great enough, these downstream fluctuations will have no significant effect on the steady rate of flow of the liquid into the tubular portion.

The resistance of the inlet passage is of importance because, over a wide range of supply pressures, it limits the range of stream velocities, and thereby reduces frequency range with varying supply pressures. Orifice plate 22 performs that function. Similarly, the resistance of the inlet passage inter-acts with the pressure difference P P,. to establish the average flow rate, which in turn affects the times t and t in the equations below.

Some additional design considerations of this system are as follows:

OUTPUT FREQUENCY The frequency,f, is more easily discussed in terms of the period T of one cycle which is 1 f. The period of one cycle is the sum of at least three individual times 1,, t and t thus: f t is the time required to accelerate the liquid in the discharge line a certain amount. This time is a function of the pressure difference between the chamber and the outlet, and the impedance (L/A) of the outlet passage. The actual formula for t, is the solution of a complex nonlinear differential equation, and also involves the elastic properties of the flexible tube.

Times t and are associated with the times required for two different waves to traverse the flexible tube. One of these waves is an accelerating velocity wave in the collapsed portion of the tube, and the other is a decelerating velocity wave in the collapsed portion of the tube. The time of propagation of each of these waves is related to the local fluid velocity within the flexible tube. Thus the design parameters controlling t and are the inlet pressure difference (P P the inlet passage resistance, and indirectly the outlet passage resistance. v

Thus in selecting frequencies, if t, is large compared to and t frequency can be selectibly controlled by chamber pressure and by the length of the discharge pipe. On the other hand if t and 1 are larger compared to 1, frequency can be selectibly controlled by varying inlet pipe length, source pressure and/or chamber pressure.

As general statements, the following pertain for a given set up:

a. An increase in P,. increases the frequency if I, is

large compared to both of 1 and 1:, b. An increase in length of the outlet passage decreases the frequency; c. An increase in inlet passage length decreases the frequency; d. An increase in P (source pressure) increases the frequency; and e. An increase in chamber pressure (PC) decreases the frequency if 1 and t are both large compared to I,

DROP SHAPE AND VOLUME The gross size of each drop is primarily determined by the general plumbing, and by the frequency generated.

The shape of the drops can be varied by changing either the chamber pressure or the inlet pressure to the tubular portion.

One example of dimensions for an oral hygiene device, which, at a supply pressure upstream of orifice 22 between about 75 psig to 120 psig will produce a pulsating stream pulsating at about 20 cycles per second, is as follows:

Gas pressure (nitrogen or other inert gas) in the chamber 58 psig.

Upstream passage l6: 3 inches in length, inner diameter: 0.06 inches.

Downstream passage 17 plus conduit 35 in tip 27: 4 inches in length, inner diameter: 0.06 inches.

Orifice 22: 0.040 inches diameter.

Tubular portion 21: Unsupported length: 15/16 inches; wall thickness about l/l6 inches; relaxed inner diameter: 3/16 inches; preferred material; neoprene rubber or silastic (silicone) rubber. Further as to the material for tubular portion 21, it appears that an elastomeric property is to be sought. The elasticity of the portion appears to affect the frequency, and of course the material must be flexible, and the neoprene and silastic rubbers would be selected from those of these types which have the extensibility and return to original length typical of elastomers.

Shoulders 19, 20: Diameter: 3/8 inches.

Discharge nozzle 36: Diameter: 0.040 inches; length: A inches.

FIG. 5 shows another system for washing biological tissue. This system is a douche. It has a tank which drains into a hose (inlet passage) 71. An off-on valve 72 of any desired type is located in the hose. A nozzle (outlet passage) 73 has ports 74 to discharge a pulsating stream.

An oscillator 75 is connected to the inlet passage and outlet passage. It includes a rigid case 76 with a pressure chamber 77 in which a collapsible tubular portion 78 of flexible material is enclosed. It interconnects the inlet and outlet passages as defined in the device of FIG. 1. The tubular portion and passages are together sometimes referred to as a conduit. In the illustrated embodiments, and generally with the usage of this invention, the conduit will be cylindrical, sometimes with steps between adjacent different diameters.

