Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3887738 A
Publication typeGrant
Publication dateJun 3, 1975
Filing dateMay 15, 1973
Priority dateMar 4, 1971
Publication numberUS 3887738 A, US 3887738A, US-A-3887738, US3887738 A, US3887738A
InventorsDavid D Taft, Terry H Shepler
Original AssigneeAshland Oil Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Carpet backsized with hot melt adhesive and method
US 3887738 A
Abstract
Hot melt compositions containing copolymer of ethylene and vinyl acetate and/or alkyl acrylate wherein the alkyl group contains 1-18 carbon atoms; ester of rosin and polyhydric alcohol; and ester of polyhydric alcohol and dimer and/or trimer of fatty acid are particularly useful as carpet backing adhesives.
Images(9)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Taft et al. *June3, 1975 CARPET BACKSIZED WITH HOT MELT [56] References Cited ADHESIVE AND METHOD UNITED STATES PATENTS [75] Inventors David Taft Minneapolis; Tl'ry 3,390,035 6/1968 Sands 156/72 R p St. Paul, both of Minn- 3,676,280 7/1972 Sands 161/67 [731 Assigneei Ash'and Ashlandi 3133222 1111332 illfififiiiii: 3333313 122135 1 Notice: The portion of the term of Kennedy patent subsequent to Sept. 1 1,

1990, has been disclaimed.

[ Filed! y 15, 1973 Primary Examiner-Marion E. McCamish 21 Appl. No.: 360,616

Related US. Application Data [60] Division of Set. NO. 149,843, June 3, 1971, Pat. NO. ABSTRACT 3358,4311 which is a continuation'in'part of Hot melt compositions containing copolymer of ethyl- March 1971 abandoned ene and vinyl acetate and/or al1 y1 acrylate wherein the alkyl group contains 1-18 carbon atoms; ester of [52] Cl 428/95 gy f rosin and polyhydric alcohol, and ester of polyhydric 3 alcohol and dimer and/or trimer of fatty acid are par- [51] Int. Cl. D03d 27/00; D04h 11/00 i 58 Field 61 Search 161/67, 62-66, cularly useful as carpet backmg adheswes 161/234, 247, 245, 231; 156/72, 334; 117/161 UZ, 161 UH, 76 T, 90,1388 A; 260/2815 AV, 887

6 Claims, No Drawings 1 CARPET BACKSIZED WITH HOT MELT ADHESIVE AND METHOD RELATED CASES This application is a division of copending application Ser. No. 149,843, filed June 3, 1971, now U.S. Pat. No. 3,758,431, which is a continuation-in-part of copending application Ser. No. 121,150, filed Mar. 4, 1971, now abandoned.

BACKGROUND OF THE INVENTION The present invention is concerned with hot melt compositions which are especially useful as adhesives for the backsizing of tufted carpets. More particularly the present invention is concerned with hot melt compositions which are substantially free of wax.

Tufted carpets are composite structures in which the yarn forming the pile, i.e., the surface of the carpet, is needled through a base fabric whereby the base of each tuft extends through the base fabric and is visible on the bottom surface. Tufted carpets are generally of two types, the first being the type commonly known as a nap carpet where the yarn loops are formed by needling or punching a continuous yarn just through the base fabric, thus forming the base of the carpet, while the tops of the loops are generally A inch to inches long, thus forming the wearing surface of the carpet. The second tyep of tufted carpet, commonly known as a shag carpet, has the same base as the nap carpet but the tops of the loops have been split or the tips of the loops have been cut off. The surface of the shag carpet is thus formed by the open ends of the numerous U-shaped pieces of yarn the base of the U being embedded in the base fabric.

The loops of yarn are needled through and embedded in the base fabric (the combination of which is the raw tufted carpet) thus forming the tufted base, which must be secured to the base fabric to prevent the loops from being pulled out of the base fabric. The tufted bases are generally secured by applying an adhesive to the back of the raw tufted carpet to bond the tufted yarns to the base fabric. A secondary backing material is usually also applied to the back of the raw tufted carpet and bonded thereto with the same adhesive that bonds the yarn to the base fabric. The application of the secondary backing material further secures the loops of yarn since the loops of yarn are then bonded by the adhesive to the backing material as well as the base fabric.

The yarn used in forming the pile of a tufted carpet can be made of any type of fiber known in the art to be useful for tufted carpets, e.g., nylon, acrylics, wool, cotton, rayon and the like.

The base fabric or primary backing may be of any type known in the art and may be woven, for example, woven jute, woven slit polypropylene film, burlap, and the like, or may be non-woven fabric, e.g., needle punched, non-woven polypropylene web. Likewise, the

secondary backing material may be of any type known in the art, e.g., woven jute, woven slit polypropylene film, burlap, foam material such as polyurethane foams or blown vinyl film and non-woven fabrics such as needle punched, non-woven polypropylene web, and

blends of polyesters and polypropylene.

In preparing such tufted carpets, the adhesives are usually applied to the primary backing which holds the tufted matrix in the form of a latex. A secondary backing is then usually applied to the carpet. The carpet is then heated to cure the latex to ensure a bond between the latex and the tufted carpet, and the latex and the primary and secondary backings. This curing or drying of the latex is quite time consuming, expensive, and often leads to rejects because of insufficient curing during the process. In addition, overheating of the carpet may occur during thecuring which in turn may affect the shade of the carpet.

