Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3885939 A
Publication typeGrant
Publication dateMay 27, 1975
Filing dateApr 25, 1974
Priority dateApr 25, 1974
Publication numberUS 3885939 A, US 3885939A, US-A-3885939, US3885939 A, US3885939A
InventorsArvel Dean Markum
Original AssigneeGen Dynamics Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cryostat control
US 3885939 A
Flow control for a cryostat in which the refrigerant flow rate is controlled by adding a contaminant to the refrigerant.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Markum 1 May 27, 1975 CRYOSTAT CONTROL 3,413,821 12/1968 Villaume ct a1. 62/514 3,415,078 1 l L' [75] Inventor: Arvel Dean Markum, San Juan 2/ 968 62/5l4 Capistrano, Calif. Assignee? General y f Corporatiml, Primary Examiner-William F. O'Dea Pomona Cahf' Assistant Examiner Rona1d C. Capossela [22 Filed: p 25 1974 Attorney, Agent, or FirmAlbert J. Miller; Edward B.

Johnson [21] Appl. No.1 464,078

[52] US. Cl. 62/474; 62/502; 62/514;

' 137/13; 165/40 57 AB [51] Int. Cl. F25b 43/00 [58] Field of Search 1. 137/13; 165/40; 62/85,

62/114, 195, 474, 475, 502, 511, 514 Flow control for a cryostat 1n wh1ch the refngerant flow rate is controlled by adding a contaminant to the [56] References Cited refngeram- UNITED STATES PATENTS 3,270,756 9/1966 Dryden 137/13 1 Claim, 3 Drawing Figures 1 6 REFRIGERANT Z6 -1 MlXlNG CHAMBER SUPPLY AVE. STEADY STATE TEMP.

PATENTEDi-im' 27 5 SUPPLY REFRIGERANT CHAMBER 1 CRYOSTAT CONTROL BACKGROUND OF THE INVENTION Joule-Thomson effect cooling devices, commonly referred to as cryostats, as well known in the art to produce cryogenic temperature levels. The cryostats may be employed to maintain radiation sensing devices at the extremely low temperatures required. Examples of conventional Joule-Thomson effect cryostats maybe found in U.S. Pat. Nos. 2,991,633, 3,095,711, 3,353,371, 3,415,078 and 3,431,750. I

In order to achieve a rapid initial cool-down, large coolant or refrigerant flows are required in conventional cryostats. Only a fraction of this cool-down flow is, however, needed for steady stateoperation of the cryostat. Thus, a cryostat designed to meet the initial cool-down flow requirements would be inherently inefficient during steady state operation, while a more efficient steady state flow design would have an excessively long cool-down period.

' Since in many cryostat applications the coolant or refrigerant flow is limited by the available supply, techniques have been developed to provide sufficient cooldown flow without providing excessive steady state flow. While certain self-regulating flow control mechanisms have been developed for cryostats, these mechanisms, which have been either thermal-mechanical, electro-mechanical, or chemical in nature, have been rather complicated, overly complex and often prone to operational difficulties. All rely upon external forces, thus consuming energy such as electrical power and all include at least some moving parts. In some cases the basic cooling characteristics of the cryostat have been altered by the flow regulating mechanism.

SUMMARY OF THE INVENTION The invention is directed to a cryostat flow control in which the refrigerant flow rate is controlled by the addition of a contaminant or foreign fluid to the refrigerant. After initial cool-down, the contaminant, having a higher solidification point than the refrigerant, will solidify in the cryostat and cause a partial or complete refrigerant flow stoppage. When the refrigerant flow is thus reduced or stopped, refrigeration slows or ceases with a resultant rise in cryostat temperature which in turn then melts the solidified contaminant. The refrigerant flow will then resume until the temperature is again reduced to freeze up or solidify the refrigerant contaminant.

The alternate freeze-up and melting cycle achieves a greatly reduced average steady state refrigerant flow rate.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of a cryostat utilizing the control of the present invention.

FIG. 2 is an enlarged section view of a portion of the heat exchanger tube of the cryostat of FIG. 1.

FIG. 3 is a graphical representation of the operational cycle of a cryostat having the flow control of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The cryostat control of the present invention is applicable to any type of cryostat (counterflow, regenerative, Joule-Thomson expansion, etc.). For purposes of illustration, a Joule-Thomson expansion cryostat 10 having a coiled tubing heat exchanger 12 and liquid refrigerant reservoirv 14 is illustrated in FIG. 1. A high pressure refrigerant gas supply 16 provides refrigerant to the heat exchanger 12 through a control valve 18. The refrigerant cooled in the inlet side of the heat exchanger 12 is expanded through an expansion valve 20,

I or alternately through a nozzle or orifice, and collected in the liquid refrigerant reservoir 14. The liquid refrigerant is then discharged from the cryostat 10 through a refrigerant exhaust 22 after passing through the other side (outlet side) or heat exchanger 12.

