Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3888056 A
Publication typeGrant
Publication dateJun 10, 1975
Filing dateOct 25, 1973
Priority dateOct 25, 1973
Publication numberUS 3888056 A, US 3888056A, US-A-3888056, US3888056 A, US3888056A
InventorsVincent M Kelly, Henry H Schrieber
Original AssigneeVincent M Kelly, Henry H Schrieber
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Erectable building structure junction element
US 3888056 A
An expandable structure employing multi-hinged, scissor-type mechanical linkages for supporting an associated flexible skin or a skeleton for supporting a rigid panel skin provides an expandable, collapsible and movable building having rigid or sliding junction linkages for interconnecting and operating the scissors-type linkages.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[ June 10, 1975 United States Patent [191 Kelly et al.

3,7l0,806 l/l973 52/8] ERECTABLE BUILDING STRUCTURE JUNCTION ELEMENT [76] Inventors: Vincent M. Kelly, 61 Hassayampa Primary ExaminerHenry C. Sutherland Country Club Assistant ExaminerRobert Farber 86301; Henry Schnabel-2 Arlorney, Agent, or Firm-Warren F. B. Lindsley East Wesleyan, Tempe, Ariz. 85282 Oct. 25, 1973 [22) Filed:

App]. No; 409,436

[52] US. Cl. 52/109; 52/81; 52/222; An expandable structure employing multi-hinged, scissortype mechanical linkages for supporting an associated flexible skin or a skeleton for supportin g a rigid panel skin provides an expandable, collapsible and movable building having rigid or sliding junction |ink ages for interconnecting and operating the scissorstype linkages.

mzc 2 W2 8 h 4M 0 A, ol fl uR 1 5 m W 5 m Hr a WS m l .w e .mF Hod 55 [56] References Cited UNITED STATES PATENTS 3,000,386 9/1961 SchulzeH,..... l35/4 C 3 Claims, 7 Drawing Figures ERICC'I'ABLE BUILDING STRUCTURE JUNCTION ELEMENT BACKGROUND OF THE INVENTION The present invention relates generally to collapsible structures and more particularly to elements for interconnecting and operating multi-hinged. scissors-type mechanical linkages usable in collapsible structures.

1. Field of the Invention Struts arranged to form triangular frames employing axial loading of its component members have been widely used. Likewise multi-hinged. scissors-type mechanical linkages have been used for supporting expandable structures as evidenced by US. Pat. No. 3.7 [0.806 issued Jan. I6. I97}, as well as by other articles.

In erecting the structure, the multi-hinged. scissorstype linkages must be interconnected with a junction element to provide the expansion and retraction of the scissors-type elements to erect and to collapse the supporting structure of the building. In small, relatively light structures. a simple interconnection joining the ends ofthe scissors-type linkage can be used to provide a pivotable and slidcable interconnection to expand and contract the scissors-type linkages.

2. Description of the Prior Art An example of a junction element usable in an erectable building structure can be obtained by referring to the aforementioned US Pat. No. 3.710.806. The results were a workable junction element but a rather complex element not easily adaptable to provide a higher mechanical advantage for large structures or for structures composed of single-length expandable trusses.

A further example of prior art junction elements for operating expandable linkages is that of the common umbrella. The use of the umbrella-type junction element is not an obvious adaptation. especially in view of the use of multiple junction elements for increased mechanical advantage and the multiplicity of the interconnections needed in a geodesic type erectable building structure or a semi-circular or Ouonset-type building structure. The complete adaptability of the umbrellatypejunction element would be a central pole pivotably supporting rigid struts projecting from the central pole. The complex multi-interconnects or simple single interconnects of the scissors-type linkages permits the expansion of a supporting structure for a small or large building from a compact package much less in height than the resultant building.

SUMMARY OF THE INVENTION The erectable building structure according to the present invention comprises expandable trusses interconnected by a junction element and covered by a flexihlc sheeting. The expandable trusses comprise a plurality of scissors-type mechanical linkages interlocked by the junction elements. The junction elements provide a pivotable and slidcable interconnection ofa multiplicity of trusses to expand or contract the scissorstype linkages of the trusses comprising a multiplicity of hub elements having pivotable interconnections to the scissors elements of the trusses while operablcommon axis to expand or contract the scissoistype linkages.