In addition to the use of latex as an adhesive carpet backing, recently there has been some activity in the use of hot melt adhesives as carpetbackings or sizing adhesives. For example, such hot melt adhesives have been based upon compositions containing copolymers of ethylene and vinyl acetate admixed with a wax such as paraffin wax or microcrystalline wax. For example, U.S. Pat. 3,390,035 discloses a hot melt adhesive consisting essentially of from 90 to 10% by weight of an ethylene/vinyl acetate copolymer and from 90 to 10% by weight of a wax. Such hot melt adhesives however exhibit incompatibility and sometimes separation upon cooling of the hot melt. In addition, such compositions have not demonstrated the degree of flexibility and adhesive strength desired by the carpet industry.

BRIEF DESCRIPTION OF INVENTION The hot melt composition of the present invention consists essentially of:

A. about 10 to 50% by weight of copolymer of ethylene and vinyl acetate and/or alkyl acrylate wherein the alkyl group contains 1-18 carbon atoms, containing from 40 to 85% by weight of ethylene and from 15 to by weight of vinyl acetate or the C C alkyl acrylate;

B. about 25 to by weight of ester of rosin and polyhydric alcohol having an acid value between about 5 and 40, and a melting point between about and 140C; and

C. about 10 to 50% by weight of ester of polyhydric alcohol and dimer and/or trimer of fatty acid and having an acid value of 6 to 40.

The above quantities of copolymer and esters are based upon the combined weight of the copolymer and ester present in the composition and not necessarily upon the total composition which may contain other ingredients.

DESCRIPTION OF PREFERRED EMBODIMENTS The hot melt composition contains from about 10 to 50% by weight, and preferably from about 15-35% by weight of copolymer of ethylene and an unsaturated ester which is vinyl acetate or alkyl acrylate wherein the alkyl group contains l-l8 carbon atoms. The most preferred quantity of the copolymer of ethylene and unsaturated ester is about 20-30% by weight.

The copolymers to be employed in the present invention contain from 40 to by weight of ethylene and from 15 to 60% by weight of vinyl acetate or C C alkyl acrylate. Preferably the copolymer contains about 65 to 82% by weight of ethylene and about 35 to 18% by weight of vinyl acetate or C C alkyl acrylate. Generally the copolymer has a melt index of 5-350. Some examples of suitable alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, lauryl acrylate and stearyl acrylate. Preferably the alkyl group of the acrylate contains l-8 carbon atoms.

The most preferred alkyl acrylates are ethyl acrylate and butyl acrylate. Copolymers of ethylene and vinyl acetate and/or C C alkyl acrylate are commercially available and their methods of preparation are adequately described in the literature including numerous US. patents. For example, the procedures described in U.S. Pat. No. 2,200,429 are useful for preparing the copolymers of ethylene used in the present invention. The ethylene copolymers can also contain about 0.001 to by weight of a comonomer such as acrylic acid, methacrylic acid, itaconic acid, acrylamide, beta dimethyl aminoethyl methacrylate, beta hydroxyethyl acrylate, diallyl maleate, diallyl phthalate, diallyl ether, ethylene glycol dimethacrylate, hydroxypropyl acrylate, or hydroxypropyl methacrylate.

Some commercially available copolymers of ethylene suitable for the purposes of the present invention are Ultrathene 636X, which is a copolymer of 72% ethylene and 28% vinyl acetate with a melt index of 24, U1- trathene 638 which is a copolymer of 69% ethylene and 31% vinyl acetate with a melt index of 24; Ultrathene 639 which is a copolymer of 70% ethylene and 30% vinyl acetate with a melt index of 120; Ultrathene 664 which is a copolymer of 50% ethylene and 50% vinyl acetate with a melt index of 50; Ultrathene 662 which is a copolymer of 45% ethylene and 55% vinyl acetate with a melt index of 100; Ultrathene 633 which is a copolymer of 81% ethylene and 19% vinyl acetate with a melt index of 20; CoMer EVA 501 which is a copolymer of 72% ethylene and 28% vinyl acetate with a melt index of 350; CoMer EVA 505 which is a copolymer of 72% ethylene and 28% vinyl acetate with a melt index of 20; CoMer EVA 605 which is a copolymer of 67% ethylene and 33% vinyl acetate with a melt index of 20; Elvax 150 which is a copolymer of 67% ethylene and 33% vinyl acetate with a melt index of Elvax 240 which is a copolymer of 72% ethylene and 28% vinyl acetate with a melt index of 2228; Elvax 250 which is a copolymer of 72% ethylene and 28% vinyl acetate with a melt index of 12-18; Elvax 350 which is a copolymer of 75% ethylene and 25% vinyl acetate with a melt index of 16-22, Elvax 40 which is a copolymer of 60% ethylene and 40% vinyl acetate with a melt index of 45 to 70; CoMer DPDA9169 which is a copolymer of 82% ethylene and 18% ethyl acrylate with a melt index of 20; and the Zetafax resins which are copolymers of ethylene and butyl acrylate. The Ultrathene polymers are available from USI, the CoMer polymers from Union Carbide, the Elvax polymers from Dupont and the Zetafax polymers from Dow Chemical.