Initially, the refrigerant gas is at the same temperature as its surroundings. When admitted to the cryostat 10 it passes throughthe inlet side of the heat exchanger 12 and out from the heat exchanger 12 through the expansion valve or nozzle 20. As the refrigerant expands through the expansion valve 20, it drops in temperature because of the Joule-Thomson effect. This lower temperature refrigerant is then forced through the outlet side of the heat exchanger 12 and thereby decreases the temperature of the incoming refrigerant. This incoming refrigerant then expands through the expansion valve 20 and drops to an even, lower temperature than the preceding increment of refrigerant. This process continues until such time that the refrigerant becomes liquefied at the expansion nozzle 20. The system then remains stabilized at the boiling temperature of the refrigerant.

In order to effect control of the cryostat 10 in accordance with the present invention, a gaseous contaminant or foreign fluid is'introduced into the refrigerant from a contaminant supply 24. A mixing chamber 26 may be provided to uniformly distribute or disperse the contaminant vapor throughout the refrigerant supplied to the cryostat 10. Alternately other methods of agitation, stirring, or heating may be utilized for this purpose.

As illustrated most clearly in FIG. 2, once cool-down has been achieved, the contaminant 30, having a solidification temperature higher than that of the refrigerant, will precipitate out of solution from the refrigerant and freeze-up. This will reduce and eventually block the flow of refrigerant through the heat exchanger tube 28. As the refrigerant flow is reduced, refrigeration slows or ceases until the cryostat temperature rises and melts the solidified contaminant. Refrigerant flow then resumes and decreases the cryostat temperature until the contaminant blockage occurs again. The cycle of alternate freeze-up and melting occurs indefinitely until the refrigerant supply is stopped. The operation of the cryostat is graphically illustrated in FIG. 3.

The type of contaminant, ratio of contaminant weight to refrigerant weight and the type of refrigerant can be varied to accommodate any desired cooling cycle and cryostat configuration. The maximum temperature reached during cycling, and the frequency of the cycling is dependent upon the percentage by weight of contaminant in the refrigerant gas supply.

In a 0.118 inch diameter, 1 inch long, finned tube cryostat, having a gas-flow rate of 1.1 standard liters per minute of 16% Freon-l4 and 84% Freon-23 at a supply pressure of 500 pounds per square inch, 10 parts per million by weight of water vapor as a contaminant in the refrigerant will cycle the refrigerated tip of the cryostat from 250 Kelvin to Kelvin at about 10 second intervals. While the exact location of the refrigerant flow blockage was not determined, it is believed to occur near or at the expansion nozzle.

Any desired coolant cycle can be tailored by proper selection of the refrigerant and contaminant in the proper proportions. A list of possible cooling cycles is provided below.

Temperature Range Refrigerant Contaminant l95- 275K Freon 23 Water Vapor 145 275K Freon 14 Water Vapor 145 l65K Freon 14 Xenon l 12 165K Methane Xenon 88 120K Argon Krypton 78 120K Nitrogen Krypton 78 95K Nitrogen Methane ever, the cryostat operating temperature is achieved, the cyclical freeze-up will significantly reduce the flow of refrigerant flow through the cryostat.

While specific embodiments of the invention have been illustrated and described, it is to be understood that these embodiments are provided by way of example only and that the invention is not to be construed as being limited thereto, but only by the proper scope of the following claims.

What I claim is:

l. In combination:

a cryostat including a coiled tube heat exchanger;

a high pressure refrigerant gas supply to provide a refrigerant to said cryostat, said refrigerant comprising a mixture of 16% Freon-l4 and 84% Freon-23; and

means to introduce a contaminant into the refrigerant for said cryostat, said contaminant comprising 10 parts per million by weight water vapor, said contaminant having a solidification point above that of the refrigerant to alternately freeze and melt in the coiled tube heat exchanger of said cryostat to reduce the flow of refrigerant through said cryostat.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3270756 *Apr 9, 1963Sep 6, 1966Dryden Hugh LFluid flow control valve
US3413821 *Feb 23, 1967Dec 3, 1968Air Prod & ChemCryogenic refrigeration for crystal x-ray diffraction studies
US3415078 *Jul 31, 1967Dec 10, 1968Gen Dynamics CorpInfrared detector cooler
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4166365 *Oct 5, 1977Sep 4, 1979Sanji TaneichiApparatus for liquefying refrigerant and generating low temperature
US4468935 *Jan 4, 1983Sep 4, 1984Societe Anonyme De TelecommunicationsDevice for regulating a Joule-Thomson effect refrigerator
US5956958 *Sep 9, 1997Sep 28, 1999Cryogen, Inc.Gas mixture for cryogenic applications
DE2638206A1 *Aug 25, 1976Mar 10, 1977Air LiquideVerfahren zur speisung einer miniaturkaeltemaschine und kuehlvorrichtung
EP0084308A2 *Jan 3, 1983Jul 27, 1983Societe Anonyme De Telecommunications (S.A.T.)Regulating device for a Joule-Thomson effect cooling apparatus
EP0488001A1 *Nov 16, 1991Jun 3, 1992Licentia Patent-Verwaltungs-GmbHRegenerative gas refrigerator
U.S. Classification62/474, 62/502, 137/13, 62/51.2
International ClassificationF25J1/00, F25B9/02
Cooperative ClassificationF25B2400/12, F25J1/0276, F25J2205/20, F25B9/02, F25J2280/40
European ClassificationF25J1/02Z4U2, F25B9/02
Legal Events
Oct 23, 1992ASAssignment
Effective date: 19920820