It is. therefore, an object of the present invention to provide an enhanced erectable building structure.

It is more particularly an object of the present invention to provide an improved junction element for interconnecting the expandable trusses of an erectable building structure.

It is another object to provide a junction element capable of improved mechanical advantage to operate expandable trusses of erectable building structures.

It is still another object to provide junction elements for expandable trusses for erectable building structures comprising scissors-type mechanical linkages having few parts of simple construction.

It is a further object ofthis invention to provide junction elements for expandable trusses which are usable in conjunction with previous hubs described in US. Pat. No. 3.710.806.

These and other objects of the present invention will become apparent to those skilled in the art as the description proceeds.

BRIEF DESCRIPTION OF THE DRAWING The various novel features of this invention. along with the foregoing and other objects. as well as the invention itself both as to its organization and method of operation. may be more fully understood from the following description of an illustrated embodiment when read in conjunction with the accompanying drawing. wherein:

FIG. I is a perspective view of an expandable truss structure for a dome-shaped building and embodying the present invention;

FIG. 2 is a fragmentary enlarged perspective view of an interconnecting junction element of FIG. I;

FIGS. 3, 4 and 5 are further embodiments of the junction elements according to the present invention: and

FIG. 6 is a perspective view of an expandable truss structure and covering for a semi-circular expanded building such as a Ouonset but and embodying the present invention.

FIG. 7 illustrates a further modification of the truss structure shown in FIGS. 1-6 wherein gear means are used for moving one hub relative to the other.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, FIG. 1 discloses a dome-type structure 10 formed of expandable trusses 11. The dome-type structure 10 can be covered by a flexible sheathing or covering (not shown) to form an enclosed structure.

The expandable trusses l] or load supporting struts comprise a plurality of scissors-type expandable linkage struts 13 which serve as the erectable and expand' able support for the flexible covering. The scissors-type linkages I3, when inter-locked together by junction elements I4 as shown in FIG. 1 adequately form and sup port the building configuration. Each expandable linkage structure 13 comprises two linkages IS and I6 pivotedly connected by a pin 17 at a point at the middle of the linkages. The free end of each linkage pair is pivotedly connected by a pin 18 to the free end of the next linkage pair. The end linkage pairs of each expandable linkage structure is pivotedly connected to the junction c ement 14, see FIG. 2.

The junction elements 14 are placed at the intersection of a plurality of expandable trusses II to form the geodesic or dome-type structure I0 collapsible at will to a small package T he junction elements 14 are spaced around the extended surface of the structure at points depending upon the support required by each expandable truss II. The si 'e of the structure and the weight which each expandable truss 11 can support will determine the number ofexpandable trusses I] and the number and location of the junction elements 14.

Each of the junction elements 14 comprises a plural ity of axially aligned hubs I) linking the ends of the linkages of each expandable truss 11 to operate the scissors mechanism to expand or contract the struts. The junction elements 14 can comprise either two hubs 19a and 19h. as shown in HQ 3. three hubs 191'. 19:! and We as shown in FIG. 2, four hubs 19f. 19g. Wit and Ni as shown in HQ. 4 and a combination of four and two ii l o as shown in Flt 5. There are many differ ent interconnections of the junction elements 14 and the number of hubs l) shouid not be taken to limit the coverage of the present invention. Different combinations can be used for greater mechanical leverage to ex pand the scissors linkages of the struts The number of hubs and the interconnection with the scissor element depends on the mechanical advantage required. more hubs and combination of hubs such as shown in MG. 5 could be used for a large building structure. The higher mechanical advantage available with a multiplicity of hubs would ease the expansion of the linkages to erect the building.

Referring now to the three'hub junction element 14 as shown in FIG. 1. the linkages l5 and 16 comprising the scissors-type struts are pivotcdly connected at the central pivot point of the struts by a bolt 20. washer 2! and nut 22 combination to lugs 23 firmly fastened around the peripheral of the center hub 19d. Four lugs are shown connected to each hub in FIG. 2, but it is obvious that a greater or lesser number of lugs may be fas tened to each hub. depending upon the number of expandable truss interconnections required of the junction element 14. It should be recognized that some or all of the iugs may be pivotally connected to one or more of the hubs disclosed.