The composition also contains from about 25 to 65% by weight and preferably about 35-5 5% by weight and most preferably about -50% by weight of ester of rosin and polyhydric alcohol. The ester has an acid value between about 5 and 40 and most preferably between about 10 and 20, and a melting point range between about 75 and 140C, and preferably between about 90 and 115C.

The most preferred melting point is between about 90 and 100C. The polyhydric alcohol used in forming this ester generally contains from 2 to 6 alcohol groups and is a saturated aliphatic compound.

Some suitable dihydric alcohols include among others the lower glycols such as ethylene glycol, 1,2- propanediol, 1,3-propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, hexamethylene gly- 4 col, 1,3-butanediol, 1,4-butanediol, and 2,3- butanediol. Some suitable alcohols which contain from 3 to 6 alcohol groups include glycerol, trimethylol propane, trimethylolethane, pentaerythritol, and hexitols, such as mannitol and sorbitol Of course, mixtures of alcohols may be employed in preparing this ester. One such mixture is Sutro 250 which is available from Atlas Chemical Industries, Inc., and is a mixture of essentially straight-chain polyhydric alcohols of 3 to 6 carbon atoms. Sutro 250 and other Sutro polyhydric alcohols are described in Industrial Polyol Bulletin LG-93 Rev. 4M11/66, Sutro Polyols, Atlas Chemical Industries, Inc., Chemicals Division, Wilmington, Del., 19899, which is incorporated herein by reference.

The preferred polyhydric alcohol is pentaerythritol. The rosin employed is generally a wood or tall oil rosin.

The ester may be prepared, for instance, by reacting parts of the rosin and about 6 to 15 parts by weight of the alcohol such as pentaerythritol in the presence of a metallic catalyst at elevated temperature of 200-250C until the desired acid value is reached.

The hot melt composition also contains from about 10 to 50%, preferably about 2045%, and more preferably about 25-35% by weight of ester of polyhydric alcohol and dimer and/or trimer of aliphatic ethylenically unsaturated monocarboxylic fatty acid having 16-22 carbon atoms. Correspondingly, the dimer contains 32-44 carbon atoms and the trimer contains 48-66 carbon atoms. The preferred dimers and trimers are the dimers and trimers of oleic acid and/or linoleic acid. The most preferred dimers and trimers are the dimers and trimers of tall oil fatty acids.

Also the dimer and/or trimer may be employed as a mixture with such other materials as monomeric aliphatic ethylenically unsaturated monocarboxylic fatty acids having 16-22 carbon atoms, polymeric forms of the monomeric aliphatic ethylenically unsaturated monocarboxylic fatty acids higher than trimer, rosin acids, and dimerized rosin. Preferably the dimer and/or trimer is employed as a mixture with rosin acids and dimerized rosin. When employing a mixture it should contain at least 20% by weight of the dimer and/or trimer and/or higher polymers of the acids. Such mixtures are commercially available. Of particular importance is Emtall 664 available from Emery Industries, Inc., Cincinnati, Ohio. This mixture according to Emery contains about 25-30% by weight of dimer and/or higher polymers of tall oil fatty acids and about 40-55% by weight of rosin acids. The rosin acids include both monomeric and polymeric forms of the acid. The remainder is fatty acids having an average chain length of about 18 carbon atoms or higher, and unsaponafiables. Another commercially available material is Fatty Acid 7002 available from Arizona Chemical. This mixture contains about 45% by weight of dimerized tall oil fatty acids, 25% by weight of trimerized and higher polymers of tall oil fatty acids, 6% of C fatty acids, 13% of rosin acids, 2% of unsaponafiables, and 7% of C fatty acids. In addition, conventionally supplied pure dimer or trimer acids or mixtures thereof may be employed in the preparation of this ester. The polyhydric alcohol used in forming this ester generally contains from 2 to 6 alcohol groups.

Some suitable dihydric alcohols include among others the lower glycols such as ethylene glycol, 1,2- propanediol, 1,3-propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, hexamethylene glycol, l,3-butanediol, 1,4-butanediol, and 2,3- butanediol. Some suitable alcohols which contain from 3 to 6 alcohol groups include glycerol, trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, and hexitols, such as mannitol and sorbitol. Of course, mixtures of alcohols of the above as well as Sutro 250 may be employed in preparing this ester.

The preferred polyhydric alcohols contain from 36 alcohol groups. The most preferred polyhydric alcohols are glycerine and pentaerythritol. This ester should have an acid value between about 8 and 40, and preferably between l and 25 and a viscosity of between about 1.0 to 40.0 stokes, preferably 2.0-20.0 stokes, as measured in mineral spirits at a 70% non-volatile concentration.