This system, properly proportioned and charged with gas, will produce a pulsating output of water. The maximum inlet pressure is limited by the length of the hose, because this limits the elevation of the water bag relative to the oscillator. The system will oscillate when there is a pressure head above the oscillator of at least 11 inches of water. 1

As an example of a workable system, the following 1% inches The hose forming the inlet passage is semi-rigid plastic hose. The outlet tip is a hard plastic.

The material of the tubular portion is latex rubber with a modulus of elasticity of about 100 psi.

A two quart tank will empty in about 90 seconds, the frequency of oscillation being about cycles (pulses) per second.

There will be applications wherein it is desirable to have a pulsating flow somewhere in a system, but it will be necessary to remove the pulsations and return the stream to an unpulsed flow, without going through a sump. For this purpose. and as shown in FIG. 7, the outlet passage 80 from any of the aforementioned system may be passed by a Helmholtz resonator 81. A typical example is a pressure dome having a chamber 82 with a flexible diaphragm 83 extending across it. Gas under pressure is charged into the top of the chamber, and fluctuations in the stream are absorbed by this device.

As to the interdependence of the various proportions, dimensions, and properties of materials, some experimentation must be anticipated, because knowledge of this phenomenon is at present very incomplete.

However, by starting with the considerations. materials and dimensions given above, one can, without undue experimentation, scale the device to other sizes and frequencies.

In summary, by appropriate selection of the impedances and resistances of the inlet and outlet passages, of the dimensions and modulus of elasticity of the tubular portion, and of the supply and chamber pressures, one can arrange for various kinds of pulsed outputs. The impedances of the inlet and outlet passages are of importance because of their effects on the capacity of the tubular portion to receive and expel liquid from the system. The impedance of the inlet passage serves dynamically to isolate the tubular portion from the supply so they do not affect each other.

The dynamic impedance of the outlet passage is important as to frequency, drop shape, drop volume, and the phase relationships between pressure levels within a single cycle. With appropriate relative selection of outlet impedance, there can even be a reversal of flow in the outlet passage between drops. This is an ideal relationship for an oral hygiene device, because the drops are so sharply separated, and also is ideal for backwash systems wherein cyclical reverse flow in a generally forwardly moving stream is desirable. This reversal of flow will be found to occur principally when the unstressed diameter of the tubular portion is larger than the diameter of both the inlet passage and the outlet passage.

Similarly. cavitation can be induced, which will in these systems provide a laboratory tool for the study of l 7 ,the effects of cavitation in a traveling stream. and can provide for mixing and vaporization of vaporizable mixtures such as liquid fuels.

Further, this oscillator can be used as a ditherer to keep a stream live, and to exert mechanical forces which can overcome stick-slip tendencies in associated mechanical systems.

This oscillator will function with any liquid, and while its principal usage is expected to be with water, it can also be used for milk, oils, fuels, solvents, and other liquids in general, wherever an oscillating flow is desired.

This invention thereby provides a basic oscillator, the properties of whose output can readily be sclectibly varied. The systems using it have safety features useful when biological tissues are being irrigated, cleansed or massaged. Also, the characteristics of the output can be rendered pure in wave-form, and made independent of the dynamic peculiarities of the pressure source.

This invention is not to be limited by the embodiments shown in the drawings and described in the description, which are given by way of example and not of limitation, but only in accordance with the scope of the appended claims.

I claim:

1. A hydraulic oscillator for providing a pulsating outlet flow from a steady inlet flow, comprising: a rigid pressure chamber; a charge of gas contained in said chamber; a conduit passing through and beyond said chamber, said conduit comprising an inlet passage, an outlet passage, said passages having the properties of impedance and resistance to liquid flow, and a flexible, collapsible-walled tubular portion extending between and interconnecting said passages, that part of the tubular portion which extends between the passages having an outside wall which is fully peripherally exposed to the gas in the chamber, the inlet passage being adapted for connection to a source of liquid under supply pressure, the impedance of the inlet passage being sufficiently large so as substantially to isolate the tubular portion dynamically from the pressure source, the gas pressure in the chamber being above that critical level at and above which oscillation will always occur, and less than the pressure of the source, and the resistance and dynamic impedance of the outlet passage beingsuch as to secure a cyclical output of the desired frequency, phase relationship between pressure levels within a single cycle, and shape and volume of the drops in the output stream.