A iinkage arm 24 is shown in FIG 2 pivotedly fastened to a lag 25 of the topmost hub We of the junc tion element 14. The other end of the linkage arm 24 is pivotally fastened to the upper linkage l5 ofthe seissors-type strut 13. A second linkage arm 26 is pivotaily fastened to a lug 27 of the bottom hub We of the group of hubs. The other end of the linkage arm 26 is pivot ally fastened to the lower linkage 16 of the scissorstype strut 13. The lugs 23. 25 and 27 of the group of hubs are in alignment to operate each of the plurality of expandable trusses connected to the junction element 14.

A center rod 28 is shown passing through the axial center of the hubs 19c, 19d and 190. Rod 28 is not entircly necessary for the operation of the junction clement 14 since the linkages of each of the expandable trusses could provide a ccntrali7ing force to keep the hubs in axial alignment. The norod hub assembly could provide other than axial alignment when re quired. However, the rod could be used to support the flexible or rigid covering for the building structure while assisting the axial alignment ofthe hubs, lhc cow ering could be fastened to the uppermost end of rod 28 as shown in Flt], Z by a suitable fastener (not shown I. If rod 28 is used. it could be fastened to any one of the hubs such as We and journaled to the remaining two hubs ISM and 19c of the junction element shown in lit FIG 2. Rod 28 would hold the two free hubs in axial alignment while operating the scissors linkages l5 and 16 of the struts by expanding or contracting the distance between the hubs along the axial alignment Therefore. to expand the building the hubs must be forced more adjacent each other to cause the scissortypc linkages to expand. It is obvious. therefore. that by separating the hubs. the scissorstype linkages will cause the struts to contract to collapse the building structure for easy removal to another site.

Referring now to FIG. 3, the simplest form of the junction element 14 according to the present invention is shown. The last linkages ofthe scissors-type struts 13 are pivot-ally fastened to lugs 29 extending from the hubs l9u and 19!). Similarly with this embodiment. the rod 28 may or may not be used to provide axial alignment of the hubs. ll rod 28 is used. either the top hub 191: or the bottom huh 19h may be fastened to rod 28 or neither hub may be fastened. with both hubs being journaicd to the rod for siidable movement thereon. Again. bringing the hubs together will expand the trusses ll of the building by causing the scissor link ages 13 to be placed closer together and to contract or shorten the lengths of the expandable trusses 11 by expanding the distance between the mated ends of the linkages.

A connection for a double scissors-type expandable truss H for extra support is shown in FIG 4. Again the hubs will operate the linkages ofthe expandable trusses and again an axial alignment rod 28 may or may not be used. Only one side or one lug is shown fastened to each hub. [t is obvious that more lugs are placed around the peripheral of each hub to support several expandable trusses shown in the structure of FIG. 1.

For further mechanical advantage, the junction elements 14 may be fastened as shown in FIG, 5. The fourhub junction element 14:: can be used to operate the two-hub junction element 14h. which in turn operates the scissors-type linkages 15 and 16 of the struts 13. Operating the four-hub junction element Mu will provide a mechanical advantage for ease of expansion of the linkages of the struts l3. and thus provide an easy expansion of the expandable trusses 11.

Referring again to FIG I, the cxpandabie trusses 11 forming the framework of the domcaype structure 10 are a repetition of components having scissors-type linking struts l3 and junction elements [4. Thus, it is inherent that the operating characteristic of each junction element and linkage arrangement are repetitive, since the load should be evenly distributed through the framework of the dometype structurev There is no one strong point such as a central hub in the dome structure shown. but there may be use of a central hub configuration in other structures embodying the inventive concept disclosed. Each of the junction elements 14 structural intersect points is a support point and load applied directly to any of these points is distributed throughout the structure along numerous structural paths. the ex pandablc trusses 11. Accordingly. a high degree of structural integrity is provided.

The junction elements 14 according to the present invention may be located at strategic points around the circumference of the base of the structure at the intersection of the supporting expandable trusses for mechanical advantage and the covering of the building Tl'lLsLI junction elements can be used to expand the circumference of the structure while the junction elemerits in the dome portion of the structure are expanding the trusses supporting a flexible covering for the structure.