This ester can be prepared by reacting the dimer and- /or trimer or mixture containing the dimer and/or trimer with the polyhydric alcohol under esterification conditions, e.g., 200250C, until the desired acid value is obtained. For instance, the desired ester can be prepared by reacting about 100 parts by weight of the dimer and/or trimer and about to 35 parts by weight of polyhydric alcohol, such as pentaerythritol, in the presence of a calcium acetate catalyst. The reaction mixture is heated to 400F and held at that temperature for 1 hour. After this the temperature is raised to between about 480 and about 500F and is held there until the reaction is complete as evidenced by a product having an acid value and viscosity within the desired ranges. The mixture is usually held at the 480 to 500F temperature range for about 10-15 hours. If desired, the reaction time can be reduced by carrying the reaction out under a partial vacuum of about to inches of Hg. Similarly this dimer and/or trimer ester can be prepared together with the ester of rosin and polyhydric alcohol by adding the dimer and/or trimer, the rosin and polyhydric alcohol together and esterifymg.

The various quantities set forth above for the ethylene copolymer, the rosin ester and the dimer and/or trimer ester are based upon the combined weight of these components and not necessarily upon the total composition which may include other ingredients.

The melting point of the ingredients in this invention is a softening point which is determined by a modified mercury drop method. 1

The hot melt composition of the present invention contains up to about 70% by weight of a solid filler material based upon the total composition. Preferably the composition contains between about 40 and 60% by weight of the solid filler material based upon the total composition. Some suitable solid fillers are calcium carbonate, clay, and talc. Calcium carbonate is the preferred filler. One feature of the present invention is the ability to incorporate such large quantities of solid filler material into the composition without detracting from the coating properties of the composition to such an extent as to render the composition unsuitable for its in tended purpose. Flame retardant fillers may also be employed to improve the flame retardant properties of the carpet. Such fillers are sold under the trade designation of Phosgard obtainable from Monsanto and Firmaster obtainable from Michigan Chemical.

The composition of the present invention may also contain up to about 2% by weight and preferably from about 0.1 to 1% by weight of an antioxidant based upon the total composition. Some suitable antioxidants include 2,2 -methylene bis (-4-methyl-6- tert.butylphenol), 2,4,6-tri-tert.butylphenol, 2,6-ditert.butyl-4-methylphenol, 4,4 -thio-bis (-6-tert.butylm-cresol), butylated hydroxy anisole, and butylated hydroxy toluene. The preferred antioxidant is 2,2 methylene bis (-4-methyl-6-tert.butylphenol).

Thehot melt compositions of the present invention provide excellent adhesion between the pile loops and the primary backing and between the secondary backing and the carpet. This excellent adhesion can be observed from the force in pounds required to pull one of the pile loops loose from the primary backing and from the amount of force in pounds required to separate the secondary backing from the carpet.

In addition the compositions exhibit surprisingly high flexibility, elongation and tensile properties. Also the hot melts of the present invention are surprisingly soft as compared to ethylene/vinyl acetate copolymer compositions containing wax, thus facilitating the coating procedure. Moreover the compositions of the present invention are less likely to support combustion than are various wax containing hot melt compositions. Therefore, they are much safer to use.

Unlike the wax containing hot melt compositions, the present compositions are quite compatible and are not opaque at elevated temperatures. This high compatibility between the components of the present invention greatly diminishes the problem of possible separation of the components of the composition after they have been applied to the substrate and are allowed to age. In addition, the excellent properties of the present compositions are readily reproducible from batch to batch. In the wax containing hot melt compositions however it is quite difficult to reproduce a uniform product in that small changes in the melting point of the wax drastically vary the coating characteristics of the composition.

Surprisingly, the compositions of the present invention demonstrate their excellent adhesion properties when applied to polyolefin substrates such as polyethylene and polypropylene. Polyolefin fibers and/or secondary backings have not been commercially employed to the extent desired because of the difficulty in finding adhesive compositions suitable for adhering polyhydric substrates to other substrates or to each other. The present compositions however surprisingly are excellent adhesives for these polyolefin substrates.

The hot melt compositions of the present invention can be prepared by any of the conventional means by which two or more ingredients are brought into intimate contact with each other. For example, the ester of the polyhydric alcohol and rosin; the ester of the polyhydric alcohol and the dimer and/or trimer; and the antioxidant, if used, are added to a mixing vessel which is blanketed in a nitrogenatmosphere. The mixture is then heated to about 350F. The copolymer of ethylene and vinyl acetate and/or C C alkyl acrylate is then slowly added with stirring to the heated mixture. The stirring is continued. at this, temperature until a clear melt forms. The filler, if used, can then be added to the mixture slowly with stirring until thoroughly dispersed therein. The molten mixture can then be pumped directly to a carpet coating apparatus or can be cooled for storage and used at some later time.

The composition of the present invention can be applied to the particular substrate by any of the well known methods of applying coatings of molten adhesives. For example, the hot melt coating can be applied by extrusion, a heated doctor blade, or by passing the bottom surface of the tufted material in contact with the top surface of a rotating roller partially submerged in a tank of the molten adhesive. It is convenient to employ a doctor blade in order to control the thickness of the adhesive on the roller.

The carpets prepared according to the present invention are useful wherever carpets are used, for example, on floors and on stairways in homes, restaurants, hotels, office buildings, and in passenger sections of ships, trains, airplanes, and automobiles.

The composition is applied to the carpet in amounts ranging from about 6 to about 40 ounces per square yard of carpet and preferably from about 12-28 ounces per square yard and at a temperature of about 160F and 375F. It is, of course, understood that the temperature must be maintained so that melting or decomposition of the textile backings and fibers do not occur, and must be substantially above the melting point of the coating composition. From about to 80 feet of carpet per minute can be coated with the composition of the present invention.