2. A hydraulic oscillator according to claim 1 in which the impedance of the outlet passage is so selected relative to the impedance of the inlet passage, and the physical properties and dimensions of the tubular portion are so selected that liquid flow in the outlet passage is alternatively forward and backward in a generally forwardly flowing stream.

3. A hydraulic oscillator according to claim 2 in which the inside diameter of the tubular portion in its relaxed condition is greater than the inside diameter of the inlet passage.

4. A hydraulic oscillator according to claim 1 in which a Helmholtz resonator is connected in the outlet passage to absorb pulsating energy.

5. A hydraulic oscillator according to claim 1 in which the source pressure and the gas pressure are selected so as to produce a fluid velocity through the tubular portion and into the outlet passage and in which the impedance in the outlet passage is selected to be sufficiently high, so that the velocity of the liquid in the outlet passage remains sufficiently high that cavitation occurs when a wave of lesser flow follows it.

6. A hydraulic oscillator according to claim 1 in which the gas pressure and the supply pressure are selected to be sufficiently close to each other in magnitude that, when the outlet passage is partially oc- 1 1 eluded, flow through the system occurs at a relatively small rate as a consequence of the relatively small difference between the said two pressures.

7. A hydraulic oscillator according to claim 1 in which the resistance of the inlet passage is selected such as to limit the range of flow velocities which can occur through the inlet passage as a consequence of variations in the supply pressure.

8. A method of charging a pressure chamber'in a hydraulic oscillator of the class which includes a rigid pressure chamber enclosing a resilient tubular portion of a conduit having one end stretched over a shoulder disposed in said chamber comprising closing the conduit and injecting into it gas at a'prcssure sufficient to stretch the tubular portion away from the shoulder thereby to permit gas flow into the chamber, and releasing pressure in the conduit, thereby permitting the tubular portion to shrink back upon the shoulder and, acting as a valve, to hold the gas in the chamber.

9. The method of claim 8 in which liquid pressure is thereafter exerted in the tubular portion and the pressure required to secure liquid flow through the tubular portion is measured to determine the gas pressure in the pressure chamber.

10. A hydraulic oscillator according to claim 1 in which the inlet and outlet passages terminate at shoulders located inside the pressure chamber, over which shoulders the tubular portion is stretched, at least one end of the tubular portion being held to the respective shoulder only by the springback force of the material of the tubular portion, whereby gas may be injected into the pressure chamber by exerting sufficient force inside the tubular portion 'to cause the gas to leak past that shoulder.

11. A hydraulic oscillator according to claim 10 in which the tubular portion is made of an elastomeric material.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,881LO74 Dated May 13, 1975 Inventor(s) JOHN W. LAMBERT It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below: [76], line 1 after "Milton" insert --Drive-- Col. 4, line 8 change "pulsating or periodic" to --(i.e.,

"pulsating" or periodic)-- Col. 4, line 21 change "to be" to --23--- C01. 4, line 24 after "given" insert --gas-- Col. 4, line 24 after "to" insert --be-- Q Col. 4, line 28 'source."' should read --source".--

Col. 4, line 39 '"conduit."' should read --"conduit".--

Col. 5, line 53 "while the system is flowing" should be underlined Col. 6, line 40 "ocillation" should read --oscillation-- Col. 8, line 47 "'conduit."' should read --"conduit".-

Col. 9, line 20 "tem" should read --tems-- Col. 9, line 65 '"live," should read --"live",--