Further. the repetetive nature of the structure using the scissors-type linkages l3 and the junction elements 14 provides almost unlimited design flexibility. i.e.. any desired profile shape can be obtained by simply matching the structure to the desired shape. it should be stated that triangular. elongated. polyagonal and angular configurations are possible with the disclosed junction element and linkage configuration.

A dome-type structure has been shown and described. However, other structural uses can be made of the inventive concept disclosed herein such as helical antennae structures for space and earth use. non-dome shapedstructures for housing or product sheltering purposes. and any other needs for Coverage of a perma nent or a temporary nature. For instance. a Quonset Hut type of building is shown in P10. 6 using the junction element [4 and scissorsaype linkage expandable trusses ll according to the present invention. Each end of the Quonset but can comprise a quarter sphere or one half of the dome structure shown in FIG. 1. Similarly the length of the Ouonsct but can comprise either scissorstype expandable trusses or supporting rods interconnecting the quarter sphere ends. The covcring 31 may be of a plastic or rubber material or it may be simply a flexible netting formed ofany desirable material capable of supporting other materials to form a flexible or rigid covering. or a rigid panel covering attached after the framework has been raised.

A further modification of the junction elements can be made by the use of a worm gear 32 as shown in FIG. 7 journaled for fixedly rotating within one hub [9' while being threadedly connected to each of the remaining hubs 19''. Thus upon rotating the worm gear 32, the hubs 19" will be forced together by causing the hubs threadedly fastened to the worm gear to be drawn toward the hub 19 into which the worm gear is fastened for rotation without axial movement. The worm gear may be rotated by a simple hand operated crank 34 or a motor 35 could be connected at the end of the worm gear to rotate the worm gear when energized. Each of the junction elements shown in FIG. 1 can be operated by a worm gear and motor construction as shown in U.S. Pat. No. 3.710.806 to cause the expansion or contraction of the building structure by the actuation of switches supplying power to the motors. The motor will rotate the worm gear which will cause the hubs of the junction elements to be drawn together. thereby extending the length of the struts formed by the scissors-type linkages.

The motor may comprise an electrical, common pneumatic. or hydraulic means which may be operated by one or more gear trains. Further the worm gear may comprise a right and left handed thread meeting at a central location between the hubs of the junction element. Rotating the worm gear will cause the hubs of the (all junction element to be drawn together by the worm gear towards the thread change-over position.

The principles of the present invention have now been made clear in an illustrated embodiment. There will he immediately obvious to those skilled in the art many modifications of structure. arrangement. propor tions. the elements. materials and components used in the practice of the invention. For instance. circular hubs are shown in the Figures comprising a part of the junction element. It is obvious that a square for interconnecting four struts could be used. Likewise a hexag onal hub could be used for interconnecting six struts in the junction element. The appended claims are. therefore. intended to cover and embrace any such moditi cations. within the limits only of the true spirit and scope of the invention.

What is claimed is:

l. A junction element for interconnecting a plurality of expandable trusses forming a portion of an erect-able framework for a building structure. each expandable truss comprised of a scissor-type mechanical strut having at least one pair of linkages pivotally connected at a point between their ends. said junction element comprising:

a plurality of substantially axially aligned hubs positioned along a rod. the number of said hubs grouped into sets of three;

a plurality of lugs fastened around the periphery of each hub;

means for pivotally fastening the pivot point of the paired scissors-type linkage at the end of one ex pandable strut to one lug of the central hub of a group of hubs;

a first and second arm pivotally fastened respectively at one end to a lug of the first and third hub of the group. the other ends of the arms being each pivotally fastened to one linkage of the scissor-type mechanical truss at a position between the pivot point of the linkage and the pivot connection to the next linkage:

the relative position of the first and third hubs to the central hub of one junction element determining the distance between the common ends of the linkages of the scissors-type struts and thus determining the length of said expandable trusses.

said central hub of each group being fastened to said rod while the first and third hubs are slidably fastened thereto.

2. A junction element as defined by claim 1, wherein each of said plurality of axially aligned hubs is slideably fastened to said rod such that the axial center of said rod is parallel to the axial center of said hubs.