In order to better understand the present invention, the following examples are given in which all quantities are by weight unless the contrary is set forth:

EXAMPLE A Preparation of Ester of Rosin and Pentaerythritol 910 parts of tall oil rosin, 90 parts of pentaerythritol, and 0.5 parts of oxalic acid are charged to a reactor and heated to 250C. The reactor is fitted for esterification. The reaction is continued until an acid value of 35 is reached. Vacuum is then applied until the acid value is less than 20. The material is cooled to 200C and filtered into a cooling pan. The ester has an acid value of 7.5, a viscosity of 1.2 stokes in toluene at 70% nonvolatiles, and a Gardner color of 12+.

EXAMPLE B Preparation of Ester of Emtall 664 and Sutro 250 325 parts of Emtall 664 and 47 parts of Sutro 250 are charged to a reactor fitted for esterification and heated to 400F. The reaction is continued for 3 hours until an acid value of 12.4 is reached. The material is cooled to room temperature for use in the hot melt compositions.

EXAMPLE C Preparation of Ester of Pentaerythritol and Mixture Containing Dimerized Tall Oil Fatty Acids 936 parts of Emtall 664, 1 14 parts of pentaerythritol, and 0.17 parts of a calcium acetate catalyst are charged to a reactor which is blanketed in a nitrogen atomsphere. The reaction mixture is then heated to 200C and held at that temperature for 1 hour. The temperature is then raised to between about 250C and about 271C and is held there for about 15 hours, at which time the reaction is complete. The ester has an acid value of 12-18, a viscosity of 2.5-4.0 stokes in mineral spirits at 70% non-volatiles, and a Gardner color of 9-12.

EXAMPLE D Preparation of Ester of Pentaerythritol, Ethylene Glycol, and Mixture Containing Dimerized and Trimerized Tall Oil Fatty Acids 1500 parts of Fatty Acids 7002, 90 parts of pentaerythritol, and 47 parts of ethylene glycol are charged to a reaction vessel fitted for esterification. The reaction mixture is heated to 365F where water begins to distill and then to 465-485F over a period of 4-5 hours. The reaction mixture is cooled slowly to room temperature. The ester has an acid value of 24 and a viscosity of 19.0 stokes in mineral spirits at nonvolatiles.

EXAMPLE E Preparation of Ester of Glycerine and Mixture Containing Dimerized and Trimerized Tall Oil Fatty Acids 1500 parts of Fatty Acids 7002 and 132.8 parts glycerine are charged to a reaction vessel which is blanketed in a nitrogen atmosphere. The reaction mixture is then heated to 440-460F and held at that temperature for 3-4 hours. The reaction product has an acid value of 17.2, a viscosity of 9.0 stokes in mineral spirits at 70% non-volatiles, a color of 13+.

EXAMPLE 1 The raw tufted carpet is a Shag carpet composed of a jute base fabric weighing about 10 ounces/yard and tufted with about 14 ounces/yard of bulked continuous filament nylon carpet yarn which is needled into the base fabric at 6 needles per inch across the width of the base fabric and about 6 stitches per running inch of base fabric. The tuft loops extend Aiinch above the base fabric and the tufted bases extent l/ 16 inch below the base fabric. The secondary backing material is woven polypropylene weighing about 3.5 ounces/yard The raw tufted carpet is passed under and adjacent to an extruder where the bottom (non-pile) surface is coated with about 24 ounces/yard of a molten coating composition at a temperature of 350F and having the following formula:

Parts Copolymer of 67% ethylene and 12.0 33% vinyl acetate, having an inherent viscosity of 0.74 (0.25%) in toluene at 86 F), a melt index of 20 (ASTM-D-l238-577), and a softening point of 220F(ring and ball) (CoMer 605) Ester from Example A 24.0

Ester from Example C 13.8 2,2'-methylene bis (-4-methyl-6- 0.2 tert.butylphenol) CaCO (No. 1 White) 50.0

primary backing of jute and thesecondary backing material are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. A pull of 26 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 2-5-27 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

In addition the percent elongation of a 40 mil film of the composition is greater than 600 percent as measured on an Instron Tensile Tester.

EXAMPLE 2 Example 1 is repeated except that the coating composition has the following formula:

Parts Copolymer of 72% ethylene and 28% vinyl acetate, having an inherent viscosity of .54 (0.25%

in toluene at 36 F), a melt index of 350 (ASTM-D-1238-577) and a softening point of 180F( ring and ball) (CoMer EVA 50l) Copolymer of 67% ethylene and 33% vinyl acetate, having an inherent viscosity of .74 (0.25%

in toluene at 86 F), a melt index of 20 (ASTM-D-1238-577) and a softening point of 220F(ring and ball) (CoMer EVA 605) Copolymer of 82% ethylene and 18% ethyl acrylate having an inherent viscosity of .81 (0.25%

in toluene at 36 F), a melt index of 51 (ASTM-D-1238-577) and a softening point of 307F(ring and ball) (CoMer DPD 9169) Ester from Example A Ester from Example C 2,2'-methylene bis (-4-methyl-6- tert. butylphenol) CaCO [No. 1 White] The primary backing of jute and the secondary backing of polypropylene are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. A pull of 32 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 20-23 pounds. In addition the carpet demonstrates excellent pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

In addition the percent elongation of a 40 mil film of the coating composition is greater than 600 as measured on an Instron Tensile Tester.