Signed and Scaled this Eighth Day of March 1977 O [SEAL] Arrest:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner uj'Parems and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1995424 *Dec 7, 1931Mar 26, 1935Lee Guinness Kenelm EdwardReciprocating pump
US3469582 *Jan 24, 1968Sep 30, 1969Jackson Richard RobertHand-held surgical airflow instrument
US3576294 *Feb 26, 1969Apr 27, 1971Bendix CorpFluidic cleansing device
US3759289 *Sep 27, 1972Sep 18, 1973Wall R DePerfusion safety valve
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4512514 *Oct 7, 1983Apr 23, 1985Elcott Teleb MFluid pulsation apparatus
US4526575 *Sep 30, 1982Jul 2, 1985Conrad RoblejoHydropropulsion catheter and method for removing urinary blockages
US4583531 *Mar 2, 1984Apr 22, 1986Terry M. MattchenHand-held pulsating jet lavage
US4642833 *Jun 28, 1985Feb 17, 1987Coxwold (Proprietary) LimitedValve assembly
US4742593 *Jul 1, 1986May 10, 1988Coxwold (Proprietary) Ltd.Valve member for water interruption pool cleaner
US4753260 *Aug 20, 1981Jun 28, 1988Gibbs Alan HFluid device
US4766931 *Mar 26, 1987Aug 30, 1988Chauvier Daniel J V DSubmerged valve
US5082444 *Apr 10, 1989Jan 21, 1992Rhoades Clark JPortable pressurized pulsed oralcavity cleaner
US5095893 *Apr 23, 1991Mar 17, 1992Rawden Jr Walter JFaucet connected oral cleaning device with pulsating flow
US5470305 *Apr 19, 1993Nov 28, 1995Stryker CorporationIrrigation handpiece with built in pulsing pump
US5507436 *Feb 24, 1995Apr 16, 1996Ruttenberg; GideonMethod and apparatus for converting pressurized low continuous flow to high flow in pulses
US5718668 *Nov 17, 1995Feb 17, 1998Stryker CorporationIrrigation handpiece with built in pulsing pump
US6022329 *Jan 20, 1998Feb 8, 2000Stryker CorporationIrrigation handpiece with built in pulsing pump
US6213970Dec 19, 1996Apr 10, 2001Stryker CorporationSurgical suction irrigation
US6623445Oct 2, 2000Sep 23, 2003Stryker CorporationSurgical suction irrigator
US6652488Sep 11, 2000Nov 25, 2003Stryker CorporationSurgical suction irrigator
US6746419Dec 14, 1999Jun 8, 2004Stryker CorporationIrrigation handpiece with built in pulsing pump
US7144383May 4, 2004Dec 5, 2006Stryker CorporationSurgical/medical irrigating handpiece with variable speed pump, integrated suction and battery pack
US7297133Aug 26, 2003Nov 20, 2007Stryker CorporationSurgical suction irrigator
US7481791Oct 14, 2003Jan 27, 2009Stryker CorporationSurgical suction irrigator
US7976529 *Nov 6, 2010Jul 12, 2011Skylab Developments Inc.High flow volume nasal irrigation device and method for alternating pulsatile and continuous fluid flow
US8657794 *Oct 8, 2010Feb 25, 2014Skylab Development, Inc.High flow volume nasal irrigation device and method for alternating pulsatile and continuous fluid flow
US20110087174 *Oct 8, 2010Apr 14, 2011Mark CarpenterHigh Flow Volume Nasal Irrigation Device and Method for Alternating Pulsatile and Continuous Fluid Flow
DE3447650A1 *Dec 28, 1984Jul 25, 1985Andries Johannes StoltzVentilanordnung und hiermit versehener schwimmbeckenreiniger
DE10359112A1 *Dec 17, 2003Jul 21, 2005Voith Paper Patent GmbhSystem to clean a curtain coater jet, to apply a liquid coating to a moving wet/dry web, uses pulses at a higher pressure level on the coating medium at regular intervals
EP0548072A1 *Sep 10, 1990Jun 30, 1993Developed Research For Irrigation Products, Inc.Method and apparatus for converting pressurized low continuous flow to high flow in pulses
WO2002051331A1Dec 20, 2001Jul 4, 2002Le Bihan AlainPortable device for cleaning teeth
WO2010055522A1 *Nov 17, 2009May 20, 2010Dan MeklerMethods and apparatus for water delivery and systems using same
WO2013098691A1 *Dec 13, 2012Jul 4, 2013Koninklijke Philips Electronics N.V.Oral care appliance with hydrodynamic cavitation action
Classifications
U.S. Classification239/101, 601/160
International ClassificationA61M3/02, B05B1/08, A61C17/028, A61C17/02
Cooperative ClassificationA61C17/0214, B05B1/083, B05B1/086, A61C17/028, A61M3/0275
European ClassificationB05B1/08A3, B05B1/08A, A61M3/02G, A61C17/02F, A61C17/028