3. A junction element defined by claim I wherein said rod comprises a gear means fastened to said groups of hubs such that selectively rotating said gear means causes said hubs of each group to be drawn adjacent each other and to be separated from each other.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3000386 *Dec 3, 1958Sep 19, 1961State University Of IowaExpansible frame structure
US3710806 *Oct 27, 1971Jan 16, 1973Kelly VErectable building structure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4026313 *Jul 13, 1976May 31, 1977Zeigler Theodore RichardCollapsible self-supporting structures
US4256129 *Apr 16, 1979Mar 17, 1981Gilsenan John TTent roof structure
US4589236 *Jun 5, 1984May 20, 1986Mcallister Jack GGeometric frame assembly
US4846204 *Mar 31, 1987Jul 11, 1989Moo Woong ChoiCollapsible frame structure for portable camp room
US4942700 *Oct 27, 1988Jul 24, 1990Charles HobermanReversibly expandable doubly-curved truss structure
US4986016 *Nov 3, 1989Jan 22, 1991Wichman William JFolding display frame with offset hub configuration
US4998552 *Sep 12, 1989Mar 12, 1991T. A. Pelsue CompanyGeodetic tent structure
US5024031 *Apr 6, 1990Jun 18, 1991Charles HobermanRadial expansion/retraction truss structures
US5067288 *May 15, 1990Nov 26, 1991Shimizu Construction Co., Ltd.Dome structure
US5125205 *Jul 5, 1991Jun 30, 1992William John WichmanDisplay frame with folding display attachment devices
US6345638 *Feb 15, 1999Feb 12, 2002Tentnology Ltd.Multiple peak cable tent
US6748712 *Jun 14, 2002Jun 15, 2004Usg Interiors, Inc.Scalable suspension system for dome shaped ceilings
US6834465 *Nov 25, 2002Dec 28, 2004Charles HobermanFolding covering panels for expanding structures
US7100333 *Feb 5, 2002Sep 5, 2006Charles HobermanLoop assemblies having a central link
US7146925 *Jul 3, 2003Dec 12, 2006Lockheed Martin CorporationApparatus for varying vessel hull geometry and vessels made therewith
US7803466 *Apr 6, 2007Sep 28, 2010Dorsy Sean CExpandable panel structures and methods of manufacturing the same
US7803467 *Jul 12, 2007Sep 28, 2010Dorsy Sean CMulti-tiered, expandable panel structures and methods of manufacturing the same
US8084141Sep 23, 2010Dec 27, 2011Dorsy Sean CExpandable panel structures and methods of manufacturing the same
US9334643 *Jun 5, 2012May 10, 2016Betconframe International Pty LtdThree dimensional upwardly convex frame and a method of constructing same
US20020112413 *Feb 5, 2002Aug 22, 2002Charles HobermanLoop assemblies having a central link
US20030097801 *Nov 25, 2002May 29, 2003Charles HobermanFolding covering panels for expanding structures
US20060135288 *Dec 8, 2005Jun 22, 2006Mills Randell LGreat-circle geodesic dome
US20070237923 *Apr 6, 2007Oct 11, 2007Dorsy Sean CExpandable panel structures and methods of manufacturing the same
US20070256387 *Jul 12, 2007Nov 8, 2007Dorsy Sean CMulti-tiered, expandable panel structures and methods of manufacturing the same
US20140130424 *Jun 5, 2012May 15, 2014Betconframe International Pty LtdThree dimensional upwardly convex frame and a method of constructing same
US20150167290 *Jul 3, 2013Jun 18, 2015Michelangelo PuritaniNodal Constructive System Of Rapid Assembly For Load Bearing Structures, Buildings And Artifacts Of Multi-Purpose Use
WO2016138992A1 *Mar 3, 2016Sep 9, 2016Daniel KerberSupporting structure for a dome-shaped roof
U.S. Classification52/109, 135/909, 135/145, 52/222, 52/646, 52/81.3
International ClassificationE04B1/343, E04B1/32, E04H15/50
Cooperative ClassificationE04B2001/3247, E04B1/34357, Y10S135/909, E04B1/32, E04B2001/3252, E04B1/34326, E04H15/50
European ClassificationE04H15/50, E04B1/343F, E04B1/343C2, E04B1/32