EXAMPLE 3 Example 1 is repeated except that the coating composition has the following formula:

Parts resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 4 Example 1 is repeated except that the coating composition has the following formula:

Parts Copolymer of 72% ethylene and 24.9 28% vinyl acetate, having an inherent viscosity of .86 (0.25%

in toluene at 86 F), a melt in' dex of 24 (ASTM-D-1238-577), and a softening point of 242F (ring and ball) (Ultrathene 636) Ester from Example A 46.3

Ester from Example C 28.1 2,2-methylene is (-4-methyl-6- 0.7 tert.butylphenol) CaCO (No. 1 White) 100.0

The primary and secondary backing of jute materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. A pull of 20-25 pounds is required to pull one of the pile loops loose from the primary backing. The carpet as a T peel of about 20 pounds. In addition the carpet demonstrated excellent resistance of delamination when subjected to repeated bending and straightening.

EXAMPLE 5 Example 1 is repeated except that the coating composition has the following formula:

Parts Copolymer of 72% ethylene and 25.0 28% vinyl acetate, having an inherent viscosity of 0.86 (0.25% in toluene at 86 F), a melt index of 24 (ASTM-D-l238-577), and a softening point of 212F( ring and ball) (Ultrathene 636X) Ester from Example A 56.0 Ester from Example E l9.0 2,2'-methylene bis (-4-methyl-6- 0.75 tert.butylphenol) CaCO (No. 1 White) 100.0

The primary backing of jute and the secondary backing of polypropylene are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. A pull of 25 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 20 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

In addition the percent elongation of a 40 mil film of the coating composition is greater than 630 percent as measured on an Instron Tensile Tester.

1 1. EXAMPLE 6 EXAMPLE 7 Example 2 is repeated except that the secondary backing material is jute weighing about ounces- /yard".

The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 50 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 8 Example 1 is repeated except that the secondary backing material is non-woven polyester/polypropylene weighing about 4.2 ounces/yard.

The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about -30 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 9 Example 2 is repeated except that the secondary backing is non-woven polyester-polypropylene weighing about 4.2 ounces/yard? The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 18-20 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 10 Example 3 is repeated except that the secondary backing material is jute weighing about 10 ounces- /yard The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 25-30 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 11 Example 3 is repeated except that the secondary backing material is non-woven polyester/polypropylene weighing about 4.2 ounces/yard? The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 30 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 12 Example 4 is repeated except that the secondary backing is non-woven polyester/polypropylene weighing about 4.2 ounces/yard? The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 45 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 13 Example 4 is repeated except that the secondary backing material is jute weighing about 10 ounces- /yard The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of about 25-35 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 14 Example 5 is repeated except that the secondary backing material is non-woven polyester/polypropylene weighing about 4.2 ounces/yard? The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of greater than 30 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

EXAMPLE 1 5 Example 5 is repeated except that the secondary backing material is jute weighing about 10 ounceslyard The primary and secondary backing materials are firmly bonded to each other, and the base of each loop in the pile is firmly bonded to the primary backing. The carpet has a T peel of more than 30 pounds. In addition the carpet demonstrated excellent resistance to delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 16 Example 1 is repeated except that'the coating composition has the following formula:

Parts Copolymer of 67% ethylene and 33% vinyl acetate having an inherent viscosity of .78 (0.25%

in toluene at 86 F), a melt index of 25 (ASTM-D-l238-577) and a softening point of 240F(ring and ball) (ELVAX l50) Rosin WW (Available from Tenneco) 3 Pol pale (Available from Picco) 2,2 -methylene bis (-4-methyl-6- tert.butylphenol CaCO (No. 1 White) 3 Wax Paraflint RG Fisher- 1 Tropsch wax having a melting point of 215 F A pull of 18 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 1.5 pounds. The carpet demonstrated considerable delamination when subjected to repeated bending and straightening. The percent elongation of a 40 mil film of the coating composition is only 30.

COMPARISON EXAMPLE 17 Example 1 is repeated except that the coating composition has the following formula:

Parts Copolymer of 67% ethylene and 14.0 33% vinyl acetate having an inherent viscosity of .78 (0.25% in toluene at 86 F), a melt index of 25 (ASTM-D-l238-577) and a softening point of 240F(ring and ball) (ELVAX 150) Rosin WW (Available from Tenneco) 38.3 2,2-methylene bis (-4-methyl-6- 0.3 tert.butylphenol Barium sulfate 30.0 Wax Paraflint RG Fisher- 17.4

Tropsch wax having a melting point of 215 F A pull of 23 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 3.5 pounds. The carpet demonstrated considerable delamination when subjected to repeated bending and straightening. The percent elongation of a 40 mil film of the coating composition is only 200.

COMPARISON EXAMPLE 18 Example 1 is repeated except that the coating composition has the following formula:

Parts Copolymer of 72% ethylene and 17.5 28% vinyl acetate having an inherent viscosity of .85 (0.25%

in toluene at 86 F). a melt index of (ASTM-D-l238-577) and a softening point of 280F( ring and ball) (ELVAX 250) Rosin WW (Available from Tenneco) 4 2,2-methylene bis (-4-methyl-6- tert.butylphenol) CaCO No. l White) 3 Wax Paraflint RG Fisher- 1 Tropsch wax having a melting point of 215 F A pull of 25 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 3.5 pounds. The carpet demonstrated considerable delamination when subjected to repeated bending and straightening. The percent elongation of a 40 mil film of the coating composition is 365.

COMPARISON EXAMPLE 19 Example 1 is repeated except that the coating composition has the following formula:

Parts A pull of 25 pounds is required to pull one of the pile loops loose from the primary backing. The carpet has a T peel of about 2 pounds. The carpet demonstrated considerable delamination when subjected to repeated bending and straightening. The percent elongation of a 40 mil film of the coating composition is 40.

COMPARISON EXAMPLE 20 Example 16 is repeated except that the secondary backing is jute weighing about 10 ounces/yard? The carpet has a T peel of about 30 pounds. The carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 21 Example 17 is repeated except that the secondary backing is jute weighing about 10 ounces/yard? The carpet has a T peel of about 8 pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 22 Example 18 is repeated except that the secondary backing is jute weighing about 10 ounces/yard.

The carpet has a T peel of about 35 pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 23 Example 19 is repeated except that the secondary backing is jute weighing about 10 ounces/yard? The carpet has a T peel of about 23 pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 24 Example 16 is repeated except that the secondary backing is non-woven polyester/polypropylene weighing about 4.2 ounces/yard? The carpet has a T peel of about 6.5 pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 25 Example 17 is repeated except that the secondary backing is non-woven polyester-polypropylene weighing about 4.2 ounces/yard? The carpet has a T peel of about 7 pounds. In addition the carpet demonstrates considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 26 Example 18 is repeated except that the secondary backing is non-woven polyester-polypropylene weighing about 4.2 ounces/yard? The carpet has a T peel of about pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

COMPARISON EXAMPLE 27 Example 19 is repeated except that the secondary backing is non-woven polyester-polypropylene weighing about 4.2 ounces/yard? The carpet has a T peel of about 4 pounds. In addition the carpet demonstrated considerable delamination when subjected to repeated bending and straightening.

The pull required to pull one of the pile loops loose from the primary backing is determined by attaching a sample of the carpet to a Chatillon tension tester. The pile is pulled at 12 inches/min. until it pulls out and the value in pounds is recorded from the tester. The above procedure is repeated five more times and the average of the six tests is used as the value.

The T-Peel is determined by attaching a sample of the carpet having about 4 inches of laminated surface in an Instron Tensile Tester and pulling at 12 inches/- min. the sample apart at an angle of 180.

A comparison of Examples 1-15 with 16-27 clearly establishes that the compositions of the present invention possess unexpectedly excellent adhesive properties, particularly when applied to a polyolefin containing substrate.

What is claimed is:

1. A process for backsizing a tufted carpet having a primary textile backing and non-woven tufts of synthetic fibers protruding therefrom which comprises:

a. heating to about 160 F. to about 375 F. a hot melt coating composition consisting essentially of:

l. copolymer of ethylene and unsaturated ester monomer selected from the group consisting of vinyl acetate, alkyl arcylate wherein the alkyl group contains 1 18 carbon atoms, and mixtures thereof, containing from 40 85% by weight of ethylene and from 15 60% by weight of said unstaturated ester monomer;

2. ester of rosin and polyhydric alcohol wherein the ester has an acid value between about 5 and about 40, and melting point range between and 140 C.; and

3. ester of polyhydric alcohol and dimer and/or trimer or mixture thereof, of ethylenically unsaturated monocarboxylic fatty acid having 16 22 carbon atoms, wherein said ester has an acid value of 6 to 40;

b. applying a uniform coating in an amount from about 6 to 40 ounces per square yard of said composition in a molten state to the back side of said carpet at a coating station while moving said carpet past said coating station at a speed of from about 15to feet per minute; and

c. thereafter solidifying said coating by cooling it below its melting point.

2. A tufted carpet comprising:

a. a primary textile backing;

b. tufts of textile fibers protruding from said primary textile backing and forming the surface of the car- P c. a secondary textile backing adjacent to the backside of said primary textile backing; and

d. the hot melt coating composition of claim 1 being interposed between said primary and secondary backings.

3. The carpet of claim 2 wherein at least one of the backings or fibers is a polyolefin.

4. The carpet of claim 3 wherein said polyolefin is polypropylene.

5. The carpet of claim 2 wherein said secondary backing is a polyolefin.

6. The carpet of claim 5 wherein said polyolefin is polypropylene.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3390035 *May 12, 1966Jun 25, 1968Du PontMethod for manufacturing tufted carpets
US3676280 *Aug 21, 1970Jul 11, 1972Du PontTufted carpet backsized with polymeric composition
US3745054 *Oct 29, 1971Jul 10, 1973Du PontHigh filler content hot melt backsize adhesive compositions
US3770558 *Mar 4, 1971Nov 6, 1973Du PontTufted carpet
US3779799 *Sep 16, 1971Dec 18, 1973Thiokol Chemical CorpCoated woven textile product and process therefor
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4009310 *Jul 1, 1976Feb 22, 1977The General Tire & Rubber CompanyMethod of improving adhesion of secondary backings on carpets
US4247428 *Aug 16, 1979Jan 27, 1981The Goodyear Tire & Rubber CompanyAdhesive for polyesters and polyolefins
US4288499 *May 8, 1979Sep 8, 1981Rohm And Haas CompanyPolymers adherent to polyolefins
US4335034 *May 12, 1980Jun 15, 1982J. P. Stevens & Co., Inc.Thermoplastic compositions and automotive carpeting backed therewith
US4507342 *Oct 19, 1983Mar 26, 1985Rohm And Haas CompanyPolymers adherent to polyolefins
US5445860 *Jun 22, 1994Aug 29, 1995Gff Holding CompanyTufted product having an improved backing
US5540968 *Sep 27, 1994Jul 30, 1996Milliken Research CorporationCushioned backed carpet tile with stabilized nonwoven backing
US5874148 *Apr 21, 1997Feb 23, 1999Reichhold Chemicals, Inc.Water resistant textile coating and method of using the same
US5948500 *Jul 21, 1997Sep 7, 1999Milliken & CompanyMethod for forming cushioned carpet tile with woven backing
US6203881Nov 4, 1996Mar 20, 2001Milliken & CompanyCushion backed carpet
US6468623Feb 8, 2000Oct 22, 2002Milliken & CompanyCushioned back carpet
US7338698Feb 27, 1998Mar 4, 2008Columbia Insurance CompanyHomogeneously branched ethylene polymer carpet, carpet backing and method for making same
US7357971Jul 29, 2005Apr 15, 2008Columbia Insurance CompanyHomogenously branched ethylene polymer carpet backsizing compositions
US7820728Nov 13, 2007Oct 26, 2010Columbia Insurance CompanyMethods and systems for recycling carpet and carpets manufactured from recycled material
US7910194Dec 21, 2007Mar 22, 2011Columbia Insurance CompanyHomogenously branched ethylene polymer carpet backsizing compositions
US8283017May 4, 2004Oct 9, 2012Columbia Insurance CompanyCarpet, carpet backings and methods
US8466205Oct 4, 2010Jun 18, 2013Columbia Insurance CompanyMethods and systems for recycling carpet and carpets manufactured from recycled material
US8496769Nov 7, 2006Jul 30, 2013Columbia Insurance CompanyCarpet, carpet backings and methods
US9051683Nov 23, 2010Jun 9, 2015Columbia Insurance CompanyCarpet, carpet backings and methods
US9376769Feb 28, 2011Jun 28, 2016Columbia Insurance CompanyHomogeneously branched ethylene polymer carpet backsizing compositions
US20020005250 *May 10, 2001Jan 17, 2002Jerdee Gary D.Method for making a polymeric based carpet
US20040079467 *Jun 19, 2003Apr 29, 2004Julie BrumbelowCarpet, carpet backings and methods
US20040202817 *May 4, 2004Oct 14, 2004Sam Chaun Cua YaoCarpet, carpet backings and methods
US20050038158 *Jun 23, 2004Feb 17, 2005Musemeche Stephen P.Highly filled ethylene/vinyl ester copolymers
US20050112320 *Nov 20, 2003May 26, 2005Wright Jeffery J.Carpet structure with plastomeric foam backing
US20050266206 *Jul 29, 2005Dec 1, 2005Bieser John OHomogenously branched ethylene polymer carpet backsizing compositions
US20060013989 *Jun 20, 2005Jan 19, 2006Barrier-Bac, Inc.Synthetic turf and method for applying adhesive
US20060293420 *Jun 22, 2006Dec 28, 2006Prejean George WComposition comprising asphalt, ethylene copolymer, and sulfur
US20070027261 *Jul 28, 2006Feb 1, 2007Prejean George WComposition comprising asphalt and epoxy (Meth)acrylate copolymer
US20080020174 *Jul 27, 2007Jan 24, 2008Stull Thomas ESynthetic turf
US20080081861 *Oct 3, 2006Apr 3, 2008George Wyatt PrejeanComposition comprising ethylene copolymer
US20080113146 *Nov 13, 2007May 15, 2008Jeffrey WrightMethods and systems for recycling carpet and carpets manufactured from recycled material
US20090047523 *Aug 13, 2007Feb 19, 2009Keedy Jr Vincent WProduction of discrete shaped article
WO2005017022A1 *Aug 13, 2004Feb 24, 2005E.I. Dupont De Nemours And CompanyHighly filled ethylene/vinyl ester copolymers
WO2006019491A2 *Jun 20, 2005Feb 23, 2006Barrier-Bac, Inc.Synthetic turf and method for applying adhesive
WO2006019491A3 *Jun 20, 2005Nov 13, 2008Barrier Bac IncSynthetic turf and method for applying adhesive
Classifications
U.S. Classification428/95, 428/516, 427/398.3, 524/318, 524/914, 525/240, 525/222, 525/166, 524/562, 525/227, 524/563
International ClassificationC09J131/04, C09D123/08
Cooperative ClassificationC09J2201/61, C09D123/08, Y10S524/914, C09J131/04
European ClassificationC09D123/08, C09J131/04